
Research Journal of Applied Sciences, Engineering and Technology 7(14): 2981-2986, 2014
DOI:10.19026/rjaset.7.630
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2014 Maxwell Scientific Publication Corp.
Submitted: October 26, 2013 Accepted: November 12, 2013 Published: April 12, 2014

Corresponding Author: Sidra Noureen, University Institute of Information Technology, PMAS (AAUR), Rawalpindi,

Pakistan
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

2981

Research Article
Application of Search Algorithms for Model Based Regression Testing

Sidra Noureen and Sohail Asghar
University Institute of Information Technology, PMAS (AAUR), Rawalpindi, Pakistan

Abstract: UML models have gained their significance as reported in the literature. The use of a model to describe
the behavior of a system is a proven and major advantage to test. With the help of Model Based Testing (MBT), it is
possible to automatically generate test cases. When MBT is applied on large industrial systems, there is problem to
sampling the test cases from the suit of entire test because it is difficult to execute the huge number of test cases
being generated. The motivation of this study is to design a multi objective genetic algorithm based test case
selection technique which can select the most appropriate subset of test cases. NSGA (Non-dominated Sorting
Genetic Algorithm) is used as an optimization algorithm and its fitness function is improved for selecting test cases
from the dataset. It is concluded that there is a room to improve the performance of NSGA algorithm by means of
tailoring its respective fitness function.

Keywords: Metaheuristic, MBT, regression testing, test case selection

INTRODUCTION

Model based testing is getting more popular

because of the fact that model emulates the entire
functionality of the system at a glance as compared to a
code. The most extensively used models for testing
purpose are UML models (El-Far and Whittaker, 2001).
El-Far (2001) reported that MBT is preferable because
of the certain benefits it can provide. With the help of
MBT, any changes which are introduced in the system
can be easily accommodated while requiring less cost
and effort. In contrast to this when a change is
introduced in the code, several changes are needed to be
carried out along with that particular change, as one part
of the code is connected to some other part of the code.
This eventually increases the cost. Previously code base
techniques were employed for testing purpose, but those
techniques had the problem that testing process started
quite late, after the coding phase, but in MBT the testing
process starts earlier which helps in early bug
identification (Utting and Legeard, 2006). Recently
search algorithms have been used with MBT. These
algorithms are being applied on UML models. In order
to generate optimal solutions to complex problems,
Meta-Heuristic Search (MHS) algorithms are mostly
employed.

MHS and local search algorithms are two categories
of search algorithms. Local search algorithms include
hill climbing and tabu search, while meta-heuristic
search algorithms include simulated annealing and
genetic algorithm. Many of the search algorithms such
as simulated annealing and hill climbing have been used

earlier (Ali et al., 2008). However, these algorithms get
trapped in the local optimum problem (Coley, 1999).
Meta-heuristic search algorithms are used widely
nowadays as they do not get trapped in local optima (Ali
et al., 2008). Among search algorithms, genetic
algorithms are widely used as they can search the
solution as well as evolve the new generation. Search
algorithms have been applied to different models. In
Hemmati et al. (2011) works test cases are selected
which are similar to each other and genetic algorithm is
used. This study is an enhancement of the technique
carried out by Hemmati et al. (2011) with the help of
MBT; we can automatically generate test cases. But the
distinction of this study is that it aims to design a multi
objective genetic algorithm based test case selection
technique to select a small set of test cases.

Multi objective optimization techniques were being
used since 1951. However, since 1970, such
optimization approaches started getting more and more
popularity till their practical and useful application was
realized in 1967. The use of evolutionary algorithms for
optimization of multi objective problems was first
introduced by Rosenberg in 1960’s. Multi objective
optimization algorithms are categorized as: Aggregating
approaches, VEGA, Lexicographic ordering, the ε-
constraint method, Target vector approaches. All of
these are non Pareto based approaches. These
approaches have a limitation that they work with few
objectives. Hence keeping in view of this limitation,
Pareto based approaches were introduced which include:
Pure Pareto ranking, MOGA, NSGA etc., (Coello,
2001).

