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Research Article 

Sensor and Actuator Fault Detection and Isolation in Nonlinear System using  
Multi Model Adaptive Linear Kalman Filter 

 

M. Manimozhi and R. Saravana Kumar 
School of Electrical Engineering, VIT University, Vellore-632014, Tamil Nadu, India 

 

Abstract: Fault Detection and Isolation (FDI) using Linear Kalman Filter (LKF) is not sufficient for effective 
monitoring of nonlinear processes. Most of the chemical plants are nonlinear in nature while operating the plant in a 
wide range of process variables. In this study we present an approach for designing of Multi Model Adaptive Linear 
Kalman Filter (MMALKF) for Fault Detection and Isolation (FDI) of a nonlinear system. The uses a bank of 
adaptive Kalman filter, with each model based on different fault hypothesis. In this study the effectiveness of the 
MMALKF has been demonstrated on a spherical tank system. The proposed method is detecting and isolating the 
sensor and actuator soft faults which occur sequentially or simultaneously. 
 
Keywords: Fault detection and isolation, multi model adaptive linear kalman filter, nonlinear, residual generation, 

spherical tank, state estimation 

 
INTRODUCTION 

 
Sensors and actuators are playing major role in 

generating controller output and implementing the 
control action. Malfunction may occur either in plant or 
in the sensors or in actuators. The controllers are 
developed by assuming all the sensing and actuating 
elements are reliable and there is no fault in the system. 
If bias is present either in the actuator or in the sensor 
even though control algorithm is advanced one the 
product quality would not be good. It will affect the 
economy, safety of the plant and also affects the 
atmosphere. The sensor or actuator output is not the 
true value if bias is present either in the sensor or in the 
actuator. So detecting and isolating the soft failure is 
essential. The Fault Detection and Isolation (FDI) 
algorithm consists of making binary decision whether a 
fault has occurred or not, if fault has occurred isolating 
the faulty component. Fault Tolerant Control (FTC) 
will ensure the continual safe operation of the plant till 
the next scheduled maintenance. 

Most of the FDI approaches use analytical 
redundancy. Faults are detected and isolated by 
comparing actual plant output and expected output 
based on model (Isermann, 1984; Frank, 1990; Patton 
and Chen, 1997). The system considered here is a 
stochastic process and the expected output is generated 
by statistical filter. The difference between the process 
and the estimator output is error and called residuals, 
which are used to detect and isolated different kinds of 
faults. This residual is also used to find the time of 
occurrence of faults.  

This study uses Linear Kalman Filter to nonlinear 

system estimation. Most of the chemical processes are 

highly nonlinear in nature while operating the process 

in wide range of process variables. Accurate estimation 

of states is important for fault detection and control 

purposes. The widely used estimation technique for 

nonlinear system is Extended Kalman Filter (EKF). 

EKF linearizes all nonlinear transformations and 

substitutes Jacobian matrices in the KF equations. 

Linearization is reliable only if the error propagation is 

well approximated by linear transformation. For some 

nonlinear systems Jacobian matrix may not exists. 

Nonlinear estimation methods are computationally 

complex. Most of the existing algorithms are designed 

for sequential faults not for simultaneous faults.  

The aim of the present study is to develop a 
MMALKF, which uses multiple ALKFs each with 
different hypothesis (Willsky, 1976). First the nonlinear 
model is linearized around different operating points 
and the local linear models are fused to get a global 
linear model at current operating point (Danielle and 
Cooper, 2003; Anjali and Patwardhan, 2008; Vinodha 
et al., 2010). The LKF (estimator) is designed for each 
local linear model and the LKFs are fused using gain 
scheduling technique to get the Adaptive Linear 
Kalman Filter (ALKF). The ALKFs has multiple 
models because each of which is designed for detecting 
specific sensor and/or actuator faults. The proposed 
technique will detect the faults which occur 
sequentially as well as simultaneously and the time of 
occurrence of fault.  
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METHODOLOGY 
 
F used linear model: Let us consider a nonlinear 

stochastic system represented by the following state and 

output equations: 
 

    ),,( 11 −−= kkkk wuxfx                (1) 

 

  ),( kkk xhy υ=                 (2) 

