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Abstract: A scheme is proposed to hide data in images based on a prioritized ordering of the content of the host 
(or cover) image. A watermark embedding process uses the watermark strength to determine the ordering of the 16 
regions resulting from the second level Discrete Wavelet Transform (DWT) decomposed content of the host 
image. To determine the best ordering for hiding the data, various types of image of varying content and, hence, 
visual complexity were considered, analyzed and ranked in terms of their ability to withstand changes that do not 
imperil the visual quality (PSNR) of their watermarked versions depending on which an N×N-sized watermark 
stream is hidden in the 8 highest ranked sub-bands of the host image. From this perspective, an ordering for images 
classified as simple, normal and complex images was used to determine a generalized ordering of the DWT 
decomposed sub-bands of the image. The generalized ordering presented here ascertains that the content of the 
image and its visual complexity had little effect on an earlier proposed prioritized ordering of the DWT Sub-bands. 
To validate the veracity of the ordering scheme, 1000 images from the Corel 1000A database, their visual 
complexity and features were taken into account. The results confirmed that high embedding capacity, appreciable 
visual quality of watermarked images and complete recovery hidden data are realizable based on the ordering 
scheme proposed in this study. 
 
Keywords: Data hiding, Discrete Wavelet Transform (DWT), image processing, information security, visual 

complexity, watermarking 

 
INTRODUCTION 

 
A consequence arising from the recent growth and 

advancements in the field of digital communication 
technology is the ease with which information can be 
produced, exchanged and copied. This has made the need 
for state-of-the-art algorithms to protect data and 
multimedia such as text, images, video, sound, etc., 
against un-authorized copying and tampering both 
mandatory and de rigueur (Al-Asmari et al., 2012). 

Digital watermarking is a technique that proffers a 
means to guard digital content from illegal copying and 
manipulation. Over the past few years these digital 
watermarking techniques have become more advanced, 
sophisticated and robust. Using a good watermarking 
technique, it is possible to extract the data embedded in 
the image at a later stage, or detect its presence in the 
multimedia element for diverse purposes including 
copyright protection, access control and broadcast 
monitoring. Depending on the type of data and 
applications, or target audience, each watermarking 
strategy may be designed to enhance at least one of the 

properties: capacity, robustness or visual quality (a.k.a. 
imperceptibility) of the original data. A digital 
watermark is an unnoticeable signal added to digital data,  
known as cover content (image, sound, etc., as the case 
may be), which can possibly be identified at a later stage 
for identification, authentication or the like. Thus, Digital 
watermarking can be categorized as image 
watermarking, video watermarking or audio 
watermarking depending upon the nature of the cover 
content. Contemporary digital watermarking schemes 
chiefly target image and video copyright protection 
(Wang and Zhao, 2006). Commonly, a digital watermark 
is a code that is embedded within an image. It plays the 
role of a digital signature, providing the image with a 
sense of ownership or authenticity. The primary benefit 
of watermarking is that the content is not separable from 
the watermark. Watermarking can be divided into diverse 
categories in a wide range of ways. It is categorized into 
non-blind, semi-blind and the blind schemes on the basis 
of the requirements for watermark extraction or detection 
(Tao and Eskicioglu, 2004; Weng et al., 2008). In 
another category, robust watermarking is commonly 
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designed to resist malicious attacks like scaling, 
cropping, lossy compression, etc. and is chiefly focused 
on copyright protection. On the contrary, fragile 
watermarking is used when the intention is to identify 
any tiny modification to the original digital content 
(Weng et al., 2008). 

Extensive and recent researches on watermarking 
techniques for copyright protection have been introduced 
in the literature including (Kim and Moon, 1999; Elbasi 
and Eskicioglu, 2006; Makhoghi et al., 2010; Cui and Li, 
2011; Wang et al., 2010). Some conventional wavelet 
watermarking techniques embed the watermark in the 
components of the first level Discrete Wavelet 
Transform (DWT). Other techniques, that perform a 
second level decomposition, obtain the approximation 
sub-band from the first level decomposition and then 
decompose it further (Salama et al., 2011). 

