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Abstract: The Retinopathy of Prematurity (ROP) is an ocular pathological disorder of the retinal blood vessels in 

premature infants and low birth weight infants. It is essential that those caring for premature infants should know 

who is at risk of ROP and their severity stage. It is also important that when screening must begin and how often 

these infants need to be examined otherwise the progression lead most severe stage and can cause blindness. The 

contrast stretching method has been utilized to enhance the ROP color image. Then an automatic method Isotropic 

Un-decimated Wavelet Transform (IUWT) has been proposed to extract the abnormal retinal blood vessel and 

measure its width and tortuosity. The ridge formation of this pathological disorder has also been obtained by the 

IUWT. The quantitative measurements of mean diameter, standard deviation, tortuosity, length of retinal blood 

vessel and ridge have been considered and computed the exact severity stage of ROP. The effectiveness of the 

proposed method has been verified through machine vision techniques and the results obtained are encouraged by 

experts. Automatic ROP screening system comprises several advantages, like a substantial time reduction of 

ophthalmologists in diagnosis, a non ophthalmologist can provide stage of ROP, improving the sensitivity of the test 

and a better accuracy in diagnosis. 
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INTRODUCTION 

 
Image processing, analysis and computer vision 

techniques are widely used today in all fields of 
medical sciences and especially to modern 
ophthalmology, as it is heavily dependent as visually 
oriented signs. The Retinopathy of Prematurity (ROP) 
is a pathological disorder of the retinal blood vessels 
which frequently develops in premature infants. It is 
characterized by blood vessel width, tortuosity of the 
vessels and ridge formation in various zones in the 
retinal area. The optic disk, macula and fovea are the 
important landmarks for zone selection and represent 
the severity level of ROP disease in premature infants. 
This study presents a new, fast, fully automatic retinal 
vessel segmentation, tortuosity, ridge and vessel width 
measurement algorithms have been utilized for 
screening the ROP stages (Parag et al., 2011). 

Retinopathy of Prematurity (ROP) is an ocular 

disease of premature infants and it can cause blindness 

at high risk pre-threshold stages (Early Treatment of 

Retinopathy of Prematurity Cooperative Group 

(ETROP), 2003). It affects immature vasculature in the 

eyes  of  premature  babies  (Wittchow,  2003; Mounir 

et al., 2008). It can be mild with no visual defects, or it 

may become aggressive with new blood vessel 

formation (neovascularization) and progress to retinal 

detachment and blindness (International Committee for 

the Classification of Retinopathy of Prematurity 

(International Committee for the Classification of 

Retinopathy of Prematurity, 2005). As smaller and 

younger babies are surviving, the incidence of ROP has 

increased (Gwenole et al., 2008; Lam and Hong, 2008). 

All babies who less than 1800 g birth weight or younger 

than 32 weeks gestational age at birth are at risk of 

developing ROP. 

In any Neonatal Intensive Care Unit (NICU), the 

timing of the first evaluation must be based on the 

gestational age at birth:  
 

• If the baby is born at 23-24 weeks' gestational age, 
the first eye examination should be performed at 
27-28 weeks gestational age. 



Res. J. App

Fig. 1: Normal and diseased retinal blood vessels image of premature babies 

 

 
Fig. 2: Zone 1 is the most posterior retina that contains the 

optic nerve and the macula (zone of acute vision); 
zone 2 is the intermediate zone where blood vessels 
often stop in ROP; zone 3 is the peripheral zone of the 
retina, where vessels are absent in ROP, but present in 
normal eyes 

 

• If the baby is born at or beyond 25
gestational age, the first examination
at the fourth to fifth week of life. 

• Beyond 29 weeks, the first eye examination should 
probably occur by fourth week life time of baby.

 
It is essential that those caring for premature 

infants know who is at risk of retinopathy of 
prematurity, when screening must begin and how often 
these infants need to be examined. It is also important 
to know when to treat those infants who develop severe 
retinopathy of prematurity and what long term follow
up is needed to manage other complications of 
retinopathy of prematurity (Shankar, 1986; Conor 
2002). The discrimination between normal retinal 
vessels and diseased vessels plays a vital role to detect 
the ROP as shown in Fig. 1. The ROP occurs when 
abnormal blood vessels develop at the edge of no
retinal blood vessel. The ophthalmologists who are 
trained in ROP have to study and analyze the Retcam 
images.  

 
Classification of ROP: Blood vessel development in 
the retina occurs from the optic nerve out towards the 
periphery, that is, from the back of the eye towards the 
front. The location of the disease is referred by the 
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Normal and diseased retinal blood vessels image of premature babies  

 

Zone 1 is the most posterior retina that contains the 
optic nerve and the macula (zone of acute vision); 

2 is the intermediate zone where blood vessels 
3 is the peripheral zone of the 

retina, where vessels are absent in ROP, but present in 

If the baby is born at or beyond 25-28 weeks' 
gestational age, the first examination should occur 

Beyond 29 weeks, the first eye examination should 
probably occur by fourth week life time of baby. 