Res. J. App. Sci. Eng. Technol., 7(14): 2981-2986, 2014

2982

In this study NSGA is implemented. Dias and De
Vasconcelos (2002) defined multi objective problems in
mathematical form as:

 � = ���� = ������, �
���, … �����

Subject: to ���� = ������, �
���, … ������ ≤ 0

where, ℎ��� = �ℎ����, ℎ
���, … ℎ����
 = 0

� = ���, �
, … ��� ∈ �
� = ��� , �
, … ��� ∈ �

Here x is decision vector. The solutions of such

multi objective problems are expressed in terms of non-
dominated individuals. We say that �� is said to be
dominated than �
 if none of the values of �
 is less
than �� and at least one value of �
 is strictly greater
than �� (Srinivas and Deb, 1994).

LITERATURE REVIEW

The techniques which were used in the past such as

linear programming were static. But in software
engineering such static algorithms are not quite useful,
because in this filed the problems have such objectives
that cannot be handled by linear techniques. SBST can
handle such problems in a much better way because it
involves fitness functions which are quite complex. The
benefits of search based testing have been counted by
scientists. With the help of experiments, it is found to
be a wrathful and valuable area in the domain of
software engineering.

Researchers have applied search algorithms on
UML models. Generation of test data has been arisen as
a major problem within model based testing. Ali et al.
(2007) provide an empirical investigation of search
based test case generation. They presented the results of
a systematic, comprehensive review. They emphasized
that the genetic algorithms perform better than random
search in terms of structural coverage.

A large number of test cases are produced during
the testing process and it is not viable to run all of them
as it takes lots and lots of time. Hence selection of test
cases, prioritization and minimization of test cases is
also an essential problem in testing phase.

According to Hemmati et al. (2011) test cases are
selected on similarity basis. The Author has used state
machine diagram for test selection purpose and genetic
algorithm is applied. The results point out that the
approach has reduced cost of detecting faults up to 73%
in one second of time. But, the results of the approach
rely on one industrial case study; it should be replicated
as many times as possible.

The limitation of GA for not embracing multiple
objectives led to the need towards such a technique that
could work with more than one objective which are
opposing each other and takes the search process
towards a better solution. Researchers started working
on multi-objective types of Genetic Algorithm (GA).

Dias and De Vasconcelos (2002) have used NSGA
(Non-Dominated Sorting Genetic Algorithm) to resolve
the problems of optimization. It is described that it is
not always necessary that there is only one solution to
more than one objective. Hence some multi objective
approach is required and NSGA is one of the multi
objective algorithms. The Author has compared the
results of NSGA with some other algorithms and has
investigated the results. It was found that NSGA is
better as compared to other multi objective genetic
algorithms. The results have been shown with the help
of the experiment, which is why results are reliable.

Iqbal et al. (2012) has proposed a methodology for
testing real time systems. Two algorithms GA and
(1+1) EA are employed and their ability to identify
faults is detected. The approach when applied on an
industrial case study shows consistent results. Author
suggested combining (1+1) EA and random testing to
achieve better results.

This study consists of three sections. The first
section gives an introduction to the topic and related
work in the field. The second section describes the
proposed work and finally the last section describes the
results and discussions.

RESEARCH METHODOLOGY

In the previous section, evolutionary and search
based algorithms are discussed for model based testing.
In proposed work, UML’s state chart diagram and
Multi-Objective Genetic Algorithm (MOGA) is used.
This study is partial extension of Hemmati et al. (2011)
work and the difference is that they used steady state
GA; on the contrary Non-Dominated Sorting GA
(NSGA) which is a multi-objective technique of GA is
used in this study. GA makes the test case selection
process easier (Deb et al., 2002). If fitness function is
made with care, then search process can lead to the best
possible solution. GA is a metaheuristic technique
which works well for the complex problems. Selection
of test cases is a complex problem and requires optimal
solution; hence GA can be used for this problem. GA
involves a function which selects the fit individuals
from the population. This function is the fitness
function. In our case GA selects test cases. Figure 1
depicts the flow of our work.

