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Abstract: UML models have gained their significance as reported in the literature. The use of a model to describe 
the behavior of a system is a proven and major advantage to test. With the help of Model Based Testing (MBT), it is 
possible to automatically generate test cases. When MBT is applied on large industrial systems, there is problem to 
sampling the test cases from the suit of entire test because it is difficult to execute the huge number of test cases 
being generated. The motivation of this study is to design a multi objective genetic algorithm based test case 
selection technique which can select the most appropriate subset of test cases. NSGA (Non-dominated Sorting 
Genetic Algorithm) is used as an optimization algorithm and its fitness function is improved for selecting test cases 
from the dataset. It is concluded that there is a room to improve the performance of NSGA algorithm by means of 
tailoring its respective fitness function. 
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INTRODUCTION 

 
Model based testing is getting more popular 

because of the fact that model emulates the entire 
functionality of the system at a glance as compared to a 
code. The most extensively used models for testing 
purpose are UML models (El-Far and Whittaker, 2001). 
El-Far (2001) reported that MBT is preferable because 
of the certain benefits it can provide. With the help of 
MBT, any changes which are introduced in the system 
can be easily accommodated while requiring less cost 
and effort. In contrast to this when a change is 
introduced in the code, several changes are needed to be 
carried out along with that particular change, as one part 
of the code is connected to some other part of the code. 
This eventually increases the cost. Previously code base 
techniques were employed for testing purpose, but those 
techniques had the problem that testing process started 
quite late, after the coding phase, but in MBT the testing 
process starts earlier which helps in early bug 
identification (Utting and Legeard, 2006). Recently 
search algorithms have been used with MBT. These 
algorithms are being applied on UML models. In order 
to generate optimal solutions to complex problems, 
Meta-Heuristic Search (MHS) algorithms are mostly 
employed. 

MHS and local search algorithms are two categories 
of search algorithms. Local search algorithms include 
hill climbing and tabu search, while meta-heuristic 
search algorithms include simulated annealing and 
genetic algorithm. Many of the search algorithms such 
as simulated annealing and hill climbing have been used 

earlier (Ali et al., 2008). However, these algorithms get 
trapped in the local optimum problem (Coley, 1999). 
Meta-heuristic search algorithms are used widely 
nowadays as they do not get trapped in local optima (Ali 
et al., 2008). Among search algorithms, genetic 
algorithms are widely used as they can search the 
solution as well as evolve the new generation. Search 
algorithms have been applied to different models. In 
Hemmati et al. (2011) works test cases are selected 
which are similar to each other and genetic algorithm is 
used. This study is an enhancement of the technique 
carried out by Hemmati et al. (2011) with the help of 
MBT; we can automatically generate test cases. But the 
distinction of this study is that it aims to design a multi 
objective genetic algorithm based test case selection 
technique to select a small set of test cases. 

Multi objective optimization techniques were being 
used since 1951. However, since 1970, such 
optimization approaches started getting more and more 
popularity till their practical and useful application was 
realized in 1967. The use of evolutionary algorithms for 
optimization of multi objective problems was first 
introduced by Rosenberg in 1960’s. Multi objective 
optimization algorithms are categorized as: Aggregating 
approaches, VEGA, Lexicographic ordering, the ε-
constraint method, Target vector approaches. All of 
these are non Pareto based approaches. These 
approaches have a limitation that they work with few 
objectives. Hence keeping in view of this limitation, 
Pareto based approaches were introduced which include: 
Pure Pareto ranking, MOGA, NSGA etc., (Coello, 
2001). 
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In this study NSGA is implemented. Dias and De 
Vasconcelos (2002) defined multi objective problems in 
mathematical form as: 

 
 � = ���� = ������, �
���, … �����
 
 
Subject: to ���� = ������, �
���, … ������ ≤ 0 
 
where, ℎ��� = �ℎ����, ℎ
���, … ℎ����
 = 0 
 
� = ���, �
, … ��� ∈ � 
� = ��� , �
, … ��� ∈ � 
 
Here x is decision vector. The solutions of such 

multi objective problems are expressed in terms of non-
dominated individuals. We say that �� is said to be 
dominated than �
 if none of the values of �
 is less 
than �� and at least one value of �
 is strictly greater 
than �� (Srinivas and Deb, 1994). 