It is essential that those caring for premature 
infants know who is at risk of retinopathy of 

, when screening must begin and how often 
these infants need to be examined. It is also important 
to know when to treat those infants who develop severe 
retinopathy of prematurity and what long term follow-
up is needed to manage other complications of 

nopathy of prematurity (Shankar, 1986; Conor et al., 
2002). The discrimination between normal retinal 
vessels and diseased vessels plays a vital role to detect 
the ROP as shown in Fig. 1. The ROP occurs when 
abnormal blood vessels develop at the edge of normal 
retinal blood vessel. The ophthalmologists who are 
trained in ROP have to study and analyze the Retcam 

Blood vessel development in 
the retina occurs from the optic nerve out towards the 
periphery, that is, from the back of the eye towards the 

The location of the disease is referred by the 

ICROP (International Classification of Retinopathy of 
Prematurity) classification and is a measure of how far 
this normal progression of blood vessel development 
has  progressed  before  the disease takes over (Mounir 
et al., 2008). Generally Zone II disease is more severe 
than Zone III disease and Zone I disease is
dangerous of all since progression to extensive scar 
tissue formation and total retinal detachment is most 
likely in this location. 

From the "flattened" retina shown in Fig. 2, we can 
see that: 
 

• Zone I is a small area around the optic nerve and 
macula at the very back of the eye. 

• Zone II extends from the edge of Zone I to the 
front of the retina on the nasal side of the eye (i.e.
nose side) and part way to the front of the retina on 
the temporal side of the eye (i.e., temple side, or 
side of the head).  

• Zone III is the remaining crescent of retina in front 
of Zone II on the temporal side of the eye. 

 
Think of the eye as in time sections of a twelve 

hour clock to classify the stages of ROP.
ROP is defined by how many clock hours of 
circumference are diseased. The numbers around the 
"flattened" retina in the Fig. 2 shows the hours of the 
clock for each eye. For example, 3 o'clock is to the 
right, which is on the nasal side for the right eye and 
temporal side for the left eye
2012). Often the disease is not present around all twelve 
clock hours, so a description may often refer to "x" 
number of clock hours of disease (e.g., nine clock hours 
would mean that three quarters of the circumference of 
the retina is involved). 

In general, the supervised algorithms that integrate 
the use of training images and classifiers have been 
reported for better segmentation results of retinal vessel 
and ridge at the cost of higher computation times. The 
manual segmentation of a single training image has 
more difficult and time consuming process, although 
this process somewhat mitigated if hand
only a portion of an image has been sufficient to train 
the classifier. In many cases of retinal images this 

 

ICROP (International Classification of Retinopathy of 
rity) classification and is a measure of how far 

this normal progression of blood vessel development 
the disease takes over (Mounir 

., 2008). Generally Zone II disease is more severe 
than Zone III disease and Zone I disease is the most 
dangerous of all since progression to extensive scar 
tissue formation and total retinal detachment is most 

From the "flattened" retina shown in Fig. 2, we can 

Zone I is a small area around the optic nerve and 
acula at the very back of the eye.  

Zone II extends from the edge of Zone I to the 
front of the retina on the nasal side of the eye (i.e., 
nose side) and part way to the front of the retina on 
the temporal side of the eye (i.e., temple side, or 

Zone III is the remaining crescent of retina in front 
of Zone II on the temporal side of the eye.  

Think of the eye as in time sections of a twelve 
hour clock to classify the stages of ROP. The extent of 
ROP is defined by how many clock hours of the eye's 
circumference are diseased. The numbers around the 
"flattened" retina in the Fig. 2 shows the hours of the 

For example, 3 o'clock is to the 
right, which is on the nasal side for the right eye and 

 (Prabakar et al., 
Often the disease is not present around all twelve 

clock hours, so a description may often refer to "x" 
number of clock hours of disease (e.g., nine clock hours 
would mean that three quarters of the circumference of 

In general, the supervised algorithms that integrate 
the use of training images and classifiers have been 
reported for better segmentation results of retinal vessel 
and ridge at the cost of higher computation times. The 

single training image has 
more difficult and time consuming process, although 
this process somewhat mitigated if hand-segmenting 
only a portion of an image has been sufficient to train 
the classifier. In many cases of retinal images this 
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efficient supervised algorithms could not be used to 
transform or enhance the image, because of huge 
variations at the image acquisition and health of the 
subject. So that simple thresholding operation could be 
used to identify the retinal vessels and ridges then more 
sophisticated classifiers have to be used for the decision 
making process (Julien et al., 2003). 

On the other hand, unsupervised algorithms have 

been often utilized for this application to obtain faster 

result and can be tested easily on new image types 

without any need for training sets to be generated. But 

the primary disadvantage of this algorithm is that they 

often use filters and operations that have been tailored 

for a particular type or resolution of image and can 

require significant modifications to be applied to others. 