The similarity function which was defined by
Hemmati et al. (2011) is used in this study which has
been formulated as:

��� �� ���� = ∑ ���"#$%&'() , '(�*+,-,+,.∈/0∧)2�

where, ���"#$% �'() , '(��is the similarity between two
test paths �'() , '(�� which is calculated as:

• Identify the two triggers which are similar in two

test paths.
• Find out the total transitions in the test path.

Res. J. App. Sci. Eng. Technol., 7(14): 2981-2986, 2014

2983

Fig. 1: Flow of work (Implementation of NSGA and
automatic generation of test data)

• Find the average number of transitions in the test

path.
• Divide the number of similar triggers on the

average number of transitions.

This similarity function which was named as Tb
uses similar triggers. Tb was defined as:

“Tb(tpi, tpj) = Number of identical triggers in tpi

and tpj divided by the average length (number of

transitions in the test path) of tpi and tpj”.

According to Hemmati et al. (2011), in a state chart
diagram, similar events are more likely to occur so in
such cases Tb is quite useful. Tb selects one test path
and leaves the other. This is applied on an ATM mode
land the test data which can be generated is like: tp1 =
(RC, “success”, RP, “prs”, CT, “tc”, PT, “cf”, EC, F),
tp2 = (RC, “success”, RP, “cp”, EC, F) For this kind of
test data, 34 = �'(�, '(
� = 0.2(one similar eent and
total length 4).

The other fitness function which is used here and
which was defined by Ma et al. (2005) is:

"�'$7���'7�' (8'ℎ� = 9:; �'()�
9:�'�'()�< (1)

where, Cov is “coverage”. We have calculated coverage
as follows:

9:; = ∑ ��=7+,∈/0 �'(>, '(? , … '(@� (2)

e.g., after crossover the obtained child are like: {tp1,
tp2, tp5} and if supposed that size of tp1 is 4, size of
tp2 is 5 and size of tp5 is 2. Then total coverage will be
= 4+5+2 = 11.

On the other hand cost of test path is total size of
generation. This can be formulated as:

9:�' = lim)D�→��'()� (3)

e.g., {tp1, tp2, tp5}. So Cost will be 3 because total
elements in this generation are 3.

In this study the selection technique used involves
following steps as depicted in Fig. 2 (Dias and De
Vasconcelos, 2002).

In the first step of implementing this algorithm, the
population is initialized. The input is given in the form
of test paths (string type) like tp = {1, a, 2, b, 3}. In this
the alphabet represents an event and the numbers show
states. Such kinds of test paths make a population,
where one test path is considered a gene.

The probability of individuals is calculated and
individuals are assigned ranks on the basis of that
probability. The probability is calculated using the
following formula:

F+, = 1/$

The calculated probability is used later for

separating non-dominated individuals.
Non-dominated individuals are then identified from

the population. It is supposed that these individuals
make the first front. After this a sharing method is
applied. We modified the existing formula of sharing
the fitness value. Our formula for sharing fitness
between individuals is:

�ℎ8 �$� = 1 �� I)� J/K>LMN
<

Oℎ7$ < J/K>LMN
0 :'ℎ7 O��7

where,
I)� = The difference between similarity values of

two individuals
J/K>LMN = Maximum similarity between two

individuals due to which they can be the
components of a niche

Individuals in the first front are then ignored and

then remaining population is sorted according to the
same procedure.

These steps are repeated until all the population is
sorted. We define the genetic operators too which
include selection, crossover and mutation.

Res. J. App. Sci. Eng. Technol., 7(14): 2981-2986, 2014

2984

Fig. 2: Process of non-dominated sorting genetic algorithm

Fig. 3: Crossover between test paths

Once the non-dominated individuals are sorted,

then selection is performed. Ranks are assigned. In rank
selection we calculate sum of the assigned ranks and
then calculate the probability values on basis of which
individuals are selected.

Then crossover is performed. The parts of
individuals which are selected are crossed over to
combine the characteristics of the both the individual.
Single point crossover is used. This is shown as in
Fig. 3.