 
LITERATURE REVIEW 

 
The techniques which were used in the past such as 

linear programming were static. But in software 
engineering such static algorithms are not quite useful, 
because in this filed the problems have such objectives 
that cannot be handled by linear techniques. SBST can 
handle such problems in a much better way because it 
involves fitness functions which are quite complex. The 
benefits of search based testing have been counted by 
scientists. With the help of experiments, it is found to 
be a wrathful and valuable area in the domain of 
software engineering.  

Researchers have applied search algorithms on 
UML models. Generation of test data has been arisen as 
a major problem within model based testing. Ali et al. 
(2007) provide an empirical investigation of search 
based test case generation. They presented the results of 
a systematic, comprehensive review. They emphasized 
that the genetic algorithms perform better than random 
search in terms of structural coverage. 

A large number of test cases are produced during 
the testing process and it is not viable to run all of them 
as it takes lots and lots of time. Hence selection of test 
cases, prioritization and minimization of test cases is 
also an essential problem in testing phase. 

According to Hemmati et al. (2011) test cases are 
selected on similarity basis. The Author has used state 
machine diagram for test selection purpose and genetic 
algorithm is applied. The results point out that the 
approach has reduced cost of detecting faults up to 73% 
in one second of time. But, the results of the approach 
rely on one industrial case study; it should be replicated 
as many times as possible. 

The limitation of GA for not embracing multiple 
objectives led to the need towards such a technique that 
could work with more than one objective which are 
opposing each other and takes the search process 
towards a better solution. Researchers started working 
on multi-objective types of Genetic Algorithm (GA). 

Dias and De Vasconcelos (2002) have used NSGA 
(Non-Dominated Sorting Genetic Algorithm) to resolve 
the problems of optimization. It is described that it is 
not always necessary that there is only one solution to 
more than one objective. Hence some multi objective 
approach is required and NSGA is one of the multi 
objective algorithms. The Author has compared the 
results of NSGA with some other algorithms and has 
investigated the results. It was found that NSGA is 
better as compared to other multi objective genetic 
algorithms. The results have been shown with the help 
of the experiment, which is why results are reliable. 

Iqbal et al. (2012) has proposed a methodology for 
testing real time systems. Two algorithms GA and 
(1+1) EA are employed and their ability to identify 
faults is detected. The approach when applied on an 
industrial case study shows consistent results. Author 
suggested combining (1+1) EA and random testing to 
achieve better results. 

This study consists of three sections. The first 
section gives an introduction to the topic and related 
work in the field. The second section describes the 
proposed work and finally the last section describes the 
results and discussions. 
 

RESEARCH METHODOLOGY 
 

In the previous section, evolutionary and search 
based algorithms are discussed for model based testing. 
In proposed work, UML’s state chart diagram and 
Multi-Objective Genetic Algorithm (MOGA) is used. 
This study is partial extension of Hemmati et al. (2011) 
work and the difference is that they used steady state 
GA; on the contrary Non-Dominated Sorting GA 
(NSGA) which is a multi-objective technique of GA is 
used in this study. GA makes the test case selection 
process easier (Deb et al., 2002). If fitness function is 
made with care, then search process can lead to the best 
possible solution. GA is a metaheuristic technique 
which works well for the complex problems. Selection 
of test cases is a complex problem and requires optimal 
solution; hence GA can be used for this problem. GA 
involves a function which selects the fit individuals 
from the population. This function is the fitness 
function. In our case GA selects test cases. Figure 1 
depicts the flow of our work. 