In some cases of manually segmented training images, 

this algorithm introduced the requirement of the 

fundamental approach of preprocessing followed by 

thresholding typically used with unsupervised 

algorithms has been combined with the automatic 

optimization of parameters (Robert et al., 2012; 

Lassada et al., 2004). 

The present unsupervised algorithm development 

work for ROP screening has two stages using Wavelet 

schemes such as the first stage deals with the detection 

of the blood vessels, measuring the tortuosity and 

vessel width from the retinal fundus image by the third 

level decomposition and then the proceeding stage as 

forth level decomposition deals with the ridge location 

and width estimation in various zone of the retina. Thus 

the parameters such as tortuosity, vessel and ridge 

width have been utilized to detect the disease such as 

ROP severity levels have been estimated. The proposed 

method has been utilized to screen the severity level of 

the disease in automatic machine vision algorithms to 

reduce the present manual investigation by the 

ophthalmologists. Hence the manual detection of the 

tortuosity, vessel and ridge width and severity level of 

the disease is time consuming and the ophthalmologist 

may intend to repetitive stress injury on scanning and 

analyzing the fundus images (Robert et al., 2012). This 

study will act as tool to analyze the diseased by non 

ophthalmologists. 
 

LITERATURE SURVEY ON  
RETINOPATHY DETECTION 

 
Automated fundus image analysis plays an 

important role in the computer aided diagnosis of 
ophthalmologic disorders. A lot of eye disorders, as 
well as cardio-vascular disorders, are known to be 
related with retinal vasculature changes. Many studies 
have been done to explore these relationships. 
However, most of the studies are based on limited data 
obtained using manual or semi-automated methods due 
to the lack of automated techniques in the measurement 
and analysis of retinal vasculature. The relationship 
between changes in retinal vessel morphology and the 

onset and progression of diseases such as diabetes, 
hypertension and Retinopathy of Prematurity (ROP) has 
been the subject of several large scale clinical studies. 
However, the difficulty of quantifying changes in 
retinal vessels in a sufficiently fast, accurate and 
repeatable manner has restricted the application of the 
insights gleaned from these studies to clinical practice. 
Detecting blood vessels in retinal images with the 
presence of bright and dark lesions is a challenging 
unsolved problem.  

Benson et al. (2010), has proposed a novel multi-
concavity modeling approach to handle both healthy 
and unhealthy retinas simultaneously. The 
differentiable concavity measure and the line-shape 
concavity measure have been proposed to handle bright 
lesions in a perceptive space and to remove dark lesions 
which have an intensity structure different from the 
line-shaped vessels in a retina, respectively. The locally 
normalized concavity measure has been designed to 
deal with unevenly distributed noise due to the 
spherical intensity variation in a retinal image. These 
concavity measures are combined together according to 
their statistical distributions to detect vessels in general 
retinal images. They have obtained very encouraging 
experimental results that the proposed method 
consistently yields the best performance over existing 
state-of-the-art methods on the abnormal retinas and its 
accuracy outperforms the human observer, which has 
not been achieved by any of the state-of-the-art 
benchmark methods. Most importantly, unlike existing 
methods, the proposed method shows very attractive 
performances not only on healthy retinas but also on a 
mixture of healthy and pathological retinas. 

Michal and Stewart (2005) have proposed a new 
technique for extracting vessels in retinal images by the 
motivation of improving detection of low-contrast and 
narrow vessels and eliminating false detections at non-
vascular structures. The core of the technique has a new 
likelihood ratio test that combines matched filter 
responses, confidence measures and vessel boundary 
measures. Matched filter responses have been derived 
in scale-space to extract vessels of widely varying 
widths. A vessel confidence measure is defined as a 
projection of a vector formed from a normalized pixel 
neighborhood onto a normalized ideal vessel profile. 
Vessel boundary measures and associated confidences 
have been computed at potential vessel boundaries. 
Combined, these responses form a 6-dimensional 
measurement vector at each pixel. A learning technique 
has been applied to map this vector to a likelihood ratio 
that measures the “vesselness” at each pixel. Results 
comparing this vesselness measure to matched filters 
alone and to measures based on the intensity Hessian 
show substantial improvements both qualitatively and 
quantitatively. When the Hessian is used in place of the 
matched filter, similar but less-substantial 
improvements have been obtained. Finally, the new 
vesselness likelihood ratio has been embedded into a 
vessel tracing framework, resulting in an efficient and 
effective vessel extraction algorithm. 
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Tortuosity is one of the first manifestations of 
many retinal diseases such as those due to Retinopathy 
of  Prematurity  (ROP),  hypertension,  stroke,  diabetes 
and cardiovascular diseases. An automatic evaluation 
and quantification of retinal vessel tortuosity would 
help in the early detection of such retinopathies and 
other systemic diseases. Rashmi and Uyyanonvara 
(2012) have proposed a new approach based on 
Principal Component Analysis (PCA), for the 
evaluation of tortuosity in vessels extracted from digital 
fundus images. One of the strength of the proposed 
algorithm is that the index is independent of translation, 
rotation and scaling. Measures are adopted such that the 
proposed approach matches with the clinical concept of 
tortuosity. The algorithm is compared with other 
available tortuosity measures. We have demonstrated 
its validity as an indicator of changes in morphology 
using simulated shapes. It is superior to other putative 
indices, presented previously in literature. 