Then mutation operator is applied to replace any
test path in the children which has low similarity value,
to be assumed tp7 has low similarity value and in
population there exists a test path tp11 which has high
similarity value then tp7 is replaced with tp11.

Now, the fitness function is evaluated. If the test
paths in the children are fit, then parents are replaced
with children, otherwise the process is repeated.

Automatic generation of test cases: It is possible to
automatically generate test cases from UML models.
Until now, the test cases were developed manually and
then test scripts were written for the test cases (Sieving
and Öman, 2010). But now the trend is towards the use
of MBT. The tools which are used in industry for
automated testing use MBT because MBT provides this
benefit of automation. Different tools are used for
different UML models. For this particular work
Conformi Q Qtronic tool is selected which generates
test cases from state chart diagram. The model is built
in Conformi Q modeler. It automatically generates test
cases from the state chart diagram. Conformi Q Qtronic
generates test cases in different forms like in TTCN-,
junit, html etc., we have generated them in junit as well
as in html. Moreover the tool provides several
advantages like:

Res. J. App. Sci. Eng. Technol., 7(14): 2981-2986, 2014

2985

• Test cases are generated efficiently
• Quality tests are generated
• The chance of errors in the design as well as tests is

minimized
• When design is improved, the design document

which is prepared in start is automatically
improved and there are no errors in that.

• There is no mess of creating test manually and no
bugs are found at the end

Afterwards the model is loaded in the Qtronic IDE.

Further there is a computation server given by
Conformi Q, which runs at the backend and creates the
test cases. Conformi Q Qtronic works with Eclipse
SDK plug-in. It automatically generates test cases from
state chart Diagram.

RESULTS AND DISCUSSION

The preceding section is about the Non-dominated
Sorting Genetic algorithm that how it works for the
problem of test case selection. This chapter tells about
the results of the Non-dominated Sorting Genetic
Algorithm (NSGA). It is discussed how our results are
different from the existing work done to solve the
problem of selecting a subset of test paths from a large

number of test dataset. The algorithm is implemented in
Java language and tool used is Net Beans 7.0. The
robotic system case study is used for extracting test
data.

Case study: The robot system is a real time system.
The robot performs four functions. It can turn to right,
to left, it can move forward and backward. These are
the states of the system i.e., right, left, forward and
backward. A timer is also set for the system after which
it changes its direction. Several events occur on the
system and whenever any event occurs, the transition
takes place and the state of the system changes. This
case study generates almost thirty test paths. Among
these test paths, whenever two test paths are found to be
same on the basis of this criterion, the similarity
function discards one test path and keeps the other one.

Results and discussion for steady state GA: Figure 4
depicts the fitness function values for the test paths in
the child generations which are selected by steady state
GA. X-axis represent the fitness values and Y-axis
represents the test paths. Every time we run the Genetic
Algorithm, different generations are selected because
GA is an evolutionary algorithm. The test paths are
initially chosen randomly.

Fig. 4: Fitness function values for test paths selected by steady state GA

Fig. 5: Fitness function values for test paths selected by NSGA

0

2

4

6

8

10

0.3 0.40.1 0.2 0.5 0.6 0.7
Fitness function values

T
es

t
pa

th
 n

um
be

r

Fitness values

0.0 0.8 0.9 1.0

Coverage and cost

0

2

4

6

8

10

0.3 0.40.1 0.2 0.5 0.6 0.7
Fitness function values

T
es

t
pa

th
 n

um
be

r

Fitness values

0.0 0.8 0.9 1.0

Coverage and cost

0

1

2

3

4

5

6

7

8

0.5 0.60.3 0.4 0.9 1.00.7 0.8 1.1 1.2 1.3
Fitness function values

T
es

t
pa

th
 n

um
be

r

Fitness function values

0

1

2

3

4

5

0.9 1.00.7 0.8 1.1 1.2 1.3
Fitness function values

T
es

t
pa

th
 n

um
be

r

Fitness function values

Res. J. App. Sci. Eng. Technol., 7(14): 2981-2986, 2014

2986

Results and discussion for NSGA: Figure 5 shows the
fitness function values of the test paths which are
selected by Non-dominated sorting Genetic Algorithm.
As shown by graphs of GA, here too X-axis shows
fitness function values and on Y-axis the test paths are
shown. NSGA also selects different generations on
every run because of being an evolutionary algorithm.