The similarity function which was defined by 
Hemmati et al. (2011) is used in this study which has 
been formulated as: 

 
��� �� ���� =  ∑ ���"#$%&'() , '(�*+,-,+,.∈/0∧)2�   

 
where, ���"#$% �'() , '(��is the similarity between two 
test paths �'() , '(�� which is calculated as: 

 
• Identify the two triggers which are similar in two 

test paths. 
• Find out the total transitions in the test path. 
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Fig. 1: Flow of work (Implementation of NSGA and 
automatic generation of test data) 

 
• Find the average number of transitions in the test 

path. 
• Divide the number of similar triggers on the 

average number of transitions. 
 

This similarity function which was named as Tb 
uses similar triggers. Tb was defined as: 

 
“Tb(tpi, tpj) = Number of identical triggers in tpi 

and tpj divided by the average length (number of 

transitions in the test path) of tpi and tpj”. 

 

According to Hemmati et al. (2011), in a state chart 
diagram, similar events are more likely to occur so in 
such cases Tb is quite useful. Tb selects one test path 
and leaves the other. This is applied on an ATM mode 
land the test data which can be generated is like: tp1 = 
(RC, “success”, RP, “prs”, CT, “tc”, PT, “cf”, EC, F), 
tp2 = (RC, “success”, RP, “cp”, EC, F) For this kind of 
test data, 34 = �'(�, '(
� = 0.2(one similar eent and 
total length 4). 

The other fitness function which is used here and 
which was defined by Ma et al. (2005) is: 

 

"�'$7���'7�' (8'ℎ� = 9:; �'()�
9:�'�'()�<       (1) 

where, Cov is “coverage”. We have calculated coverage 
as follows: 

9:; =  ∑ ��=7+,∈/0 �'(>, '(? , … '(@�              (2) 
 

e.g., after crossover the obtained child are like: {tp1, 
tp2, tp5} and if supposed that size of tp1 is 4, size of 
tp2 is 5 and size of tp5 is 2. Then total coverage will be 
= 4+5+2 = 11. 

On the other hand cost of test path is total size of 
generation. This can be formulated as: 

 
9:�' = lim)D�→��'()�                                          (3) 
 

e.g., {tp1, tp2, tp5}. So Cost will be 3 because total 
elements in this generation are 3. 

In this study the selection technique used involves 
following steps as depicted in Fig. 2 (Dias and De 
Vasconcelos, 2002). 

In the first step of implementing this algorithm, the 
population is initialized. The input is given in the form 
of test paths (string type) like tp = {1, a, 2, b, 3}. In this 
the alphabet represents an event and the numbers show 
states. Such kinds of test paths make a population, 
where one test path is considered a gene. 

The probability of individuals is calculated and 
individuals are assigned ranks on the basis of that 
probability. The probability is calculated using the 
following formula: 

 
F+, = 1/$ 

 
The calculated probability is used later for 

separating non-dominated individuals. 
Non-dominated individuals are then identified from 

the population. It is supposed that these individuals 
make the first front. After this a sharing method is 
applied. We modified the existing formula of sharing 
the fitness value. Our formula for sharing fitness 
between individuals is: 

 

�ℎ8 �$� = 1 �� I)� J/K>LMN
<  

Oℎ7$ < J/K>LMN 
0 :'ℎ7 O��7 
 

where, 
I)�  = The difference between similarity values of 

two individuals 
J/K>LMN  = Maximum similarity between two 

individuals due to which they can be the 
components of a niche 

 
Individuals in the first front are then ignored and 

then remaining population is sorted according to the 
same procedure. 

These steps are repeated until all the population is 
sorted. We define the genetic operators too which 
include selection, crossover and mutation. 
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Fig. 2: Process of non-dominated sorting genetic algorithm 
 

 
 

Fig. 3: Crossover between test paths 
 
Once the non-dominated individuals are sorted, 

then selection is performed. Ranks are assigned. In rank 
selection we calculate sum of the assigned ranks and 
then calculate the probability values on basis of which 
individuals are selected. 

Then crossover is performed. The parts of 
individuals which are selected are crossed over to 
combine the characteristics of the both the individual. 
Single  point  crossover  is  used. This is shown as in 
Fig. 3. 

Then mutation operator is applied to replace any 
test path in the children which has low similarity value, 
to be assumed tp7 has low similarity value and in 
population there exists a test path tp11 which has high 
similarity value then tp7 is replaced with tp11. 