Fraz et al. (2012) have presented an automatic 
evaluation and quantification of tortuosity for the 
diagnosis of several ocular and systemic diseases which 
is significant for the clinical recognition of abnormal 
retinal tortuosity. Two tortuosity evaluation approaches 
such as Numerical Integration Method (NIM) and 
Numerical Differentiation Method (NDM) based on 
continuous curvature to a dataset of 45 infant fundus 
images have been proposed. Performance evaluation 
has been done on classification accuracy of three 
classifiers such as Naive Bayesian classifier, k-nearest 
neighbor classifier and K-means clustering algorithm, 
by comparing the estimated results against ground truth 
from expert ophthalmologists. Results show that 
different numerical methods provide different tortuosity 
values for same retinal vessels however have the 
potential to detect and evaluate abnormal retinal curves. 
The best classification accuracy of 87.3% has been 
achieved by the method K-nearest neighbor classifier.  

The quantitative analysis of expert opinions have 
been utilized to demonstrate a methodology for 
generating composite wide-angles of plus disease in 
Retinopathy of Prematurity (ROP) proposed (Michael 
et al., 2008). Thirty-four wide-angle retinal images 
were independently interpreted by 22 ROP experts as 
“plus” or “not plus.” All images were processed by the 
computer-based Retinal Image multi-Scale Analysis 
(RISA) system to calculate two parameters: Arterial 
Integrated Curvature (AIC) and Venous Diameter 
(VD). Using a reference standard defined by expert 
consensus, sensitivity and specificity curves were 
calculated by varying the diagnostic cutoffs for AIC 
and VD. From these curves, individual vessels from 
multiple images were identified with particular 
diagnostic cutoffs and were combined into composite 
wide-angle images using graphics-editing software. The 
values associated with 75% under diagnosis of true plus 
disease (i.e., 25% sensitivity cutoff) were AIC 0.061 
and VD 4.272, the values associated with 50% under 
diagnosis of true plus disease (i.e., a 50% sensitivity 
cutoff) were AIC 0.049 and VD 4.088 and the values 

associated with 25% under diagnosis of true plus 
disease (i.e., 75% sensitivity cutoff) were AIC 0.042 
and   VD  3.795.   Composite  wide-angle  images  were 
generated by identifying and combining individual 
vessels with these characteristics. Computer-based 
image analysis permitted quantification of retinal 
vascular features and a spectrum of abnormalities is 
seen in ROP. Selection of appropriate vessels from 
multiple images can produce composite plus disease 
images corresponding to expert opinions. This method 
may be useful for educational purposes and for 
development of future disease definitions based on 
objective, quantitative principles.  

Peter et al. (2012) has been presented a novel 
algorithm for the fast efficient detection and 
measurement of retinal vessels, which is general 
enough that it can be applied to both low and high 
resolution fundus photographs and fluorescein 
angiograms upon the adjustment of only a few intuitive 
parameters. Initially they described the simple vessel 
segmentation strategy, formulated in the language of 
wavelets that has been used for fast vessel detection. 
The proposed method validation using a publicly 
available database of retinal images, this segmentation 
achieves a true positive rate of 70.27%, false positive 
rate of 2.83% and accuracy score of 0.9371. Vessel 
edges have then more precisely localized using image 
profiles computed perpendicularly across a spline fit of 
each detected vessel centreline, so that both local and 
global changes in vessel diameter can be readily 
quantified. They observed that the output of their 
algorithm using second image database have displayed 
good agreement with the manual measurements made 
by three independent observers and it produced 
improved speed and generality without sacrificing 
accuracy.  