In Al-Asmari et al. (2012), we proposed an 
embedding process based on an ordering of the DWT 
decomposed content of the cover images as determined 
by the watermark strength. The proposal exploits the 
relationship between the strength of the watermark (or 
gain factor), K and the imperceptibility of the resulting 
watermarked images in order to prioritize the ordering of 
sub-bands of the second order decomposed content of the 
cover image for the watermark embedding procedure. 
Using this ordering, the second level DWT decomposed 
content of the cover image is transformed using the Pixel 
Value Difference (PVD) in order to embed and recover 
the hidden data.  

Here in, we validate the earlier proposal by 
considering a larger database comprising of 1000 images 
from varying categories, content and, hence, the visual 
complexity of images as perceived by the Human System 
(HVS) (Le et al., 2012, 2011). The results suggest that 
notwithstanding the content and complexity of the host 
images, the proposed ordering of the DWT sub-bands do 
not change significantly hence, yielding high embedding 
capacity, good visual quality of watermarked images and 
efficient watermark recovery. 

Succinctly put, the work presented in this study is 
targeted at improving the embedding capacity and visual 
quality of watermarked images, while also guaranteeing 
the complete recovery of the data hidden inside the 
hitherto watermarked versions of the images. 

To accomplish this, our attention is mainly focused 
on understanding and utilizing the notion of visual 
complexity of images. Using the Corel 1000A dataset, 
we  generalized  the  SND  visual complexity space (Le 
et al., 2012, 2011) correlated it with the watermark 
strength dependent DWT-based watermark embedding in 
(Al-Asmari et al., 2012). Based on these generalizations, 
we deduced a relationship between visual complexity of 
an image and the watermark strength required for 
effective data hiding. This relationship was used to 
determine the best ordering to embed the watermark into 
the second order DWT decomposed content of the cover 
image using the PVD method. 

The proposed ordering scheme enhances the 
watermark embedding capacity, ensures faithful 
watermark recovery and guarantees visual fidelity of the 
watermarked versions of the images. The details of the 
proposed scheme and its evaluation are presented in 
subsequent sections of the study. 

 
METHODOLOGY 

 
The role of gain factor in effective hiding of information: In 
determining the ordering of the sub-bands of the cover 
image for the watermark embedding, the cover image is 
decomposed into its first and second tier regions using 
discrete wavelet transform. The first and second level 
DWT decomposition of an image is depicted in Fig. 1. 

The watermark strength or gain factor, K, was 
shown, in Salama et al. (2011), to have a huge impact of 
the visual quality of watermarked images and their peak-
signal-to-noise-ratios, PSNR, values. Its choice affects 
the embedding and extraction of hidden data from 
watermarked images. Figure 2 summarizes the 
relationship between the gain factor and the fidelity of 
the watermarked images, denoted by the PSNR values, 
for the Lena cover image (Salama et al., 2011). 

The chart in the figure (Fig. 2) shows the choice of 
the best value of K for each sub-band of the decomposed 
image. It indicates the variation in the values of K that 
would enable the complete recovery of the hidden data. 
As seen from this figure, the HH band produces the least 
value of K, hence, it is considered as the best sub-band to 
hide the watermark logo. In contrast, the LL band would 
yield the worst watermarked image because it has the 
highest value of K (as high as 6 in the LL2 sub-band, 
which is also referred to as the LLLL sub-band). 

Consequently, this suggests that the choice of K 
influences the fidelity (PSNR) of watermarked images as 
manifested in the chart in Fig. 3 for the same Lena cover 
image. From this figure we see that the LL2 and HL2, 
i.e., second level decomposed sub-bands, of the HH band 
(the HHLL and HHHL sub-bands) have the highest 
PSNR values (close to 50 dB), while the worst PSNR 
values are found in the LLLL sub-band. This inverse 
relationship is further summarized in Fig. 4. The PSNR 
value decreases as K increases until it reaches its 
maximum value (at K equal to 20). 
 

