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Abstract: The present study highlights the application of box-behnken design coupled with fuzzy and regression 
modeling approach for making expert system in hard milling process to improve the process performance with 
systematic reduction of production cost. The important input fields of work piece hardness, nose radius, feed per 
tooth, radial depth of cut and axial depth cut were considered. The cutting forces, work surface temperature and 
sound pressure level were identified as key index of machining outputs. The results indicate that the fuzzy logic and 
regression modeling technique can be effectively used for the prediction of desired responses with less average error 
variation. Predicted results were verified by experiments and shown the good potential characteristics of the 
developed system for automated machining environment. 
 
Keywords: Box-behnken design, cutting forces, fuzzy logic, hard milling, sound, temperature 
 

INTRODUCTION 
 

In manufacturing process, hard milling recently 
paid great attention to produce engineering components 
in  shortest  route  compared  with  EDM  (Gopalsamy 
et al., 2010). The numerous benefits are large metal 
removal rate, less the thermal damage etc. Recent 
research work on hard milling studies have been carried 
out on mold and die steels (Ding et al., 2010; Cahskan 
et al., 2013). Machining of these materials in the 
hardness range between 45-60 HRC. During machining, 
the high hardness of work piece possibly to produce 
high heat generation in the cutting zone compared with 
conventional machining. This rapidly increase the 
cutting forces, tool wear etc., (Ozel et al., 2005; Dureja 
et al., 2009). Since, there are many variables involved 
and defining a single model is very difficult, due 
complexity and non-linearity of hard milling process. 
Nowadays, artificial intelligence approaches are used 
various manufacturing processes. Among many 
approaches, a fuzzy logic showed that to establish the 
model in easy way and less hardware and software 
resources. Many investigators modeled machining 
process using a fuzzy logic technique. Iqbal et al. 
(2007a) developed online and offline fuzzy models for 
hard milling process. The length of cut was considered 
as input for offline strategy and cutting force signals 
were in account for online strategy to determine a flank 
wear on both strategies. Ramesh et al. (2008) promised 
that, the adopted fuzzy expert system successfully 
predicting the three performance measures of tool wear, 
surface roughness and specific cutting pressure in 

machined titanium alloy. This ensures a guarantee for 
better output quality with least investment in 
production. A triangular membership function was 
chosen, each input variable was assigned three fuzzy 
sets and each output variable ranged in nine fuzzy sets 
for evaluation. Rajsekaran et al. (2011) modeled the 
surface roughness by fuzzy sets in turning of CFRP 
composite using CBN tool. An overall average 
percentage error obtained as low as 6.62%. Iqbal et al. 
(2007b) designed fuzzy expert system for optimizing 
and predicting the performance measures in hard 
milling of AISI D2 tool steel. The expert system 
supports to minimize the production cost and same time 
to improve the product quality. Kovac et al. (2013) 
conducted the dry face milling tests on AISI 1060 
medium carbon steel using carbide inserts. A regression 
equation is developed and mamdani based fuzzy logic 
modeling has been done using Gaussian membership 
function. The fuzzy average error (i.e., 7.41%) 
produced lower than regression average error (i.e., 
10.91%). Latha and Senthilkumar (2009) used 
triangular and trapezoidal membership functions for 
fuzzy rule based modeling in drilling of GFRP 
composites for surface roughness evaluation. They 
stated that trapezoidal membership functions achieved 
better validated output. Hanafi et al. (2012) used an 
integrated response surface method with fuzzy logic for 
machining of PEEK CF30 using TiN coated tools. 
Quadratic regression equations are developed for 
measured cutting force, cutting power and specific 
cutting pressure. The fuzzy logic models were predicted 
well with experimental results than regression model 
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predicted values. For validation, nine experiments 
randomly conducted within the range and verified 
successfully with consistent error. Cabrera et al. (2011) 
studied   the   predictive   fuzzy   modeling   of   surface 
roughness parameters (Ra and Rt) in turning of 
reinforced Polyetheretherketone (PEEK) with carbon 
fibre 30% using TiN coated carbide tool. Triangular 
and trapezoidal membership functions effectively used 
to correlate with experimental results. The co-efficient 
of correlation obtained near one, which is the evident 
that the fuzzy rule based model effectively used to 
predict variables. Further, the fuzzy logic modeling 
widely applied and successfully modeled in surface 
grinding (Ali and Zhang, 2004), Submerged are 
welding (Singh et al., 2011), Abrasive water jet cutting 
(Chakravarthy and Babu, 2000; Vundavilli et al., 2012), 
Micro-hole EDM (Chun et al., 2008), Electro-chemical 
machining (Labib et al., 2011), Laser cutting (Pandey 
and  Dubey,  2012),  sludge  dewatering process (Zhai 
et al., 2012) and plasma arc cutting (Özek et al., 2012) 
applications. In present study performs hard milling 
experiments in OHNS (Type O1) tool steel using coated 
(TiN+TiAlN) carbide inserts by the selected process 
variables. The performance measures are cutting forces, 
work piece surface temperature and sound pressure 
level. Further, build up an accurate hard milling 
information system using regression and fuzzy 
modeling techniques. 
 