  
The nonlinear system is linearized around different 

operating points using Taylor series expansion. The 
linear system around operating points (�̅i, �� i) is given as 
follows: 
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where, nRx∈  represents state variables, mRu∈
represents inputs, y ∈ Rr

 represents measured output 

and w ∈ Rq
 and υ ∈  Rr

 represents state and 

measurement noise respectively. w (k) and υ (k) are 

assumed to be Gaussian noises with covariance 

matrices Q and R, respectively. Φi, Гui and Гn and Ci are 

known time invariant matrices of appropriate size. The 

nonlinear system is represented by a fused linear model 

using gain scheduling technique at a given operating 

point. For a given input vector u (k), the state and 

output of fused linear model is represented as follows: 
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To cover the entire operating horizon, five 

operating points has been selected (i = 1 to 5). Let ym, is 

the actual value of the measured process variable at 

current sampling instant and gi is the weighting factor 

(Danielle and Cooper, 2003; Anjali and Patwardhan, 

2008; Manimozhi et al., 2013; Vinodha et al., 2010): 
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The weighting factors are in the range of [0 1]. 

 

Adaptive linear kalman filter: For the nonlinear 

model a ALKF can be designed to estimate the system 

states. This approach consists of family of local linear 

estimators and a scheduler. At each sampling instant the 

scheduler will assign weights (gain scheduling) for each 

local linear estimator and the weighted sum of the 

outputs will be the estimate of the current state. The 

scheduler assigns weight based on scheduling variable. 

The scheduling variable may be input variable or state 

variable or some auxiliary variable, the scheduling 

variable considered here is level of the process.  

The LKF is designed for each local linear model 

using kalman filter theory as follows: 
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where,  

ki (k)  = Kalman gain matrix  

)k(kix 1−
)

  
= Predicted state estimates 

)k(kix
)

  
= Corrected state estimates  

 

The Kalman gain matrix can be calculated from the 

following equations: 
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Fig. 1: Structure of the proposed MMALKF 

 

where, Pi (k|k - 1) and Pi (k|k) are the covariance 

matrices of errors in predicted and corrected state 

estimates of i
th

 local estimator, respectively. 

The ALKF (global estimator) dynamics will be 

weighted sum of individual LKF and it is given below: 
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Multi model adaptive linear kalman filter: This 

approach uses multiple ALKF. Each ALKF is designed 

based on specific hypothesis to detect a specific fault. 

The fault considered here is soft fault of fixed bias. The 

same approach can be used to detect dritf like faults. 

This approach is capable of detecting multiple 

sequential as well as multiple simultaneous faults which 

occur either in sensors or in actuators. 

If a bias of magnitude Bs,j occurs at time t in the j
th

 

sensor, then the measurement equation is given by: 

 

t)(ky,jFs,jB(k)Cx(k)+=y(k) −+ ϕυ              (21) 

 

where, Fy, j is a sensor fault vector with j
th

 element equal 

to unity and other elements equal to zero: 
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If a bias of magnitude Ba,j occurs in the j
th

 actuator 
at time t then the state equation is given by: 
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                              (23) 
where, Fu, j is an actuator fault vactor with j

th
 element 

equal to one and other elements equal to zero 
(Basseville and Nikiforov, 1993; Gertler, 1998; Prakash 
et al., 2002). 

All the ALKF except the one using correct 
hypothesis will produce large estimation error. By 
monitoring the residuals of each ALKF, the faulty 
element (sensor or actuator) can be detected and 
isolated. Similarly we can model faults due to 
unmeasured disturbances (input variables other than 
manipulating variable are considered as disturbances) 
and parameter changes. We can model these because 
the process dynamics are derived using first principles. 

The proposed MMALKF scheme  is  shown  in 
Fig. 1. Each ALKF consists of five LKFs developed at 
different operating points. The weights are calculated 
by using level of the process as scheduling variable. 
The LKF outputs are weighted and added to get the 
global output estimate (
�). The process output is 
compared with the ALKF output to generate residuals. 
Under fault free condition the magnitude of the 
residuals are maximum. If fault occurs in any of the 
sensor or actuator, the estimators except the one using 
the correct hypothesis will remain same (produces large 
estimation error).  

If the ALKF is designed for 1% error and the error 
occurred is less than or above 1%, then the residual
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Fig. 2: Schematic of spherical tank process 

 
generated will be different from the one during the 
normal operating condition. By closely observing the 
innovations, the faults which occurs either sequentially 
or simultaneously can be isolated and the time of 
occurance can also be detected.  
 
Spherical tank level process: A spherical tank level 
process shown in Fig. 2 was considered to test the 
effectiveness of the proposed method. The process is 
modeled by the following equation: 
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The steady state operating point data and the state 

space model of the system at five different operating 
points (selected based on gain and time constant 
variation with respect to level) were given in Table 1 
and 2 respectively. The spherical process has one state 
variable level 'h' and one input variable i.e., flow rate fin. 

