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Abstract: Several new oscillation criteria are established under quite general assumptions. Our results generalize
and extend some earlier results of the literature. Examples are given to illustrate the results. We employ the
averaging technique to obtain sufficient conditions for oscillation in the solutions of our equation.
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INTRODUCTION

The study of the oscillation of second order
nonlinear ordinary differential equations with
alternating coefficients is of special interest because of
the fact that many physical systems are modeled by
second-order nonlinear ordinary differential equations.
For example, the so called Emden-Fowler equation
arises in the study of gas dynamics and fluid mechanics.
This equation appears also in the study of relativistic
mechanics, nuclear physics and in the study of
chemically reacting systems. The averaging techniques
are used also in study of the nonlinear oscillations.

This study is concerned with the oscillation of
solutions of the second order nonlinear differential
equation:

(O (O f (@) +q(Og(x(6) =H (¢, x' (1), (1)), (1)

where,

q and r : Continuous functions on the interval (z,, ©), t,
>0

r(t) : A positive function

w and f: Continuous functions on the real line R, with
v (x) >0,V x€ Randyf(y) >0 fory #0

g : Continuously differentiable function on the
real line, R, except possible at 0 with xg (x) >0
and g’ (x) >k>0 for all x # 0 and £ is a constant

H : A continuous function on [fy, ©) x R?, with
H(tsys-x)< VtE[tO,oo),yE]Randx#O
o) <p(0),

By a solution of (1), we mean a nontrivial function
x (¢) satisfying (1). A solution x (¢) is said to be
oscillatory if it has a sequence of zero clustering at

and non-oscillatory otherwise. Thus a non-oscillatory is
either eventually positive or eventually negative.
Equation (1) is called oscillatory if all its solutions are
oscillatory and otherwise it is called non-oscillatory.

Both oscillatory and non-oscillatory behavior of
solutions for various classes of second order differential
equations have been widely discussed in the literature,
see for example; Elabbasy and Elsharabasy (1997),
Grace and Lalli (1980, 1992), Grace (1990), Kiran and
Rogovchenko (2001), Philos (1975), Wong (1986),
Wong and Yeh (1992), Wintner (1949), Yan (1986) and
Yeh (1982). There are a great number of papers
addressing particular cases of Eq. (1), such as the
following equations (Li, 1998; Manojlovic, 1999, 1991;
Tiryakiand Ayanlar, 2004):

(rx' ) + gD g(x(t) = H (1), @
(r(y (X' (1)) +q(g(x)=H(@), ()
(r(t)x’(t))' +0(t,x) = H(t,x(1), x'(1)), 4)

(rOw (x(O) S (@) +qOg(x(e) = H(t).  (5)

An important tool in the study of oscillatory
behaviour of solutions of these equations is the
averaging technique which goes back as far as the
classical result of Wintner (1949) which states that (2)
withr (f)=1,a=1, g (x) =x and H (¢) = 0 is oscillatory
if:
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}1}2 ?;[{q(u)du ds = .

In this study, the comparison between our results
and the previously known results are presented and
some examples of the main results are illustrated.
Furthermore, we expand some of the previous
equations, (Baculikova, 2006; Tiryaki and Ayanlar,
2004) as well as the expansion and development of
some of the previous conditions (Elabbasy et al., 2005;
Graef et al., 1978; Remili, 2008).

MAIN RESULTS

In this section, we use the Riccati technique to
establish sufficient conditions for Eq. (1) to be
oscillatory.

Theorem 1: Suppose that:

. g'(x)
v (x)
0y: +.FO v (y)
te g(y)
O3 g <k, < LU o

> K > (0 for aconstant K and x # 0,

dy < o forall ¢ >0,

exist.

forallconstants k,,k,, y = x'(t) # 0Oand tliII(l)
i

S
y

There also exists a positive function p e C'[z,,)

such that (p(t)r(t))' <( forall > ty, and:

04:
(p'w))? ~
limsup— j j PNq(u) = p0]=- [ r(w) | duds =
where,
K
M=—.

k2
Then Eq. (1) is oscillatory.