METHODOLOGY 
 
Hard milling experiments: 
Experimental planning: Response surface 
methodology based Box-Behnken Design (BBD) 
statistical technique is preferred to quantify the 
relationship between input variables and output 
variables. Box-behnken designs generally allowed each 
factor on three levels and fitting the second-order 
polynomial equations effectively (Montgomery, 2012). 
Based on preliminary trials and literature study, the five 
factors are namely work piece Hardness (HRC), nose 
radius (re), feed per tooth (fz), radial depth of cut (ae) 
and axial depth of cut (ap) selected for the experimental 
work. The range of each factor as shown in Table 1. 
The coded values of each factor was found by the 
following equation: 
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where, 
Xi  =  The coded value of input variable xi 
xi  =  The actual variable of input variable 
 

 
 

Fig. 1: Hard milling experimental setup 
 
x0 = The real value of the input variable xi at the center 
point of cube  
∆xi = The step change within the experimental range 
 

Experimental work: The work pieces were prepared 
as the required hardness levels with an accuracy of ±0.5 
HRC and final dimensions obtained as 100×100×25 
mm. A Heavy duty-milling (4HP power drive with 
maximum spindle speed of 3400 rpm) machine, 
suggested inserts and tool holder were employed. Each 
experiment done by three times and a fresh insert used 
to eliminate the statistical errors. The experiments 
carried out randomly and no coolant was preferred. A 
cutting force acquisition system consists of Kistler 
dynamometer (9257B type), charge amplifier (5070 
type) and computer. An infrared thermometer (8839 
type) captures a machined surface temperature near the 
chip obstruction at the underneath of the insert by 
pointing out a laser beam. A sound measurement unit 
consists of microphone connected to a computer. 
During machining, a detected cutting sound was stored 
in the computer and analyzed by “SEAWAVE” audio 
software. A machine idling sound gathered before the 
starting experiment. Further, an exact cutting sound was 
evaluated by subtracting the idle sound. The data’s of 
forces in three directions, work piece surface 
temperature and cutting sound were collected using 
different acquisition systems from the hard milling 
experimental setup as shown in Fig. 1. The average of 
peak points considered to evaluate an each response 
variable. The evaluated values of all responses for each 
experiment as depicted in Table 2. 
 
Modeling techniques: 

Regression modeling: The BBD models the each 
response using the empirical second-order polynomial: 

Table 1: Factors and levels 

Level 

Factors 
-------------------------------------------------------------------------------------------------------------------------------------------------------- 
Work piece Hardness (HRC) Nose radius (re) Feed per tooth (fz) Radial depth of cut (ae) Axial depth of cut (ap) 

Low (-1) 45 0.8 0.050 0.30 0.5 
Medium (0) 50 2.0 0.125 0.55 1.0 
High (+1) 55 3.2 0.200 0.80 1.5 
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Table 2: BBD matrix with responses 

Exp. No. 