The continuous linear state space model is obtained by 
linearizing the differential Eq. (20) at different 
operating points (level). The sampling time selected is 
0.5 sec for all simulation studies.  
 

SIMULATION RESULTS 

 
The spherical tank process is simulated using first 

principles model given in Eq. (20) and the true state 
variable level is computed by solving the nonlinear 
differential equation using MATLAB 7.1. The dynamic 
behavior of the spherical tank process is not same at 
different operating points and the process is nonlinear. 
This can be verified from process gain and time 
constant at different operating points given in Table 3. 
 

Fused linear model of the process: Figure 3 shows the 

open loop response of rigorous nonlinear model 

(process) and the fused linear model  developed  at  five 

Table 1: Steady state operating data of spherical tank process  

Process variable Nominal operating conditions 

Level (h) 1 m 
Flow rate (Fin) 0.2215 m3/sec 
Radius of the tank (r) 1 m 
Constant of the outlet valve (Cs) 0.05 m2 
Outlet valve stem position (xs) 1 
Gravitational acceleration (g) 9.8/ms2 

Maximum level 2 m 

 
Table 2: State space process model at different operating points for 

spherical tank  

Model number 

Flow ����,� 

(m3/sec) Level ℎ�� (m) 

State space 

model 

Model 1 i = 1 0.0990 0.2 A = 0.8963; 
  B = 0.4763; 

  C = 0.8842; 

  D = 0 
Model 2 i = 2 0.1716 0.6 A = 0.9733; 

  B = 0.4933; 

  C = 0.3789; 
  D = 0 

Model 3 i = 3 0.2100 0.9 A = 0.9814; 

  B = 0.4953; 
  C = 0.3215; 

  D = 0 

Model 4 i = 4 0.2425 1.2 A = 0.9834; 
  B = 0.4958; 

  C = 0.3316; 

  D = 0 
Model 5 i = 5 0.2971 1.8 A = 0.9642; 

  B = 0.4910; 

  C = 0.8842; 
  D = 0 

 
Table 3: Process gain and time constant at different operating points 

Model number 

Level ℎ�� 

(m) 
System  
gain kp  

System time 
constant τp 

Model 1 i = 1 0.2 4.038 4.567 

Model 2 i = 2 0.6 6.995 18.459 
Model 3 i = 3 0.9 8.571 26.658 

Model 4 i = 4 1.2 9.658 29.850 

Model 5 i = 5 1.8 12.115 13.702 

 

different operating points for the given flow rate 

variations. The inlet flow rate has been varied to 

operate the system at different levels viz., 0.2,  0.4,  0.6, 
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0.8, 1.0, 1, 2, 1.5 and 1.8, respectively. It is evident 
from the response that the fused model is capturing the 
dynamics of the spherical tank level process exactly, at 
the same time slight steady state error is found in the 
open loop response when the system is operated away 
from the operating points. 
 
State estimation using adaptive linear kalman filter 
for the spherical process: The performance of the 
ALKF is validated for the same flow rate variations as 
given in Fig. 3a and level has been estimated. The 
process and measurement noise covariance are assumed 
to be 0.25% of flow rate and 0.5% of level, 
respectively. Figure 4a and b shows the estimated 
process output using ALKF and rigorous nonlinear 
model output. It has been observed that the ALKF 
exactly estimates the process output without dynamic 
and steady state error.  

Sequential sensor fault detection using MMALKF: 
The sensor fault was detected and isolated using 
MMALKF developed in the previous section. The 
ALKF for detecting level sensor fault was hypothesized 
with 5% sensor fault and the residuals were generated 
by introducing 0, 2 and 5% faults in level sensor at 
1001

st
 sampling instant. The fault detected is confirmed 

if the mean value of the residual exceeds the threshold 
value. By averaging the residual over a period of time 
the false alarm due to spike like disturbances can be 
avoided. To reduce the false alarm due to modeling 
uncertainties  the  threshold  level  may  be set high. 
Fig. 5a and b shows the true and estimated system 
output and the residual generated respectively. When 
there is no fault in the level sensor, the residual 
generated is more negative, as the fault magnitude 
increases the residual generated will become more and 
more positive. 

