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Abstract: The aim of this study is to numerically simulate the plane moving heat source through anisotropic mild 
steal thin plate. Heat conduction problems in anisotropic material, where the thermal conductivity varies with 
direction and involving a moving heat source have several industrial applications, such like metal cutting, flame or 
laser hardening of metals, welding and others. The parabolic heat conduction model is used for the prediction of the 
temperature history. The temperature distribution inside the plate is determined from the solution of heat equation. 
Thus, the heat equation is solved numerically using finite deference method and the temperature distributions are 
determined. The thermal stresses in this case are, also, investigated and computed numerically. It is found that the 
thermal conductivity ratio affect in both temperature and thermal stresses distributions, in additional to the speed and 
heat source intensity. 
 
Keywords: Anisotropic, heat conduction model, moving plane heat source, parabolic heat conduction model, 

thermal stresses 

 
INTRODUCTION 

 
Heat conduction problems in anisotropic material 

have numerous important applications in various 
branches of science; that is the thermal conductivity 
varies with direction. Crystals, wood, sedimentary 
rocks and many others are example of anisotropic 
materials. Heat conduction problems involving a 
moving heat source have several applications, such as 
metal cutting, flame of laser hardening of metals, 
welding and others. 

The early published work on this topic by Al-
Huniti et al. (2004) investigated the variation of thermal 
and residual stresses inside a thin mild steel plate 
during welding process. It was found that welding 
speed and heat source intensity are the main factors that 
affect the residual stress formation in the plate. Al-Nimr 
and Naji (2000) described the thermal behavior of 
anisotropic material using hyperbolic heat conduction 
model, which assumed different phase lags between 
each component of the heat flux vector and the 
summation of temperature gradient in all direction of 
the orthogonal coordinate system. Zibdeh and Al Farran 
(1995) presented a steady-state solution for the thermal 
stresses of a homogeneous, orthotropic hollow cylinder 
subjected to asymmetric temperature distribution at the 
outer surface and heat convection into a medium at zero 
reference temperature at the inner surface. The results 
show that the orientation of fibers of each layer affects 
the distribution of the stresses. Hou and Komanduri 

(2000) presented general solution for temperature rise 
at any point due to stationary/moving plane heat source 
of different shapes and heat intensity distributions 
(uniform, parabolic, rectangular and normal) using the 
Jaeger’s classical heat source method. The solutions for 
the stationary heat source were obtained from the 
moving source solution by simply equating velocity of 
sliding to zero. The result shows that the temperature 
rise as well as its distribution around the heat source 
depends on several factors, including the heat intensity 
and its distribution, the shape and size of the heat 
source, the thermal properties and the velocity of 
sliding. Al-Huniti and Al-Nimr (2001) investigated the 
dynamic thermal and elastic behavior of a rod due to a 
moving heat source. The hyperbolic heat conduction 
model was used to predict the temperature history. Also 
they presented the effect of different parameters such as 
moving source speed and the convection heat transfer. 
Laplace transformer and Riemann-sum approximations 
were used to determine the temperature, displacement 
and stresses distribution within the rod. Francis (2002) 
investigated the simulations of the welding process with 
moving heat sources for butt and tee joints using finite 
element analyses. From the transient heat transfer 
equation he obtained the thermal analysis, followed by 
a separate mechanical analysis based on the thermal 
history. Also presented the residual stresses for both 
butt and tee joints. The results shows for the butt joint 
that the maximum residual longitudinal normal stress 
was within 3.6% of published data and for a fully 
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transient analysis this maximum stress was within 13% 
of  the  published result. And also shows for the tee, the  
maximum residual stresses were found to be 90-100% 

of the room-temperature yield strength. Araya (2004) 

presented a numerical simulation of the temperature 

field and the removed material resulting from the 

impingement of a moving laser beam on a ceramic 

surface. Finite volume was used to predict the 

temperature field including phase changes generated 

during the process. The derivation of the energy 

equation in anisotropic material with its boundary 

condition is reported by Ozisisik (1993). The same 

reference offers different analytical technique to solve 

energy equation. Also, this reference classifies different 

types of anisotropic materials. 

In present work, the plane moving heat source 

through anisotropic thin plate is simulated numerically. 

The temperature distribution inside the plate is 

determined from the solution of heat equation. The heat 

equation is solved numerically using finite deference 

method definition implicit scheme. The calculation of 

thermal stresses based on numerically method.  