Factors 
----------------------------------------------------------------------- 

Responses 
-------------------------------------------------------------------------------------- 

HRC re fz ae ap Fx Fy Fz WST SPL  
1 45 0.8 0.125 0.55 1.0 541.34 402.05 366.77 266.44 71.08 
2 55 0.8 0.125 0.55 1.0 794.33 1165.10 1255.07 417.13 71.87 
3 45 3.2 0.125 0.55 1.0 593.35 605.39 790.05 513.80 83.54 
4 55 3.2 0.125 0.55 1.0 610.79 1256.78 1293.70 590.11 84.58 
5 50 2.0 0.050 0.30 1.0 312.57 526.44 470.18 367.20 60.72 
6 50 2.0 0.200 0.30 1.0 352.90 959.16 968.76 560.65 90.98 
7 50 2.0 0.050 0.80 1.0 204.46 644.38 635.10 480.35 67.09 
8 50 2.0 0.200 0.80 1.0 807.46 1129.46 1097.47 569.35 96.77 
9 50 0.8 0.125 0.55 0.5 542.58 749.46 701.98 413.98 67.76 
10 50 3.2 0.125 0.55 0.5 311.23 600.13 786.24 491.04 70.85 
11 50 0.8 0.125 0.55 1.5 833.55 588.85 799.53 530.05 79.69 
12 50 3.2 0.125 0.55 1.5 675.11 1043.02 1053.46 724.03 100.85
13 45 2.0 0.050 0.55 1.0 550.23 335.64 361.05 358.51 60.08 
14 55 2.0 0.050 0.55 1.0 472.90 1017.98 1015.48 388.51 68.96 
15 45 2.0 0.200 0.55 1.0 456.34 756.32 763.89 470.12 86.88 
16 55 2.0 0.200 0.55 1.0 854.46 1467.65 1429.41 678.51 97.03 
17 50 2.0 0.125 0.30 0.5 183.68 547.68 591.28 429.66 63.23 
18 50 2.0 0.125 0.80 0.5 249.47 762.24 769.87 459.89 64.96 
19 50 2.0 0.125 0.30 1.5 609.68 752.90 872.34 618.42 95.55 
20 50 2.0 0.125 0.80 1.5 747.57 869.94 966.84 660.87 107.76
21 50 0.8 0.050 0.55 1.0 787.35 519.13 498.69 339.64 54.65 
22 50 3.2 0.050 0.55 1.0 295.68 667.01 744.19 501.27 70.88 
23 50 0.8 0.200 0.55 1.0 743.57 980.88 994.77 478.51 87.04 
24 50 3.2 0.200 0.55 1.0 797.68 1126.34 1158.71 696.34 90.78 
25 45 2.0 0.125 0.30 1.0 527.68 391.26 409.27 381.20 83.04 
26 55 2.0 0.125 0.30 1.0 301.35 1188.19 1214.51 441.51 83.54 
27 45 2.0 0.125 0.80 1.0 302.88 621.47 627.69 362.66 88.37 
28 55 2.0 0.125 0.80 1.0 672.68 1237.58 1250.01 522.74 89.01 
29 50 2.0 0.050 0.55 0.5 234.24 523.62 528.87 419.43 58.98 
30 50 2.0 0.200 0.55 0.5 383.68 863.45 891.24 555.12 79.76 
31 50 2.0 0.050 0.55 1.5 430.57 585.16 718.69 529.66 83.76 
32 50 2.0 0.200 0.55 1.5 878.77 1136.16 1147.52 740.58 104.56
33 45 2.0 0.125 0.55 0.5 186.46 438.47 442.86 398.20 68.02 
34 55 2.0 0.125 0.55 0.5 569.80 1057.69 1197.31 379.51 68.98 
35 45 2.0 0.125 0.55 1.5 656.46 508.95 691.84 434.89 98.77 
36 55 2.0 0.125 0.55 1.5 843.24 1298.52 1311.51 720.97 95.84 
37 50 0.8 0.125 0.30 1.0 623.57 536.83 563.56 347.82 80.92 
38 50 3.2 0.125 0.30 1.0 287.89 851.03 915.95 542.19 81.56 
39 50 0.8 0.125 0.80 1.0 538.68 841.26 871.84 395.28 86.41 
40 50 3.2 0.125 0.80 1.0 583.79 846.22 848.03 582.42 90.66 
41 50 2.0 0.125 0.55 1.0 424.79 655.22 644.18 437.12 86.56 
42 50 2.0 0.125 0.55 1.0 380.66 660.61 670.04 439.12 85.01 
43 50 2.0 0.125 0.55 1.0 464.90 657.35 636.71 421.12 83.71 
44 50 2.0 0.125 0.55 1.0 453.08 671.79 656.86 410.12 86.89 
45 50 2.0 0.125 0.55 1.0 494.35 679.44 640.69 434.12 90.28 
46 50 2.0 0.125 0.55 1.0 433.74 663.42 661.06 432.12 87.67 
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where,  
Y  =  The process response 
k  =  The number of the patterns 
i and j  =  The index numbers for pattern  
β0  =  The mean of each observed responses 
x1, x2, ···, xk  =  The coded independent variables 
βi =  The main effect  
βii  =  The quadratic effect 
βij  =  The interaction effect  
ε  = The random experimental error 