 
 
Fig. 1: A DWT decomposed image, its 4 bands (LL, HL, LH 

and HH) and second level sub-bands LL2, HL2, LH2 
and HH2 



 

 

Res. J. App. Sci. Eng. Technol., 7(16): 3286-3297, 2014 

 

3288 

 
 
Fig. 2: The best K to recover watermarked Lena image 
 

 
 
Fig. 3: PSNR at best K to recover a complete watermark 

signal/logo from the watermarked Lena image 
 

 
 

Fig. 4: Variation in PSNR versus gain factor (K) for Lena 
host image 

 
The foregoing discussions indicate that the least 

value of K is always most desirable in terms of high 
embedding and recovery of the data hidden in images. 
For  the  Lena  image,  the  least  value  of K is found at 
K = 0.5, i.e., in the HHLL sub-band. It was also proven 
in Salama et al. (2011) that hiding data in the HHLL sub-
band produces high fidelity marked images whose 

original content can be completely recovered. As noted 
earlier, Fig. 4 shows the variation between the 
watermarked image fidelity (PSNR) and the change in K 
for the Lena host image as presented in Al-Asmari et al. 
(2011). 

In the sequel, we revise the SND space for 
representing visual complexity and generalize the 
aforementioned relationship between the choice of best 
K and the quality (capacity and imperceptibility) for a 
larger dataset, the Corel 1000A database. 

 

SND space for representing image visual 

complexity: The evaluation of visual complexity of 
images is important in revealing the depth of information 
hidden in the images besides the lower level information 
pertaining to their colors, brightness and edges. This high 
level property is useful in many real applications of 
image processing, such as feature extraction, image 
watermarking and feature mining (Iliyasu et al., 2013b). 
Visual complexity has been represented using single 
features such as quad tree (Yaghmaee and Jamzad, 
2005), edge based measurement (Mario et al., 2005), 
fuzzy measures of entropy (Cardici et al., 2009) and 
entropy based information (Rigau et al., 2005). 

Figure 5 shows a simple case of varying visual 
complexity   of   three  images  (increasing  from  left  to 
right), one each from the flower, food and building 
categories of the Corel 1000A database (Griffin et al., 
2013). 

In Le et al. (2011, 2012), a 3D space was used to 
represent the visual complexity of an image based on its 
inherent properties, specifically, the structure, noise and 
diversity hidden in the image itself. This space was 
appropriately named the SND space because of the 
features it is built upon. 

Figure 6 shows a typical representation of an SND 
space for a dataset comprising of a few images. 

When an SND space is constructed from a set of 
images, its inherent structure in terms of clusters reveals 
the visual complexity of images in that space (Le et al., 
2011, 2012). In order to identify these clusters, 
clustering methods such as k-means, fuzzy c-means 
algorithms can be applied. The labels assigned to the 
clusters in the SND space express subjective evaluation 
of the visual complexity of the images by the Human 
Visual System (HVS). When these labels are assigned to 
clusters, a new image is automatically categorised by 
using its visual complexity value to assign to the cluster 
whose cluster centre is closest to the visual complexity 
value as demonstrated in the Fig. 7. 

The three labels, ‘complex’, ‘normal’ and ‘simple’, 
are assigned based on the results of the k-means 
clustering algorithm on three classes. The number of 
images from the Corel 1000A database that fall in each 
visual complexity class are summarized in Table 1. 
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Fig. 5: A few sample images from the Corel 1000A database 

showing increase in visual complexity from left to right
 

 
Fig. 6: The SND space 
 

 
Fig. 7: Clusters in the SND space indicating visual 

complexity of images 
 
Table 1:  Number of images in each cluster using k

with 3 clusters on the Corel 1000A dataset
Cluster Simple Normal
No. of images 291 408 