Carmen and Domenico (2011) have proposed 
Unsupervised Segmentation of Retinal Vessels using 
clustering algorithms such as Self-Organizing Maps 
(SOM), K-means clustering and Fuzzy C-means 
clustering. These methods have the advantage that they 
use knowledge about the vessel network morphology 
like the most accurate supervised methods, but are 
completely unsupervised as they do not have any a 
priori knowledge about the labels of the pixels that they 
want to classify as vessel or non-vessel. Another 
advantage of the proposed methods is their fast 
computational time, compared to supervised methods 
which are computationally more expensive. The 
algorithm’s segmentation performance has slightly 
higher accuracy than some benchmark unsupervised 
algorithms, with slightly lower kappa value than some 
algorithms on the DRIVE database. The mean accuracy 
of 0.9347 with a standard deviation of 0.0152 and a 
mean kappa value of 0.6170 are the outcomes of this 
algorithm and the ROC curves have shown effective 
detection of retinal blood vessels (i.e., sensitivity of 
69.63) with a small false detection rate (i.e., 1-
specificity of 4.21). 
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Many retinal diseases are characterized by changes 
to retinal vessels. For example, a common condition 
associated with Retinopathy of Prematurity (ROP) is 
so-called plus disease, characterized by increased 
vascular dilation and tortuosity. Conor et al. (2002) 
have developed a general technique for segmenting out 
vascular structures in retinal images and characterizing 
the segmented blood vessels. The segmentation 
technique had several steps. Initially, morphological 
preprocessing and second derivative operator have been 
used to emphasize linear structures such as vessels and 
thin vascular structures respectively and has been 
followed by a final morphological filtering stage. Then 
the thresholding has been used to provide segmented 
vascular mask. The skeletonisation of this mask has 
been allowed to identify the points in the image where 
vessels cross (bifurcations and crossing points) and 
allowed the width and tortuosity of vessel segments to 
be calculated. The accuracy of the segmentation stage is 
quite dependent on the parameters used, particularly at 
the thresholding stage. However, reliable measurements 
of vessel width and tortuosity were shown using test 
images. Using these tools, a set of images drawn from 
23 subjects being screened for the presence of threshold 
ROP disease has been considered. Of these subjects, 11 
subsequently required treatment for ROP, 9 had no 
evidence of ROP and 3 had spontaneously regressed 
ROP. Applying a simple retrospective screening 
paradigm based solely on vessel width and tortuosity 
yields a screening test with a sensitivity and specificity 
of 82 and 75%. 

Vessel enhancement is an important preprocessing 
step in accurate vessel-tree reconstruction which is 
necessary in many medical imaging applications. 
Conventional vessel enhancement approaches used in 
the literature are Hessian-based filters, which are found 
to be sensitive to noise and sometimes give 
discontinued vessels due to junction suppression. A 
novel framework for vessel enhancement for 
angiography images has been proposed by Phan et al. 
(2009). The proposed approach incorporates the use of 
line-like directional features present in an image, 
extracted by a directional filter bank, to obtain more 
precise Hessian analysis in noisy environment and thus 
can correctly reveal small and thin vessels. Also, the 
directional image decomposition has been helped to 
avoid junction suppression, which in turn, yields 
continuous vessel tree. Qualitative and quantitative 
evaluations performed on both synthetic and real 
angiography images show that the proposed filter 
generates better performance in comparison against two 
Hessian-based approaches.  

Julien et al. (2003) developed a new tool to assess 
retinopathy of prematurity. This method has been used 
geometric information by considering blood vessels as 
tubes and better supports more complex measures on 
the extracted data such as tortuosity and dilation. Based 
on the extracted vessels, the four quadrants of the retina 
are identified and then a grade is determined via 

classification using a trained neural network. These 
techniques extract and quantify both tortuosity and 
dilation of blood vessels with a sensitivity of 80 and 
92% of specificity compared with the prediction of 
experts. 

Fundus image analysis is playing an important role 
in the early detection of retinal eye diseases like 
diabetic retinopathy, glaucoma etc. Automated 
detection of Hypertensive Retinopathy (HR) is also a 
recent development in this field. Segmentation of blood 
vessels, measurement of tortuosity, diameter 
measurement, finding the Artery Vein Ratios (AVR) 
are few important measures for finding HR using digital 
fundus images. Kevin and Nayak (2012) have been 
proposed a support system to assist the ophthalmologist 
in detecting HR in early stages using fundus images. 
Segmentation of blood vessels has been done using 
Radon transform, optic disk has also detected by Hough 
transform and then the AVR has been estimated. The 
proposed support system will help the ophthalmologist 
in the early detection of HR. 

Xiayu (2012) has presented a fully automated 
retinal vessel width measurement technique for 
delineation and quantitative analysis of blood vessels in 
retinal fundus image. The accurate vessel boundary 
delineation problem has been modeled in two-
dimension into an optimal surface segmentation 
problem in three-dimension. Then the optimal surface 
segmentation problem has been transformed into 
finding a minimum-cost closed set problem in a vertex-
weighted geometric graph. The problem has modeled 
differently for straight vessel and for branch point 
because of the different conditions in straight vessel and 
in branch point. Furthermore, many of the retinal image 
analysis needed the location of the optic disc and fovea 
as prerequisite information. Hence, a simultaneous 
optic disc and fovea detection method has been 
presented, which included a two-step classification of 
three classes which have been represented as: 

  

• Developing a fully automated vessel width 
measurement technique for retinal blood vessels 

• Developing a simultaneous optic disc and fovea 
detection method 

• Validating the methods using multiple datasets 

• Applying the proposed methods in multiple retinal 
vasculature analysis studies 