component 
 
The goodness of fit for the developed equations was 
analyzed through co-efficient of determination (R2). 

Fuzzy modeling: The performance measures of hard 
milling variables are largely probabilistic rather than 
deterministic. A fuzzy logic expert system provides to 
solve such a problem in simple and reliable manner. 
The theory of fuzzy set was introduced by Zadeh 
(1965), which deals uncertain and vague information. 
In any fuzzy set comprises of infinite number of 
membership functions that maps a universe of objects, 
say X is a set characterized, onto the unit interval (0, 1). 
Three main tasks performed in fuzzy modeling, namely 
as fuzzification, fuzzy inference and defuzzification. In 
fuzzification unit, crisp numerical input variables 
appropriately convert into fuzzy set based on defined 
membership functions. Next, the fuzzy inference engine 
workout on the basis defined ‘IF-THEN’ rules and 
membership functions that are applicable for any given 
input   parameters   and  desired  objective.  The  output 
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Fig. 2: Fuzzy logic architecture for hard milling process 
 

obtained from an inference module is still fuzzy value. 
Further, a defuzzification unit converts fuzzy quantity 
into crisp value. The operation is opposite to the 
fuzzifier unit. A schematic fuzzy logic computing 
architecture of  hard milling process as illustrated in 
Fig. 2.   In   fuzzy   modeling,   the   input   and    output 

variables are treated as system variables. After deciding 
upon system variables, the next step was to define the 
all membership functions and universe of discourse for 
each variable. The memberships functions are defined 
by common shapes are triangle, trapezoidal, Gaussian 
and PI curve. Triangular membership function was 
chosen for defining a both input and output variables. 
Because, it needs only a three parameters comparatively 
with other membership functions (Rajasekaran et al., 
2011). A general equation described for triangle 
membership function as: 
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where, a, b, c indicates for the triangular fuzzy triplet 
and x is a variable. The three fuzzy sets are assigned for 
each input variable as Low (L), Medium (M) and High 
(H). For example, defined membership function for 
work piece hardness was depicted in Fig. 3. Similarly, 
nine fuzzy sets were set as Extremely Low (EL), 
Lowest (LT), Lower (LR), Low (L), Medium (M), High 
(H), Higher (HR), Highest (HT), Extremely High (EH) 
for each output variable. The defined membership 
functions graphically illustrated for Fx force in Fig. 4. 
Based on the premise, the fuzzy rules were 

 

 
 
Fig. 3: Membership functions for work piece hardness  
 

 
 