 

 
        (a) 

 

 
    (b) 

 

Fig. 3: Open loop response of process and fused linear model, (a) flow rate input and (b) level output 

 

 
     (a) 

 

 
      (b) 

 

Fig. 4: (a) Estimate of level output using ALKF, (b) residual generated at different operating points 
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   (a) 

 

 
       (b) 

 
Fig. 5: (a) True and estimated values of level in the presence of sensor fault of 2% introduced at 1001th sampling instant, (b) 

generated residual 
 

 
      (a) 

 

 
      (b) 

 
Fig. 6: (a) True and estimated values of level in the presence of acuator fault of 1% introduced at 1001th sampling instant, (b) 

generated residual 

 
Sequential actuator fault detection using 
MMALKF: To detect and isolate the actuator fault the 
ALKF was hypothesized with 2% actuator fault and the 
residuals were generated for 0, 1 and 2%, respectively 
of actuator faults introduced at 1001

st
 sampling instant. 

True and the estimated output and the residual 
generated are shown in Fig. 6a and b, respectively.  
 
Simultaneous sensor and actuator fault detection 
using MMLAKF: To detect simultaneous sensor and 
actuator fault, in the MMALKF approach two ALKF 
were used. First ALKF is hypothesized with 5% sensor 
fault and the second ALKF with 2% actuator fault. If it 

is important to monitor the health of two sensors and 
two actuators, four estimators are designed with four 
different hypothesis. Fault can be easily isolated by 
checking the trends of all four residuals. From the 
magnitude of the residual itself the magnitude of fault 
occurred can also e calculated. The time of occurrence 
of fault is the time at which the residual changes its 
trend and the fault is confirmed by comparing the mean 
of the residual over a period of time with the threshold 
value. The sensor and actuator faults of 0&0, 2&1 and 5 
and 2%, respectively were introduced simultaneously at 
1001

st
 sampling instant. The estimated output and 

residual generated are shown in Fig. 7.  
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                                                                 (a)                                                                          (b) 

 

 
 

                                                                (c)                                                                            (d) 

 

Fig. 7: (a) True and estimated values of level in the presence of sensor fault of 2% introduced at 1001th sampling instant, (b) 

generated residual, (c) true and estimated values of level in the presence of actuator fault of 1% introduced 1001th 

sampling instant, (d) generated residual 

 
Table 4: Sensor bias alone 

Bias magnitude (% bias) 
------------------------------------------------------------------------------------------------------------- 

Mean value of residual generated S.D. Estimator hypothesis System bias magnitude 

0.06 (5%) 0 (0%) -0.0600 0.0013 
0.06 (5%) 0.024 (2%) -0.0582 0.0014 
0.06 (5%) 0.06 (5%) -0.0560 0.0025 

S.D.: Standard deviation 
 
Table 5: Actuator bias alone 

Bias magnitude (% bias) 
------------------------------------------------------------------------------------------------------------- 

Mean value of residual generated S.D. Estimator hypothesis System bias magnitude 

4.85e-3 (2%) 0 (0%) -0.0030 0.0010 
4.85e-3 (2%) 2.425e-3 (1%) -0.0014 0.0010
4.85e-3 (2%) 4.85e-3 (2%) 1.0485e-4 0.0011

S.D.: Standard deviation 
 
Table 6: Simultaneous sensor and actuator faults estimator hypothesis: SF-0.06 (5%), AF-4.85e-3 (2%) 

System bias magnitude (% bias) 
------------------------------------------------------------------------- Mean value of SF 

residual generated Mean value of AF residual generated S.D. Sensor fault Actuator fault 

0 (0%) 0 (0%) -0.0600 -0.003 9.537e-4 
0.024 (2%) 2.425e-3 (1%) -0.0569 8.656e-5 0.0013 
0.06 (5%) 4.85e-3 (2%) -0.0530 0.004 0.0023 

S: Sensor; A: Actuator; SF: Sensor fault; AF: Actuator fault; S.D.: Standard deviation 

 
Estimator hypothesis, percentage of fault 

introduced in the system, the mean value of the residual 
generated and the standard deviation for different types 
of faults are given in Table 4 to 6. 
 

CONCLUSION 
 

In this study we have proposed MMALKF 
approach    that     includes   adaptive   gain   scheduling  

algorithm along with the multiple linear kalman filters 
to detect and isolate multiple sensor and actuator faults 
which occurs sequentially and simultaneously. The 
efficiency of the proposed approach was tested through 
extensive simulation on spherical process. The 
MMALKF can be used to develop a nonlinear model 
based FDI scheme for faults which occurs sequentially 
and simultaneously and fault tolerant control schemes. 
The proposed MMALKF performs better even in the 
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presence of considerable amount of plant-model 
mismatch.  
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