Proof: On the contrary we assume that Eq. (1) has a
non-oscillatory solution, x(¢). We suppose without loss

of generality that x(¢) > 0 for all te[to,oo). We

define the function yw(¢) as:

w(t) = POy (O (1)) forall £ 2% (6)
g(x(1))

Differentiating Eq. (6) and substituting Eq. (1)
imply:

p(t)[r(t)l//(X(t))./'(X'(t))]l L L Or@y (x(0) f(x'(0))

W)=

20 g(x(0)
_pOr@Oy (x(0) f(x'(1)g' (x(1))x'()

g (x(1) ’

Wy~ POHEX @) o0

g(x(1) o(0)
1 o
OO O ) - D8 HW (£).

From conditions O; and O; we obtain:

PO K v,

w(0)< p(t)(p()~q(0)) + (1) POk,

PO ——M 2w,

- <
P®)(q(0) p(t)) o(t) pOr(t)

Integrating from ¢, to ¢ gives following result:

Ip(v) q(s)— pls))ds <w(t) —w(t)— j[

W) -2 w(v)]dv

A" )
I OY.O1F:10 0P ps)
{p(s)(q(s) )= [ jdm(zﬂ) wiH)- j{ Y ElACY p(v)} ;
<)~ w(r),
or,

f[p(s)(qm—p(s))——’(‘;’ﬁ’;(”[%) }1 < ) - OO,

Using condition Os:

j{p(s)(qup(s))f%(’;((?)) } R

fo

Taking a second integration from ¢, to ¢ we have:

o |- (@) PO (S)
j lf[p(u) a0 =p@) = }dudmw(to)(t )k f o
(7

is non-increasing, then by the
t] such that:

Since (1) p(1)
Bonnet’s Theorem there exists an 7 € [#,,

I NN O SO Ty (x(s)x'(s)
k j O km(rg)pog){ el
-k u/(y)
r(r)p(r)(j” o
0, if x(t,)) < x(n7),

e[ “Lay it x> x.

gy)

hence,
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[ x)x'(s 1
—°0<—kIIV(S)p(S)V/(g2x)( )dS<L1, li lj j.l ! + sin ! u x0du |d
=11m sup — — u—— u S
K PP ol L2 W aM
where, =,
L, = k(1) s )J' V/Ey; . By Theorem 1, this equation is oscillatory.

Remark 1: Theorem 1 improves and expands to the
Equation (7) becomes: Theorem 4 of Graef et al. (1978) and to the Theorem 1
of Elabbasy ef al. (2005).
i @@
p)(q()—p(u)) M ) uds < w(ty )t =1,) + L. Theorem 2: Assume that O, holds and:

®) f(y)
Dividing (8) by t and taking the upper limit as t — oo:

> L >0; for aconstant Land y # 0,

there exists a positive continuously differentiable

. 1¢ @) (p'w)’ .
}lggsup;If[p(u)(q(u)—p(u))—m ) }d“dsq‘msup [w(to)t =1+ 1,] function p defined as in Theorem 1 and f:op(s)ds =
0
<. co Then Eq. (1) is oscillatory if:
This contradicts the assumption O4, which Og:

completes the proof.

}g@sup{jpmds] jp(s){j[q(w—p(u)]du }ds =

fo fo fy

Example 1: Consider the following equation:

Proof: On the contrary we assume that Eq. (1) has a

{1[3);'(;) )’ H +[ +sm;)x (t)_w’ 2Z non-oscillatory solution x (f). We suppose without loss
@) +1 2 (F©+1)7 2 of generality that x (£) >0 for all ¢ € (¢, «). We define
the function w (f) as:
Notice that:
[T () (X)), forall £>1 .
HOX©20) X sostsing 11 w(t) = p(t) I ety " 0
g(x(2)) 1 X 0
and Thus, for every ¢ > ¢, we obtain:
g _ 3 S3_k W) = p'(t)j[ HW ) SE(S) o POrOyEO) f(X'©)  (9)
w(x) 1 o g(x(s)) g(x(®)
From Eq. (1) and definition function H, we have:
j'//(y) _ _
() 2 28 '
o8 g [rOy GOV @] _ H(x,x)
ca) g6y 1
! 2
3<34 TNy vy x0, hmf(y) 3.
(x'(0)" +1 y '
Let, LOZCOVEEI0)) NN
g(x(1))
HN=1=p()=0eC'[t,,»), Hr(t =——<0
0 £ [ n)s (PO )) Integrate the above inequality from #, to ¢ and
integrate the left hand side by parts we obtain:
Oy r@) (p'(w))’
~——— |dud:
11m sup-— ;[{[P(u) q(u)— p(u )) aM p) } uds [rOy @) f'©)] B+jr(s)1//(x(s))f (*'(5)g' (x()x'(s)

ds < j p(s)—q(s)ds,

g(x(n) &' (x(s))
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where,

g = My (1)) f(x'()
g(x(%))