 

METHODOLOGY 

 

Analysis: 
Formulation of heat equation: Figure 1 shows a 

schematic diagram of the physical domain for a square 

thin anisotropic metal plate with moving plane heat 

source. The plate has a length L and thickness th. The 

plane moving heat source has constant speed u in x-

direction. 

 

Assumptions: The assumption can be summarized as 

follows: 

 

• Plate is thin (
��

�
 <<1) 

• The heat source is a plane heat source 

• The speed of moving heat source is constant 

• The thermal properties of material under 

consideration are constant with temperature. 

Without this assumption, the heat conduction  

equation nonlinear, Al-Huniti et al. (2004) 

• Convection and radiation losses are neglected 

 

The plane heat source is moving at a constant 

speed u along x direction and is releasing its energy 

continuously while moving. Therefore, the form of the 

heat source is given by Ozisisik (1993) as:  

 

)(),,( 0 utxgyxtg −= δ  

 
where, 
g (t, x, y)  = The volumetric source W/m

3
 

g0  = The plane source W/m
2
 

δ  = Dirac delta function 1/m 
t  = The time variable 

 
 

Fig. 1: Thin plate undergoing moving plane heat source 

 
Cartesian coordinate system (x y) is chosen fixed to the 

work piece (
�ℎ

�
 <<1) so the z-axis can be neglected. The   

transient   heat   conduction   equation   with  heat 
generation in Cartesian coordinates for a thin plate can 
be expressed as follow (Ozisisik, 1993): 
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where, 
ρ  = The mass density (kg/m

3
) 

C  = The specific heat (J/kg.k) 
k  = The thermal conductivity (W/m.k) 
T  = Temperature at any location (K) 
h1  = Lower convection heat transfer coefficient 

(W/m
2
.K) 

hu  = The upper convection heat transfer coefficient 
(W/m

2
. K)  

T∞  = The ambient temperature (K) 
u  = The velocity of moving heat source (m/s) 
 
Let h1 = hu = h then the equation becomes: 
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Initial and boundary condition: Initially, the plate 
temperature is assumed to be uniform and equal to 
ambient temperature. Hence, the initial and boundary 
condition are: 
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The heat conduction equation for anisotropic 

equation with moving line heat source (2) will be 
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transformed into dimensionless parameter form. For 
this, the following dimensionless parameters are 
introduced: 
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Substituting these parameters in Eq. (2) gives: 
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The dimensionless initial and boundary conditions are:  
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The Following a procedure to solve the governing 
equations by implicit method, which transformed to 
algebraic equations as shown below: 
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(6) 

 
Let ης ∆=∆  arranging the above Eq. (6) gives the 

final solutions for parabolic heat equation: 
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where, 
 

2ς
τ

∆
∆

=A  

 
Thermal stresses: The thermal stresses present in 
many branches of engineering, considered an important 
factors affect on the life of material, so that become a 
very significant in application involving large 
temperature difference and they important to determine 
the life of material, when the temperature rise in a 

homogeneous body, different element of body tend to 
expand by different amount, an amount proportional to 
the local temperature raise. The thermo-elastic 
formulation of the deflection and stress in thin plate 
under the effect temperature field requires the 
reformulation of the classical stress-strain relations. 
Thin plate subjected to the moving plane heat source. 
As a result, the transient temperature is varying in thin 
plate. 

The plate is simply supported at the four edges, 
homogeneous, of uniform thickness, isotropic and 
behaves elastically at all times and the plane stress 
condition exits in the plate. The stress-strain-
temperature relations are (Zibdeh and Al Farran, 1995): 
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where,  
w  =  The transverse deflection of mid-plane of plate 
E  =  Young's modulus 
ν  =  Poisson's ratio  
α  =  The coefficient of thermal expansion 
 