Fig. 4: Membership functions for Fx force 
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Fig. 5: Rule viewer 
 
generated within the available system variables. The 
membership functions and rules were formulated based 
on human knowledge to get desired effect. Typically, 
forty-six set of 'IF-THEN' conditional rules were 
composed for five inputs and one output formulated as: 
 
Rule 1:  If x1 is A1 and x2 is B1 and x3 is C1 and x4 is D1 

and x5 is E1, then y is F1; else 
Rule 2:  If x1 is A2 and x2 is B2 and x3 is C2 and x4 is D2 

and x5 is E2, then y is F2; else 
Rule 3:  If x1 is A3 and x2 is B3 and x3 is C3 and x4 is D3 

and x5 is E3, then y is F3; else 
Rule n:  If x1 is An and x2 is Bn and x3 is Cn and x4 is Dn 

and x5 is En, then y is Fn; else 
 
Ai, Bi, Ci, Di, Ei and Fi are fuzzy subsets defined by 

the corresponding membership functions of µAi, µBi, 
µCi, µDi, µEi and µFi respectively. x and y are input and 
output variables. Mamdani and sugeno fuzzy models 
are of two fuzzy inference systems are commonly 
adopted for fuzzy modelling work. However, many real 
world problems solved by Mamdani method (Latha and 
Senthilkumar, 2009; Hanafi et al., 2012; Ramesh et al., 
2008). The reason is simple and ease to use 
comparatively with other membership functions. By 
adopting mamdani implication method (Max-min 
approach), the fuzzy reasoning of these rules evaluated 
to obtain a fuzzy output. The membership function of 
the output of fuzzy reasoning can be expressed as: 
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where, ∧  is the minimum operation and ∨  is the 
maximum operation. At last, a centroid method is used 
to obtain non-fuzzy value by using the equation: 
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where,  
y0  = Defuzzified output of each response variable 

y  = Output variable (i.e., center value of regions) 
���(y)  = Aggregated membership function 
 

RESULTS AND VERIFICATION 

 
Table 2 Represents, the functional relationship 

between the input and output variables. The 
experimental results are used to get the mathematical 
models. The regression equations were obtained and 
analyzed by Design expert statistical software. The 
insignificant model terms were removed at 95% 
confidence interval (i.e., α = 0.05). The reduced suitable 
regression models as follows in actual form as: 
 

Fx = 12040.51 - 338.200HRC - 747.19re - 23.342fz - 
6016.06ae + 127.7ap + 0.316966HRC × fz + 
119.2HRC × ae + 1.516re × fz + 317.3re × ae + 7.50fz 

× ae + 1.9fz × ap + 2.4HRC2 + 79.52re
2 - 1173.43ae

2 

(R2 = 0.9185)                                      (6) 
 

Fy = 10651.86 - 471.21HRC + 25.9re - 3.054fz + 
1824.42ae - 1427.2 ap - 4.65HRC × re - 36.16HRC × 
ae + 17.03HRC × ap - 257.70 re × ae + 251.4 re × ap 
+ 0.698 fz × ae + 1.40fz × ap - 195.03 ae × ap + 
5.537HRC2 + 40.02 re

2 + 0.017 fz
2 + 824.35e

2 + 
79.48 ap

2 (R2 = 0.9992)                (7) 
 

Fz = 10706.28 - 534.4HRC + 698.6re - 0.84fz + 
1754.49 ae + 33.7ap - 16.0HRC × re - 36.58HRC × 
ae - 13.47HRC × ap - 313.50re × ae + 70.69 re × ap + 
6.68HRC2 + 71.12 re

2 + 0.0149 fz
2 + 879.054 ae

2 + 
352.64 ap

2 (R2 = 0.9943)                (8) 
 
WST = 1194.23 + 18.44HRC - 46.38 re - 6.340 fz - 
1043.70 ae - 2106.6 ap + 0.11HRC × fz + 
19.954HRC × ae + 30.4HRC × ap + 48.71re × ap - 
1.39fz × ae - 0.628 HRC2 + 18.32 re