 
All images in a cluster are assumed to have the 

same visual complexity. Meanwhile, the
SND space and the visual complexity labels express 
intuitive relations, i.e., an image is considered as 
complex if it has high structure, noise and diver
normal, if it has medium structure, noise and diversity, 
or simple if the three features are low. Some 
representative images belonging to the three visual 
complexity classes for some categories of the Corel 
1000A dataset are shown in Fig. 8. As se
images   in    the    simple   cluster   contained

 

 

App. Sci. Eng. Technol., 7(16): 3286-3297, 2014 

 

3289 

 

A few sample images from the Corel 1000A database 
showing increase in visual complexity from left to right 

 

 

Clusters in the SND space indicating visual 

Number of images in each cluster using k-means algorithm 
with 3 clusters on the Corel 1000A dataset 

Normal Complex 
301 

All images in a cluster are assumed to have the 
Meanwhile, the clusters in the 

SND space and the visual complexity labels express 
intuitive relations, i.e., an image is considered as 
complex if it has high structure, noise and diversity; or 

if it has medium structure, noise and diversity, 
or simple if the three features are low. Some 
representative images belonging to the three visual 
complexity classes for some categories of the Corel 

As seen there from, 
contained   only  one  

 
Fig. 8: The sample images for the three visual complexity 

clusters as extracted from the SND space that was built 
using the 1000 images in the Corel 1000A dataset

 

 
        Dinosaurs.061             Buses.02            
 
Fig. 9: Images at the centre of visual complexity clusters as 

extracted using the SND space for the Corel 1000A 
dataset  

 
predominant object such as a human face, or a building 
and a somewhat flat or continuous background. In 
similar fashion, images comprising two or three 
predominant objects and a constant background and 
those characterized by numerous objects and irregular or 
discontinuous backgrounds are classified as having 
normal and complex visual complexity
et al., 2012). 

Figure 9 shows images located 
simple (Dinosaurs.061), normal 
complex (Mountains.096) clusters. We shall use these 
images as representatives of the simple
complex images. The number of images in each 
as realised using the SND visual complexity space
earlier summarized in Table 1. 

Similar to the earlier discussion on the choice of 
best K for an image in preceding section and 
et al., 2012), we present in Fig. 10 to 12 the variation of 
the gain factor for in the LL, LH, HL and HH regions 
for the representative images that are located at cent
of the simple, normal and complex image clusters
Dinosaurs.061, Buses.023 and
respectively). 

In a similar fashion, using the figures in Fig
12, we show, in Fig. 13 to 15, the variation in PSNR 
values in the LL, LH, HL and HH sub
representative images (i.e., the Dinosaurs.061, 
Buses.023 and Mountains.096 images) for the simple, 
normal and complex images. 

 

The sample images for the three visual complexity 
clusters as extracted from the SND space that was built 
using the 1000 images in the Corel 1000A dataset 

 

           Mountains.096 

Images at the centre of visual complexity clusters as 
extracted using the SND space for the Corel 1000A 

predominant object such as a human face, or a building 
somewhat flat or continuous background. In 

similar fashion, images comprising two or three 
predominant objects and a constant background and 

by numerous objects and irregular or 
discontinuous backgrounds are classified as having 

and complex visual complexity, respectively (Le 

located at the centers of the 
 (Buses.023) and 

clusters. We shall use these 
images as representatives of the simple, normal and 
complex images. The number of images in each cluster 
as realised using the SND visual complexity space were 

ier discussion on the choice of 
ection and (Al-Asmari 

10 to 12 the variation of 
the gain factor for in the LL, LH, HL and HH regions 

images that are located at centers 
of the simple, normal and complex image clusters (i.e., 
Dinosaurs.061, Buses.023 and Mountains.096, 

, using the figures in Fig. 10 to 
15, the variation in PSNR 

values in the LL, LH, HL and HH sub-bands for the 
representative images (i.e., the Dinosaurs.061, 

ins.096 images) for the simple, 
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Fig. 10: The best K for the watermarked version of the image at the centre of the ‘simple’ cluster (Dinosaurs.061) 
 