 
Retinal image analysis is an essential step in the 

diagnosis of various eye diseases. Diabetic Retinopathy 
(DR) is globally the primary cause of visual impairment 
and blindness in diabetic patients. Diabetic Retinopathy 
(DR) is an eye disease caused by the complication of 
diabetes. Two types of DR are Non-Proliferative 
Diabetic Retinopathy (NPDR) and Proliferative 
Diabetic Retinopathy (PDR). Early diagnosis through 
regular screening and timely treatment has proven 
beneficial in preventing visual impairment and 
blindness. Shaeb and Satya (2008) have proposed a 
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novel approach to automatically detect diabetic 
retinopathy from digital fundus images. The digital 
fundus images have been segmented employing 
morphological operations to identify the regions 
showing signs of diabetic retinopathy such as hard 
exudates, soft exudates and the red lesions: micro 
aneurysm and haemorrhages. Various color space 
values of the segmented regions have been calculated. 
A fuzzy set has formed with the color space values and 
fuzzy rules have been derived based on fuzzy logic 
reasoning for the detection of diabetic retinopathy.  

Diabetic Retinopathy (DR) diagnosis using 
Machine Learning Techniques would also be the 
prominent method in recent days. Three models like 
Probabilistic Neural Network (PNN), Bayesian 
Classification and Support Vector Machine (SVM) 
were used and their performances have been compared 
to detect DR. The features like blood vessel, 
haemmorages of NPDR images and exudates of PDR 
images were extracted from the raw images using the 
image processing techniques and fed to the classifiers 
for classification. SVM classifier delivered a better 
result compared with other techniques.  

Retinal blood vessels are important structures in 
ophthalmological images. Many detection methods are 
available, but the results are not always satisfactory. 
Vermeer et al. (2004) has presented a novel model 
based method for blood vessel detection in retinal 
images. It is based on a Laplace and thresholding 
segmentation step, followed by a classification step to 
improve performance. The last step assured 
incorporation of the inner part of large vessels with 
specular reflection. The method gives a sensitivity of 
92% with a specificity of 91%.  

Retinopathy of Prematurity (ROP) is a common 
retinal neovascular disorder of premature infants. It can 
be characterized by inappropriate and disorganized 
vessel. To determine, with novel software, the 
feasibility of measuring the tortuosity and width of 
retinal veins and arteries from digital retinal images of 
infants at risk of Retinopathy of Prematurity (ROP) an 
innovative  technique  has  been  proposed  by Wilson 
et al. (2008). The Computer-Aided Image Analysis of 
the Retina (CAIAR) program was developed to enable 
semiautomatic detection of retinal vasculature and 
measurement of vessel tortuosity and width from digital 
images. To measure tortuosity a multi-scale approach 
that successively subdivided vessel sections into two 
parts has been adopted. The geometric concept involved 
perpendicular bisection of the vessel chord at its 
midpoint and subsequent reapplication of the 
subdivision on the resultant segments until the segment 
lengths fall below a specified value (4 pixels). Two 
methods were used to estimate width: First method 
estimated from the maximum-likelihood model fitting. 
This is the standard deviation of the Gaussian profile 
that was fitted at that location. Second, the correlated 
measure of isotropic contrast at the vessel centerline has 
been computed by the response of a Laplacian of 
Gaussian (LoG) filter. CAIAR was tested for accuracy 

and reproducibility of tortuosity and width 
measurements by using computer-generated vessel-like 
lines of known frequency, amplitude and width. 
CAIAR was then tested by using clinical digital retinal 
images for correlation of vessel tortuosity and width 
readings compared with expert ophthalmologist 
grading. CAIAR offers the opportunity to develop an 
automated image analysis system for detecting the 
vascular changes at the posterior pole, which are 
becoming increasingly important in diagnosing 
treatable ROP. 

Lassada et al. (2004) have presented a method for 
blood vessel detection on infant retinal images. The 
algorithm has been designed to detect the retinal 
vessels. The proposed method applied a Laplacian of 
Gaussian as a step-edge detector based on the second-
order directional derivative to identify locations of the 
edge of vessels with zero crossings. The procedure 
allowed parameters computation in a fixed number of 
operations independent of kernel size. This method has 
been composed of four steps: grayscale conversion, 
edge detection based on LOG, noise removal by 
adaptive Wiener filter and median filter and Otsu's 
global thresholding. The algorithm has done well to 
detect small thin vessels, which are of interest in 
clinical practice.  
 

MATERIALS AND METHODS 
 

The related work review described many clinical 
procedures and imaging algorithms to investigate the 
Retinopathy of Prematurity disease stages. All the 
proposed methods have its own merits and de merits 
according to the application on ROP image analysis. To 
overcome the disadvantages and efficient quantification 
of retinal vessels and ridges presented in the ROP 
images, a new wavelet based methodology has been 
proposed in this study. The implementation of this 
algorithm has been delivered the various parameters of 
retinal vessels and ridges to efficiently screen the 
severity stage of ROP.  