The equation of motion of plate as result of a time 
dependent temperature filed (Zibdeh and Al Farran, 
1995) is given by: 
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where, D is the bending rigidity of the plate, given by: 
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MT is the thermal moment define as (Zibdeh and Al 
Farran, 1995): 
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The boundary condition for simply-supported plate 

along the four edges are given by Al-Nimr and Al-
Huniti (2000) as:  
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It is assumed that the plate is initially at rest i.e., in 

the reference position, so the initial conditions as given 

by Al-Nimr and Al-Huniti (2000) are: 
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When the thermal load is applied to the thin plate 

during moving plane heat source, it generates thermal 

moments along the thickness of thin plate, but the 

thermal load is uniform in z-direction, then (T-T∞) is 

independent of z. Therefore, the thermal moment 

integral at Eq. (11) becomes zero. The thermal moment 

zero this means no deflection occurs in the plate. It can 

be concluded that the temperature gradient in the plate 

is  the  main  contribution  to thermal stresses, from 

Eq. (8) the stresses generations in the plate becomes: 
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Solutions: After applying finite difference we have a 

system of linear algebraic Eq. (7). To solve algebraic 

equation we should create grids (steps) for the time and 

space (ς, η), let us divided the length of the plate in to 

equal space ∆ζ = ∆η = 0.1 and for dimensionless time 

∆τ = 1.3888888889e-3, then linear algebraic Eq. (7) can 

be written as matrix equation: 

 

b=Ψθ                                                         (16) 

 
So that, in each time step we have a matrix to be 

solved. The matrix inverse method is used to determine 
the dimensionless temperature distribution in each time 
step. Hence, when the matrix inverse is known ψ

-1
, the 

solution ө is simply the product of the matrix  inverse 
ψ

-1
 and the right hand side vector b as shown in 

equation below: 
 

b1−Ψ=θ                                                         (17) 

 
Evaluate the thermal stresses in the plate can be 

computed from Eq. (14) after the history of temperature 
are determined.  
 

RESULTS AND DISCUSSION 
 

Equation (7) represented the dimensionless 
solution of the parabolic heat equations of moving line; 
afford the transient dimensionless temperature variation 
with space and time. The property of material will be 
used (mild steal), reported by Al-Huniti et al. (2004), 
are given in Table 1. 

The ratio of thermal conductivity (ε22, ε12) will be 
change during the solution to  understand  the  effect  of 

 
Table 1: Properties of mild steal 

Mass density (ρ)  7800 kg/m3 

Specific heat (C)  450 J/kg°C 
Thermal conductivity (K11) 65 W/m°k 

Plate length (L) 1 m 

Plate thickness (th) 0.005 m 
Velocity of moving heat source (u)  0.001333 m/s 

Plate initial and ambient temperature (T∞) 300 K 

Convection heat transfer coefficient (from steal to 
air) (h)  

15 W/m2K 

Modula's of elasticity   1.99e11 pa 

Coefficient thermal expansion α 1.06355e-5 K-1 
Heat source intensity (G) 1500 

 
 

Fig. 2: Temperature distributions for anisotropic material (different cases) 
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Fig. 3: Thermal stresses for anisotropic material (different case) 

 

 
 

Fig. 4: Temperature distributions along direction for isotropic 

 

anisotropic on the temperature and thermal stresses 
distribution at moving plane heat source. 

Figure 2 shows the dimensionless temperature 
variation with time for specific point (ς = 0.3, η = 0.3) 
for different ratio of thermal conductivity (ε22 ε12), 
during moving plane heat source. It is clear from figure 
that the ratios of thermal conductivity have the main 
effect on the behavior temperature distribution. 
Therefore, increase the ratio of thermal conductivity 
(ε22 ε12) let the cooling processes within the plate 
occurred slowly. In the other hand decrease the ratio of 
thermal conductivity (ε22 ε12) let the cooling process 
within the plate occurred rapidly. Where Fig. 3 show 
the thermal stresses at this point. It's clear from figure 

the behavior of thermal stresses follow the behavior of 
temperature distribution. 

 Figure 4 to 6 shows the dimensionless temperature 

variation  with  time  along  the longitudinal line along 

ς = 0.3 at different ratio of thermal conductivity (ε22 

ε12), during moving plane heat source. It is a clear from 

Fig. 5 the temperature distribution became more 

uniform along longitudinal line when the ratio of 

thermal conductivity decrease while in other hand when 

the ratio of thermal conductivity increase the 

temperature distribution near the edges less than other's 

there are due increase the ratio of conductivity and the 

conductivity for the plate increase and became 
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Fig. 5: Temperature distributions along direction for anisotropic (ε22  =  0.1, ε12  =  0.1) 

 

 
 
Fig. 6: Temperature distributions along direction (ε22 = 5, ε12 = 5) 