 
 
Fig. 11: The best K for the watermarked version of the image at the centre of the ‘normal’ cluster (Buses.023) 
 

 
 
Fig. 12: The best K for the watermarked version of the image at the centre of the ‘complex’ cluster (Mountains.096) 
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Fig. 13: Variation in PSNR values at different regions of the watermarked logo as recovered from the representative image for 

‘simple’ cluster 
 

 
 
Fig. 14: Variation in PSNR values at different regions of the watermarked logo as recovered from the representative image for 

‘normal’ cluster 
 

 
 
Fig. 15: Variation in PSNR values at different regions of the watermarked logo as recovered from the representative image for 

‘complex’ cluster 
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Figure 16 shows the ordering of the sub
the DWT decomposed host image representing the 
simple normal and complex clusters based on the 
evaluation of the best K. 

In this figure, the rightmost letters (LL, HL, HL and 
HH) indicate the bands of the DWT decomposed host 
image, while the remaining two letters specify the 
second  level DWT sub-bands as explained earlier in 
Fig. 1. The indexes 1-12 indicate the priority accorded 
to each sub-band in the watermark embedding 
procedure. 

The exquisite performance regarding the ease and 
quality of the embedding and extraction of data 
presented thus far and in (Al-Asmari et al
however, not generalised for all the sub
therefore there is the need to cull from the 16 sub
that make up the best for both the watermark embedding 

 
                                   Simple cluster                               
 
Fig. 16: Ordering for the second order DWT decomposed contents of the representative images in the simple, normal and 

complex image clusters 
 

 
Fig. 17: Sample images from the 10 categories of the Corel 1000A 
 
Table 2: Sub-band ordering for the different images in the 10 categories 
Order 1 2 3 4
Africa HHHH HHHL HHHL HHLL
Beach 
Buildings HHHL HHHH 
Buses HHHH HHHL 
Dinosaurs HHHL HHHH 
Elephants HHHH HHHL 
Flowers 
Foods 
Horses HHHL HHHH 
Mountains HHHH HHHL 
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Figure 16 shows the ordering of the sub-bands of 
the DWT decomposed host image representing the 
simple normal and complex clusters based on the 

In this figure, the rightmost letters (LL, HL, HL and 
DWT decomposed host 

image, while the remaining two letters specify the 
bands as explained earlier in 

12 indicate the priority accorded 
band in the watermark embedding 

nce regarding the ease and 
quality of the embedding and extraction of data 

et al., 2012) are, 
for all the sub-bands and 

therefore there is the need to cull from the 16 sub-bands 
best for both the watermark embedding 

and extraction. Hence, the need to prioriti
of the sub-bands based on the best choices of K.

In deciding on the orderings in Fig
the LL region of the DWT decomposed sub
host image because it has been proven to have an 
adverse effect on the quality of watermarked images and 
extraction of second level decomposed cover images
ones that are on the quality of watermarked images and 
extraction of hidden data in already marked ima
Asmari et al., 2012; Salama et al., 201

The ordering suggested here guarantees high 
embedding capacity, good visual quality watermarked 
images and complete recovery of the hidden data, i.e., 
the watermark. 

Figure 17 shows the 10 sample images from the 
Corel 1000A dataset that were used together with the 
images located at the centre of the simple, normal and

 

                              Normal cluster                                      Complex cluster 

DWT decomposed contents of the representative images in the simple, normal and 

 

 

Fig. 17: Sample images from the 10 categories of the Corel 1000A dataset 

band ordering for the different images in the 10 categories (one for each category) of the Corel 1000A dataset
4 5 6 7 8 9 10 
HHLL LHHH HLHH LHHL HLLH LHLH HLHL