2 + 0.009 fz
2 + 

278.468ae
2 + 330.98ap

2 (R2 = 0.9767)              (9) 
 
Table 3: Average error for each model 
Approach Fx Fy Fz WST SPL 
Fuzzy 0.810 0.77 -0.3 0.26 0.34 
Model -1.660 0.02 -0.1 -0.15 -0.30 
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Table 4: Experimental settings for verification and results 
Trial No. HRC re fz ae ap  Fx Fy Fz WST SPL 
1 50 3.2 0.18 0.7 1.2 Exp 942.87 1147.32 1145.65 701.32 95.22 
      Fuzzy 940.49 1140.34 1139.43 710.98 97.40 
      Model 937.22 1141.71 1130.43 700.42 99.64 
2 50 2.0 0.20 0.4 1.0 Exp 436.26 952.46 934.23 570.43 91.24 
      Fuzzy 435.34 958.08 935.35 573.34 92.84 
      Model 431.11 951.29 933.27 574.94 90.78 
3 50 0.8 0.16 0.6 0.7 Exp 544.85 852.45 812.67 422.65 71.44 
      Fuzzy 548.32 849.67 818.32 427.78 75.85 
      Model 541.22 845.43 817.21 412.55 76.12 

 

 
 
Fig. 6: Fx force comparative graph for experimental, fuzzy 

and model 
 

 
 
Fig. 7: Fy force comparative graph for experimental, fuzzy 

and model 
 

 
 
Fig. 8: Fz force comparative graph for experimental, fuzzy 

and model 
 

 
 
Fig. 9: WST comparative graph for experimental, fuzzy and 

model 
 

SPL = 10.00 + 7.34 re + 0.402 fz + 12.8 ae + 12.97 
ap + 7.52 re × ap - 2.750 re

2 - 0.00091fz
2 (R2 = 

0.9132)                             (10) 
 
All equations contain linear, interaction and 

quadratic terms. A measure  of  overall  performance  of 

 
 
Fig. 10:  SPL comparative graph for experimental, fuzzy and 

model 
 
the models referred to R2 value. The response variables 
for each experiment can be calculated within the range 
of the factors investigated in this study by substituting 
values of the input process parameters in Eq. (6)-(10). 
The values of R2 were obtained as 0.9185 for Fx, 0.9992 
for Fy, 0.9943 for Fz, 0.9767 for WST and 0.9132 for 
SPL. When R2 approaches near unity, the better the 
response model fits the actual data and the difference 
between the predicted and actual values was less. For 
example, R2 is obtained to 91.85%, which indicates that 
the hard milling process parameters explain in 91.05% 
of variance for Fx-Force. The fuzzy models were 
developed and computed using Fuzzy tool box in 
MATLAB 2010b. Through the fuzzy modeling, the Fx 
force of 624 N was obtained for the inputs of work 
piece hardness of 55 HRC, nose radius of 3.2 mm, feed 
per tooth of 0.125 mm, radial depth of cut of 0.55 mm 
and axial depth of cut of 1 mm (Experiment no 4) as 
illustrated in Fig. 5. The accuracy of the predicted 
values were checked with experimental values within 
the BBD experimental domain. It has been observed 
from Fig. 6 to 10, that the performance of both 
regression and fuzzy models were exhibited a better 
robustness to match its experimental value well. The 
average error variations for each model as depicted in 
Table 3. In order to validate the developed models, the 
verification experiments were randomly carried out and 
compared with the predicted values of all response 
values as illustrated in Table 4. The tabulated results 
were confirming the reliability of developed systems. 
 

CONCLUSION 

 

This study summarizes on innovative 
implementation of expert systems for hard milling of 
tool steel (Type O1) using coated carbide inserts. A 
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box-behnken design effectively utilized for 
experimental work. The predictions of machining 
outputs were achieved through regression and fuzzy 
modeling. The promising results were obtained with 
very consistent average error variations (±1.5%). The 
great improved results were shown from the results of 
verification test for both developed models. 
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