The premature infant retinal images obtained from 
pediatric section of an eye hospital in the south Indian 
region. The digital retinal images have been captured 
by RetCam-120; MLI Inc., Pleasanton, California at 
45° field of view. Generally minimum 5 retinal images 
for each right and left eye of the premature infants have 
been collected and considered for the present algorithm 
accomplishment. These raw color images are in .hdr or 
.bmp format with a size of 640×480 pixels. In all cases, 
color images have been converted to grayscale by 
extracting the green channel information and treating 
this as containing gray levels, because the green 
channel has revealed the best contrast for vessel 
detection.  

Before the gray scale conversion of the color 
retinal image, the brightness, color and contrast of the 
image have been enhanced with the mean intensity 
adjustment and contrast stretching method. This process 
has improved the appearance of retinal blood vessel and
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Fig. 3: General block diagram of wavelet based ROP screening system

ridge formation. Further a minimized mask has been 
created to exclude the unnecessary parts of the image in 
processing which has been improved the accuracy level 
on the boundary detection.  

Then the two dimensional Isotropic Un
Wavelet Transform (IUWT) has been proposed for the 
gray scale ROP images to analyze the blood vessel by 
third iteration and ridges by fourth iteration as shown in 
Fig. 3. Consecutively the dark vessel thresholding (16
20%) or bright vessel thresholding (13-
applied to the iterated ROP images to extract the retinal 
vessel and ridges respectively. The various numerical 
parameters of the segmented vessel and ridge have been 
measured by different mathematical computations. The 
thresholding technique has been utilized to develop the 
retinal mask and defined the various zones of the retina. 
The optic disk and fovea localization has been obtained 
to define the exact zones in the retina. Then the fusion 
of extracted ridge with zones and diameter of the ridge 
information has delivered the proper severity stage of 
the ROP. 
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ridge formation. Further a minimized mask has been 
created to exclude the unnecessary parts of the image in 
processing which has been improved the accuracy level 

Then the two dimensional Isotropic Un-decimated 
(IUWT) has been proposed for the 

gray scale ROP images to analyze the blood vessel by 
third iteration and ridges by fourth iteration as shown in 
Fig. 3. Consecutively the dark vessel thresholding (16-

-17%) have been 
plied to the iterated ROP images to extract the retinal 

vessel and ridges respectively. The various numerical 
parameters of the segmented vessel and ridge have been 
measured by different mathematical computations. The 

ed to develop the 
retinal mask and defined the various zones of the retina. 
The optic disk and fovea localization has been obtained 
to define the exact zones in the retina. Then the fusion 
of extracted ridge with zones and diameter of the ridge 

has delivered the proper severity stage of 

Two dimensional isotropic un-decimated wavelet 
transform: Recent past multi-scale methods plays a 
vital role and have become very popular, especially 
with the expansion of wavelets. Generally Decimated 
bi-orthogonal Wavelet Transform (DWT) has been used 
in many medical image applications. But DWT has loss 
of translation invariance property, which leads to a 
large number of artifacts in its resultant image i.e., 
when an image has been reconstructed after 
modification by its wavelet coefficients. So that DWT 
technique is not mostly preferred for analysis of data. 
Starck et al. (1998) and Starck and 
2002, 2007) have been proposed the thresholding using 
an un-decimated transform rather than a decimated one 
can improve the result by more than 2.5 dB in 
denoising applications. 

The undecimated wavelets transform and its 
reconstruction consists of the standard un
wavelet transform and the Isotropic Un
Wavelet Transform (IUWT). In which, the Isotropic 
Un-decimated Wavelet Transform (IUWT) is a 

 

decimated wavelet 
scale methods plays a 

vital role and have become very popular, especially 
with the expansion of wavelets. Generally Decimated 

orthogonal Wavelet Transform (DWT) has been used 
in many medical image applications. But DWT has loss 

property, which leads to a 
large number of artifacts in its resultant image i.e., 
when an image has been reconstructed after 
modification by its wavelet coefficients. So that DWT 
technique is not mostly preferred for analysis of data. 

and Murtagh (2001, 
2007) have been proposed the thresholding using 
decimated transform rather than a decimated one 

can improve the result by more than 2.5 dB in 

The undecimated wavelets transform and its 
nstruction consists of the standard un-decimated 

wavelet transform and the Isotropic Un-decimated 
Wavelet Transform (IUWT). In which, the Isotropic 

decimated Wavelet Transform (IUWT) is a 
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powerful, redundant wavelet transform that has been 
used in astronomy and biology applications (Antoine 
and Murenzi, 1994; Dutilleux, 1989). The un-decimated 
wavelet transform, particularly IUWT and its 
reconstruction has been described in this section. Then 
the specially designed filter banks has been presented 
for IUWT decompositions which have some useful 
properties such as being robust to ringing artifacts 
which appear generally in wavelet-based denoising 
methods extremely useful for ROP images.  