CONCLUSION AND RECOMMENDATIONS

The results of the existing steady state GA and this

approach (NSGA) show that two algorithms generate
their own results according to the nature of the problem.
We can conclude that as steady state GA works with a
single objective while NSGA works with multiple
objectives, so the results of the two approaches are
different. The performance of the algorithm improves if
the function that selects the test paths is improved. In
the coming future, we need to implement the approach
with other multi-objective algorithms and compare with
that, further other evolutionary algorithms mentioned in
the literature like ACO, PSO etc., are needed to be
checked for their performance for the same problem.

ACKNOWLEDGMENT

The author gratefully acknowledges Babar Shabbir,

Adia Khalid, Omer Bashir and all the other people who
contributed and helped in this study.

REFERENCES

Ali, A., A. Nadeem, Z. Iqbal and M. Usman, 2007.

Regression testing based on UML design models.
Proceeding of the 13th IEEE International
Symposium on Pacific Rim Dependable
Computing, pp: 85-88.

Ali, S., L. Briand, H. Hemmati and R. Panesar-
Walawege, 2008. A systematic review of the
application and empirical investigation of search-
based test case generation. IEEE T. Software Eng.,
36(6): 742-762.

Coello, C.A.C.C., 2001. A Short Tutorial on
Evolutionary Multiobjective Optimization. In:
Zitzler, E. et al. (Eds.): EMO 2001. LNCS 1993,
Springer-Verlag, Berlin, Heidelberg, pp: 21-40.

Coley, D.A., 1999. An Introduction to Genetic
Algorithm for Scientists and Engineers. World
Scientific Publishing Co. Pte. Ltd., Singapore.

Deb, K., A. Pratap, S. Agarwal and T. Meyarivan,
2002. A fast and elitist multi objective genetic
algorithm: NSGA II. IEEE T. Evolut. Comput.,
6(2): 182-197.

Dias, A.H.F. and J.A. De Vasconcelos, 2002. Multi
objective genetic algorithms applied to solve
optimization problems. IEEE T. Magn., 38(2):
1133-1136.

El-Far, I.K., 2001. Enjoying the perks of model-based
testing. Proceeding of the Software Testing,
Analysis and Review Conference (STARWEST
2001).

El-Far, I.K. and J.A. Whittaker, 2001. Model-based
software testing. In: Marciniak, J.J. (Ed.),
Encyclopedia of Software Engineering. Wiley,
Chichester.

Hemmati, H., L. Briand, A. Arcuri and S. Ali, 2011. An
enhanced test case selection approach for model-
based testing: An industrial case study.
Proceedings of the 18th ACM SIGSOFT
International Symposium on Foundations of
Software Engineering, pp: 267-276.

Iqbal, M.Z., A. Arcuri and L. Briand, 2012. Empirical
investigation of search algorithms for environment
model-based testing of real-time embedded
software. Proceedings of the 2012 International
Symposium on Software Testing and Analysis
(ISSTA 2012), pp: 199-209.

Ma, X., B. Sheng and C. Ye, 2005. Test-suite
Reduction Using Genetic Algorithm. In: Cao, J.,
W. Nejdl and M. Xu (Eds.): APPT 2005. LNCS
3756, Springer-Verlag, Berlin, Heidelberg, pp:
253-262.

Sieving, R. and P. Öman, 2010. Pilot project for model
based testing using conformiq qtronic. M.A.
Thesis, Department of Computer Science and
Electrical Engineering, Division of Media
Technology, Lulea University of Technology,
Arena.

Srinivas, N. and K. Deb, 1994. Multi objective
optimization using non-dominated sorting enetic
algorithm. J. Evolut. Comput., 2(3): 221-248.

Utting, M. and B. Legeard, 2006. Practical Model-
based Testing: A Tools Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA,
USA.