HLLH LHHL 
HLHH LHHH LHHL HLLH HLHL LHLH

HLLH LHHL HLLL 
LHHL HLLH HLHL 

LHHH HLHH HLHL HLLH 
HLHH LHHH HLLH LHHL HLHL 

LHHL HLLH 
LHHL LHHH LHLH HLHL

HLHL HLLH LHLH

and extraction. Hence, the need to prioritize the ordering 
bands based on the best choices of K. 

in Fig. 16 we ignored 
the LL region of the DWT decomposed sub-band of the 

mage because it has been proven to have an 
adverse effect on the quality of watermarked images and 
extraction of second level decomposed cover images the 

on the quality of watermarked images and 
extraction of hidden data in already marked images (Al-

, 2011). 
The ordering suggested here guarantees high 

embedding capacity, good visual quality watermarked 
images and complete recovery of the hidden data, i.e., 

sample images from the 
Corel 1000A dataset that were used together with the 

entre of the simple, normal and

 

Complex cluster  

DWT decomposed contents of the representative images in the simple, normal and 

 

 

Corel 1000A dataset 
 11 12 

HLHL LHLL HLLL 

LHLH 
HLHL LHLL 
LHLL HLLL 

HLLL LHLL 
LHLL HLLL 

HLHL 
LHLH HLLL LHLL 
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Fig. 18: Generalized DWT sub-band ordering for high 

performance hiding of data in images
 
complex clusters in order to determine the best order for 
each category (of images in the Corel 1000A database) 
as presented in Table 2. 

Using the ordering in Fig. 16 and Table 2, a 
generalized DWT decomposed sub-band ordering of the 
images can be obtained irrespective of the content and 
perceptual complexity of the images. Th
ordering is presented in Fig. 18. 

This ordering generalizes the DWT decomposed 
ordering (Al-Asmari et al., 2012) for data hiding and 
recovery and adopting the scheme in Al
(2011), it shall be used in our proposed Pixel Value 
Difference (PVD)-based watermark embedding and 
extraction system (Salama et al., 2011) as presented in 
the next section. 

Fig. 19: Watermark bit stream embedding on host 
(Dinosaurs.061) 
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band ordering for high 
performance hiding of data in images 

to determine the best order for 
(of images in the Corel 1000A database) 

16 and Table 2, a 
band ordering of the 

obtained irrespective of the content and 
perceptual complexity of the images. This generalized 

es the DWT decomposed 
., 2012) for data hiding and 

recovery and adopting the scheme in Al-Asmari et al. 
2011), it shall be used in our proposed Pixel Value 

based watermark embedding and 
., 2011) as presented in 

WATERMARK EMBEDDING AND 

EXTRACTION BASED ON DWT

PRIOTISED ORDERING

 
To accomplish the watermark embedding, the 

DWT decomposed sub-bands of the cover image were
analyzed and ranked in terms 
withstand changes that do not imperil the visual quality
(PSNR) of the watermarked image. Based on this
analysis, the contents of each pixel in the watermark 
image are assembled into an 8-bit binary (0
stream. The Most Significant Bits (MSB) from each 
pixel are then gathered and hidden in the best wavelet 
sub-band, the HLLH region, while the Least Sig
Bits (LSB) are spread within the HHHH region. Finally, 
the remainder of the bits from the watermark stream are 
spread in the remaining 6 sub-bands of the host image. 
This procedure is depicted in Fig. 19 and discussed at 
length in Al-Asmari et al. (2011). 

Figure 20 and 21 present the generali
diagrams for the data hiding embedding and recovery 
that combine to make up the proposed scheme
presented in Al-Asmari et al. (2011
discussions can be sought. 