 

 
 
Fig. 7: Thermal stresses along direction isotropic 
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Fig. 8: Thermal stresses along direction (ε22 = 0.1, ε12 = 0.1) 

 

 
 

Fig. 9: Thermal stresses along direction (ε22 = 5, ε12 = 5) 

 

 
 

Fig. 10: Temperature various with different heat source for isotropic 
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Fig. 11: Thermal stress for isotropic with different heat source 

 

 
 
Fig. 12: Temperature various with different heat source velocity for isotropic 
 

 
 

Fig. 13: Thermal stresses with different velocity for isotropic 
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more abler to passing the heat through the plate. Where 
Fig. 7 to 9 illustrate the behavior of thermal stresses 
distribution for these cases. It's clear from figures the 
behaviors of thermal stresses are compressive and 
follow the behaviors of temperature distribution.  

Figure 10 shows the transient thermal behavior of 
specific point: (ς = 0.5, η = 0.7) at different values of 
heat source input, namely for G = 500, 1000, 1500 and 
2100. It is illustrated the heat intensity increase, higher 
temperature distributions will be given, due to the more 
heat reached the plate, this situation for all cases for 
anisotropic. Where Fig. 11 show the transient thermal 
stresses of this point at different values of heat sources.  

It is illustrated the thermal stresses intensity 

increase, due higher temperature distributions that 

given due to the more heat reached the plate. This 

situation for all cases for anisotropic. 
Figure 12 shows the effect of changing the moving 

heat source speed on thermal cycle. Five moving heat 
source dimensionless speed are taken into 
consideration: U = 36, 54, 72, 91.8 and 160. From 
figure illustrate that is the moving heat source speed 
decrease, higher temperature value will be reached 
inside the plate, this mean more amount of power 
delivered to the plate per unit time. This situation for all 
cases for anisotropic. Where Fig. 13 show the effect of 
changing the moving heat source speed on the thermal 
stresses. From figure illustrate that when moving heat 
source decrease, higher thermal stresses value will be 
reached inside the plate, due to increase the temperature 
this mean more amount of power delivered to the plate 
per unit time. This situation for all cases for anisotropic. 

 

CONCLUSION 

 
The thermal stresses in thin anisotropic plate 

involving a moving plane heat source are presented. 
The parabolic heat conduction model is used to evaluate 
the thermal behavior of thin anisotropic plate. The 
governing equation is derived and solved using finite 
difference method by implicit scheme. The effect of 
dimensionless ratio of thermal conductivity and moving 
heat source value or speed were studied. The ratios of 
thermal conductivity are found have the main effect on 
the behavior of temperature and thermal stresses 
distribution in the plate. Therefore, increase the ratios 
of thermal conductivity are found the cooling processes 
within the plate occurred slowly. And also, decreases 
the ratio of thermal conductivity are found the cooling 
process within the plate occurred rapidly. The thermal 
stresses in the plate are found compressive and follow 
the behavior of temperature. 

The temperature and thermal stresses of the plate 

are found to increase at small moving heat source 

speed. This due to fact that decrease the speed means 

the source release more amount of energy. Decrease of 

the value of moving heat source are found to decrease 

the temperature and thermal stresses. This is due to the 

fact decrease the value means the mount of energy 

reached to the plate will be reduce. 
 

NOMENCLATURE 
 

L :  Plate side length, m 
C :  Specific heat, J/m

3
 k 

g, g0 :  Heat source W/m
2
 

E :  Young's modulus, N/m
2
 

th :  Plate thickness, m 
k :  Thermal conductivity, W/m k 
ε12, ε22 : Ratio of thermal conductivity in xy and y 

direction 
q :  Heat flux vector, W/m

2
 

T∞ :  Plate initial and ambient temperature, K 
T : Temperature, k 
t :  Times 
u :  Moving plane heat source speed 
w : Transverse deflection of plate 
G :  Dimensional heat source 
hl, hu : Lower and upper surface heat convection 

coefficients 
 
Greek symbols 
 
α :  Coefficient of thermal expansion 
τ :  Dimensionless time 
ς : Dimensionless coordinate in longitudinal 

direction 
η : Dimensionless coordinate transverse directions 
Ө :  Dimensionless temperature 
σ :  Thermal stresses 
ρ :  Mass density, kg/m

3
 

δ : Unit step function 
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