Now, multiply the last inequality by p (f) we obtain:

POy (x(1) f(x'(1))
g(x(®)

< Bo() - p(0)] o)~ plsys. 1)

fo

Substituting (10) in (9) we have:

WS CD g < 15— (1| (a(s) - p(s))ds.
2(:(5))

f

WO 0]

fo

Integrate from t, to t we have:

Ty @S E@) f g

Ip(x)j(q(u)—p(u))dudsswu)—w(t)+BIp<s)dv+jp'<s)J )
(11)

Now evaluate using integration by parts:

C o W@ @) ar ) 6w, [
,{p O oy APy

) )

lo

_j' POy (X)) (X)) o
g(x(s))

f

o) FOW GOSN PO W S0
L sl : 2(x(s)
- () - [P GO g (12)
: 2(x(s))

Substituting (12) in (11) we obtain:

j{ p(s)j(q(u) - p(u))du}ds <w(ty) - w(t)+ Bj' P(s)ds +w(t) jwds

&(x(s)

< w(t,)+ Bj p(s)ds— j%@ywa&

From condition O5 we get:

j{p(s)j (q(u)— p(u))du}a’s <w(ty)+ Bj p(s)ds — Lj.wds.

o o g(x(s))
(13)

Since ( p(t)r(t))’ <0 then by Bonnet’s Theorem
there exist a 7 e[z,,#] such that:

_ f PO DT )y )j p(x()X'(8)
) g(x(s)) L g(x(s)

x(o)

— o)t | Yy
plty)r( O)X(j”) e

0 if x(z,) < x(17),

) Lr(ro)p(ro)f’”(y))dy if (1) > x(7),

g(y

o <[ LW CNTC) g

: g(x(s))
where,
v
B = pli)r(ty) | ====dy.
o &)
Consequently:

[ {p(s) [ (q(u)—p(u))du}ds <M + B[ p(s)ds.

ty ty fo
where,
M=w (t()) + LB1

Then,

[jp(s)ds} j{p(s)j(q(u)—p(u))du}dss, Lsp
@ ol n [ ps)ds

Taking the upper limit as t = oo which contradicts
the assumption Og. This completes the proof.
the nonlinear differential

Example 2: Consider

equation:

X0 L GO

B e (t)x'(t)} +x(0)(1+° (1))

(xz(t)ﬂ)z woy+
Notice that:
H@EX(0),x1) _ s (@)sint GG 1
g(x(1) FO’+1 (o) (14220))
<sint=p(f), Vx'el,xel andt>t, =1,
Tw(y) By [
242

Let,

r(r)%,p(t):l
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We have:
(p (t)r(t)) =—i<0

and
Tp(s)ds :Tds =
I 1

and

1o

llmsup{l[p(s)ds}i jp(s)_[ q(u) p(u) duds hmsup{_"ds:|i jj u’ —smu duds
N 1 11

5

20

t—>wo

1 1 1
—hmsup— +sint——¢—tcosl——+sinl———cosl
[2 4 20 4 }
= 00,
Hence, this equation is oscillatory by Theorem 2.
Remark 2: It is straightforward to check that the

conclusion of the Theorem 2 is still true if:

0< [ p(s)ds < oo,

Iy

lim supjp(s){][q(u)— p)]du }ds ~

to fo

Remark 3: If r(t) = 1,9 (x (t)) =1,f (x’ (t)) =
x',g (x (t)) =xand H (t,x (1), x’ (t)) =0 then
Theorem 2 reduces to Wintner*s theorem (1949).

Remark 4: Remili (2008) has established some
oscillation results for Eq. (1) with y(x)=1, f(xX'(¥))=x"-
These results require that:

a(t)<a,

and

t
lim ianZ(s)ds >—-A(A>0) for all largeT;
t—>x

T

Z(s)=R(s)[q(s) - p(s)],

which are not required in Theorem 2.
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