To extract the watermark image, the 8 highest 
ranked wavelet sub-bands were decomposed from the 
watermarked image then the reverse PVD method was
used to extract 8 streams of bits from each sub

 

 

Watermark bit stream embedding on host image for the representative image located at the centre of the ‘simple’ cluster 

WATERMARK EMBEDDING AND 

EXTRACTION BASED ON DWT  

PRIOTISED ORDERING 

To accomplish the watermark embedding, the 
of the cover image were 

 of their ability to 
withstand changes that do not imperil the visual quality 
(PSNR) of the watermarked image. Based on this 
analysis, the contents of each pixel in the watermark 

bit binary (0-1) bit 
stream. The Most Significant Bits (MSB) from each 
pixel are then gathered and hidden in the best wavelet 

band, the HLLH region, while the Least Significant 
Bits (LSB) are spread within the HHHH region. Finally, 
the remainder of the bits from the watermark stream are 

bands of the host image. 
This procedure is depicted in Fig. 19 and discussed at 

Figure 20 and 21 present the generalized block 
diagrams for the data hiding embedding and recovery 
that combine to make up the proposed scheme as 

), wherefrom further 

To extract the watermark image, the 8 highest 
bands were decomposed from the 

reverse PVD method was 
ams of bits from each sub-band.

 

image for the representative image located at the centre of the ‘simple’ cluster 
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Fig. 20: The watermark embedding procedure (Al-Asmari et al., 2011) 
 

 
 
Fig. 21: The watermark recovery procedure 
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The first bits from each bit stream were gathered to 
retrieve the content of the first pixel of the watermark.
The second bits of the bit stream were similarly 
gathered in order to recover the second pixel and so on 
until the entire content of the watermark 
recovered. 

Experimental discussions presented in the next 
section ascertain the extent to which the proposed 
ordering combines with the PVD-based watermark 
embedding and extraction highlighted in this section to 
produce a better data hiding stratagem. 
 

EXPERIMENTAL RESULTS 

AND DISCUSSION 
 

To validate the veracity of the ordering proposed in 
the preceding sections, a dataset comprising 
host) images (each of 256×256 pixel 
visual complexity and labelled as Fingerprint, Baboon, 
Mountains.096, Flintstones, Buses.023, Couple, 
Boats, Dinosaurs.061, Elaine, Blood cells and Building, 

 
Fig. 22: Dataset showing the images (and the last image

images are arranged according to their visual complexity as determined using the SND space 
 

 
Fig. 23: Watermarked versions of 256×256 Lena, 

watermark logos recovered from the watermarked images; and the PSNR values of the watermarked images
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stream were gathered to 
retrieve the content of the first pixel of the watermark. 

bits of the bit stream were similarly 
to recover the second pixel and so on 

until the entire content of the watermark signal/logo are 

presented in the next 
ascertain the extent to which the proposed 

based watermark 
embedding and extraction highlighted in this section to 

  

EXPERIMENTAL RESULTS  

 

To validate the veracity of the ordering proposed in 
dataset comprising 12 (cover or 

 size) of varying 
labelled as Fingerprint, Baboon, 

Mountains.096, Flintstones, Buses.023, Couple, Lena, 
Boats, Dinosaurs.061, Elaine, Blood cells and Building, 

which in that order are arranged according to their visual 
complexity as determined using the SND visual 
complexity space respectively 
decreasing from left to right as we go downwards from 
the topmost row), were used as cover images
which various sizes (110×110, 64×64 32×32 and 16×16) 
of the SAU logo watermark are hidden. 
embedding and extraction is carried out as detailed in 
the PVD-based system highlighted in above section. 

Noteworthy from this dataset (Fig. 22) is the fact 
that the SND visual complexity space labels the popular 
Baboon and Lena images as being ‘complex’ images. 
This is mainly attributed to the edgy and highly textured 
nature of the images. The rest of this section is devoted 
to explanations about the experimental setup and 
analysis of the results obtained.  