Now, the fitness function is evaluated. If the test 
paths in the children are fit, then parents are replaced 
with children, otherwise the process is repeated. 

 
Automatic generation of test cases: It is possible to 
automatically generate test cases from UML models. 
Until now, the test cases were developed manually and 
then test scripts were written for the test cases (Sieving 
and Öman, 2010). But now the trend is towards the use 
of MBT. The tools which are used in industry for 
automated testing use MBT because MBT provides this 
benefit of automation. Different tools are used for 
different UML models. For this particular work 
Conformi Q Qtronic tool is selected which generates 
test cases from state chart diagram. The model is built 
in Conformi Q modeler. It automatically generates test 
cases from the state chart diagram. Conformi Q Qtronic 
generates test cases in different forms like in TTCN-, 
junit, html etc., we have generated them in junit as well 
as in html. Moreover the tool provides several 
advantages like: 



 

 

Res. J. App. Sci. Eng. Technol., 7(14): 2981-2986, 2014 

 

2985 

• Test cases are generated efficiently 
• Quality tests are generated 
• The chance of errors in the design as well as tests is 

minimized 
• When design is improved, the design document 

which is prepared in start is automatically 
improved and there are no errors in that. 

• There is no mess of creating test manually and no 
bugs are found at the end 
 
Afterwards the model is loaded in the Qtronic IDE. 

Further there is a computation server given by 
Conformi Q, which runs at the backend and creates the 
test cases. Conformi Q Qtronic works with Eclipse 
SDK plug-in. It automatically generates test cases from 
state chart Diagram. 

 
RESULTS AND DISCUSSION 

 

The preceding section is about the Non-dominated 
Sorting Genetic algorithm that how it works for the 
problem of test case selection. This chapter tells about 
the results of the Non-dominated Sorting Genetic 
Algorithm (NSGA). It is discussed how our results are 
different from the existing work done to solve the 
problem  of  selecting a subset of test paths from a large  

number of test dataset. The algorithm is implemented in 
Java language and tool used is Net Beans 7.0. The 
robotic system case study is used for extracting test 
data. 
 

Case study: The robot system is a real time system. 
The robot performs four functions. It can turn to right, 
to left, it can move forward and backward. These are 
the states of the system i.e., right, left, forward and 
backward. A timer is also set for the system after which 
it changes its direction. Several events occur on the 
system and whenever any event occurs, the transition 
takes place and the state of the system changes. This 
case study generates almost thirty test paths. Among 
these test paths, whenever two test paths are found to be 
same on the basis of this criterion, the similarity 
function discards one test path and keeps the other one. 
 

Results and discussion for steady state GA: Figure 4 
depicts the fitness function values for the test paths in 
the child generations which are selected by steady state 
GA. X-axis represent the fitness values and Y-axis 
represents the test paths. Every time we run the Genetic 
Algorithm, different generations are selected because 
GA is an evolutionary algorithm. The test paths are 
initially chosen randomly. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Fitness function values for test paths selected by steady state GA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Fitness function values for test paths selected by NSGA 
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Results and discussion for NSGA: Figure 5 shows the 
fitness function values of the test paths which are 
selected by Non-dominated sorting Genetic Algorithm. 
As shown by graphs of GA, here too X-axis shows 
fitness function values and on Y-axis the test paths are 
shown. NSGA also selects different generations on 
every run because of being an evolutionary algorithm. 
 
CONCLUSION AND RECOMMENDATIONS 

 
The results of the existing steady state GA and this 

approach (NSGA) show that two algorithms generate 
their own results according to the nature of the problem. 
We can conclude that as steady state GA works with a 
single objective while NSGA works with multiple 
objectives, so the results of the two approaches are 
different. The performance of the algorithm improves if 
the function that selects the test paths is improved. In 
the coming future, we need to implement the approach 
with other multi-objective algorithms and compare with 
that, further other evolutionary algorithms mentioned in 
the literature like ACO, PSO etc., are needed to be 
checked for their performance for the same problem. 
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