Compared alongside some 
techniques  in Yaghmaee and Jamzad
Zhang et al. (2008), the proposed scheme exhibited 
appreciable performance in terms of both watermark 
embedding capacity and fidelity of the watermarked
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Table 3: PSNR values for different sizes of the SAU watermark logo 
 Size of watermark/PSNR (in dB) 

------------------------------------------------ 
Cover image 16×16 32×32 64×64 110×110 
Lena 37.58 37.26 36.03 33.66 
Dinosaurs.061 (simple)  36.90 36.60 35.41 33.13 
Buses.023 (normal)   34.05 33.88 32.95 31.45 
Mountains.096 (complex) 31.43 31.35 30.40 29.51 
 
Table 4: Evaluation of watermarking capacity of the proposed method 

alongside some recent methods (Yaghmaee and Jamzad, 
2010; Zhang et al., 2008) (for 256×256 Lena image) 

Method 

Watermark capacity 
---------------------------------------------- 
Bits PSNR (dB) 

Zhang  80,599 31.80 
Yaghmaee  73,896 N.A. 
Proposed method 96,800 33.66 

 
images represented by PSNR values as summarized in 
Table 3 for the Lena and 3 representative images (the 
Dinosaurs.061 for the ‘simple’ cluster, Buses.023 for the 
‘normal’ cluster and Mountains.096 for the ‘complex 
cluster). 

Using these underpinnings, we conclude the section 
with an evaluation of the performance of the proposed 
data hiding technique alongside some recent 
watermarking methods. 

Being the most widely used metric for comparing 
the fidelity of a watermarked image with its original 
version  (Iliyasu  et  al.,  2012;  Iliyasu,  2013a; Salama 
et al., 2013), Peak-Signal-to-Noise Ratio (PSNR) will be 
used as our watermarked image quality evaluation 
metric. 

Each of the cover images in our dataset was paired 
with SAU logo watermark. The resulting watermarked 
images, the recovered (extracted) watermark logo and 
PSNR values for the Lena and 3 representative images 
are presented in Fig. 23. 

The evaluation of the visual quality of the 
watermarked versions of the Lena, Dinosaurs.061, 
Buses.023 and Mountains.096 images in our dataset 
(Fig. 22) using smaller sized versions (64×64, 32×32 
and 16×16) of the SAU watermark logo are presented in 
Table 4. These results indicate an average PSNR of 
37.58, 36.90 34.05 and 31.43 dB, respectively for the 
16×16 version of the SAU watermark logo that was 
embedded onto the Lena, Dinosaurs.061, Buses.023 and 
Mountains.096 images. 
 

CONCLUSION 
 
DWT decomposition of an image reveals a lot of 

information about such an image. Using a perspicacious 
analysis of this information, the best regions of a host 
image best suited to hide some secret data can be 
deduced. This study proposes a stratagem to accomplish 
that. In doing so, the most significant data from a 
watermark is hidden in the sub-bands of the DWT 
decomposed cover image that exhibit the least gain 
factor. This way, the visual quality and embedding 

capacity of the watermarked image are enhanced. In 
addition, the proposal guarantees an efficient recovery 
of the hidden data. To determine the best ordering for 
hiding the data, various types of images of varying 
content and visual complexity were considered, 
analyzed and ranked in terms of their ability to 
withstand changes that do not imperil the visual quality 
(PSNR) of the watermarked image. Depending on this 
proposed ordering, an N×N-sized watermark stream is 
hidden in the 8 highest ranked sub-bands. The visual 
complexity classification of an image as simple, normal 
or complex of an image based on the structure, noise 
and diversity inherent to it was used to generalise an 
ordering of the DWT decomposed sub-bands of the 
image. Specifically, the MSBs from each pixel are then 
gathered and hidden in the best wavelet sub-band, the 
HLLH region, in order to enhance the robustness, while 
the LSBs are spread within the HHHH region. Finally, 
the remainder of the watermark stream is spread in the 
remaining 6 sub-bands of the host image in order to 
enhance the security of the data. Using the proposed 
strategy, a 256×256 Lena image had the capacity to 
accommodate 96800 bits of the SAU watermark logo 
while still maintaining an appreciable visual quality 
manifested by a PSNR value of 33.66 dB. 

In on-going work, effort is being focussed on how 
to improve the SND visual complexity space so that it 
can be used to further enhance the quality of the data 
hiding techniques and other uses in image retrieval and 
computer vision. 
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