The IUWT algorithm has been well known for the 

astronomical domain and biological functions 

especially retinal image analysis, because it is well 

adapted to the images where objects are more or less 

isotropic in most cases. Requirements for a good 

analysis of such data are as follows. 

Filters must be symmetric: 

 

ℎ���� = ℎ��� and �̅��� = ����                            (1) 

 

In 2-D or higher dimension, ℎ, �, �, � must be 

nearly isotropic. 

For a real discrete-time filter whose impulse 

response is h�n�, h��n� = h�n�, n ∈ ℤ is its time reversed 

version. For wavelet representation, analysis filters are 

denoted as h and g. The scaling and wavelet functions 

using for analysis are denoted as ϕ and  ψ, respectively. 

Filters need not be orthogonal or bi-orthogonal and this 

property such as the lack of the need of orthogonality or 

bi-orthogonolity is the advantageous for design 

freedom. So, the separability; h�k, l� = h�k�h�l� has 

been considered for the fast calculations for huge 

volume of data set. This implementation has 

appreciated by wavelet theory at each iteration i, 
scaling coefficients c has been computed by low pass 

filtering and and wavelet coefficients w� by subtraction.  

The analysis of scaling and wavelet functions has 

preferred the following: 

 

����� =  �
�� �|� − 2|# − 4|� − 1|# + 6|�|# −

4|� + 1|# + |� + 2|#�                                                (2) 

 

����, (� = ����� ���(�               (3) 

 
�
) � *+

� , ,
�- =  ���, (� − �

) ��+
� , ,

��               (4) 

 

where, ϕ��x� is the spline of order 3 and the wavelet 

function is defined as the difference between two 

resolutions. The related filters h and g is defined by: 

  

ℎ�/��� = ��,),0,),��
�0 , � =  −2, … ,2               (5) 

 

ℎ��, 2� =  ℎ��/����ℎ��/��2�                 (6) 

 

���, 2� =  3��, 2� −  ℎ ��, 2�               (7) 

where, δ is defined as δ�0, 0� =  1 and δ�k, l� =  0 for 

all �k, l� different from �0, 0�. 

The mean of the original signal has been preserved 

by the scaling coefficients. But the wavelet coefficients 

have a zero mean and information have been encoded 

for the corresponding different spatial scales present 

within the signal. This has been applied to a signal c5 

and the subsequent scaling coefficients are calculated 

by convolution with a filter h6�: 
 

78 =  78 ∗  ℎ68                 (8) 

 

where, the filter h5 = �1, 4, 6, 4, 1� 16⁄  is derived from 

the cubic B-spline and h6� is the up sampled filter 

obtained by inserting 2� − 1 zeros between each pair of 

adjacent coefficients of h5. The filtering has to be 

applied in all directions when the original signal c5 is 

multidimensional. 

The Finite impulse response filters �h, g = δ − h� 

should follow certain properties to characterize any pair 

of even symmetric analysis. For any pair of even 

symmetric filters h and g such that g = δ − h, has to 

comply with the following symmetric properties: 

 

• This FIR filter bank implements frame 

decomposition and perfect reconstruction using 

FIR filters should be possible. 

• A tight decomposition should not implement with 

the above filters.  

 

Based on the structure of g, the wavelet 

coefficients have been obtained by calculating the 

difference between two resolutions, which is: 

  

;8<���, 2� =  78��, 2� −  78<���, 2�               (9) 

 

where, 

 

78<���, 2� =  �ℎ��=�ℎ��=� ∗ 78���, 2� 
 

This simple difference between two adjacent sets 

of scaling coefficients represented as wavelet 

coefficients i.e.: 

 

>8<� =  78 −  78<�               (10) 

 

One set of ?w�@ could be obtained for each scale of 

i, which has the same number of pixels as the input 

image. The reconstruction has been obtained by simple 

co-addition of all wavelet scales and the final smoothed 

array: 

 
75��, 2� =  7A��, 2� +  ∑ >8��, 2�C

8D�              (11) 

 

So the reconstruction of the original signal from all 

wavelet coefficients and the final set of scaling 
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coefficients required addition only. After the 

computation of n wavelet levels: 

  

75 =  7E +  ∑ >8
E
8D�                (12) 

 

The synthesis filters hF = δ and gG = δ are FIR 

based on the symmetric filter properties. This wavelet 

transformation has been adopted for the analysis of 

ROP images which contain the isotropic objects. 

The set of wavelet coefficients generated at each 

iteration have been referred to as a wavelet level and 

the larger features such as the retinal vessels and ridges 

have become visible with improved contrast on higher 

wavelet levels. Especially wavelet level 3 has been 

adopted for better blood vessel visibility and level 4 to 

visualize the ridges on the ROP images. The wavelet 

levels which exhibit the best contrast have been added 

and the thresholding have also been applied to lowest 

valued coefficients to carry out the segmentation of 

vessels in ROP images. The Field of View (FOV) has 

been estimated for a ROP image and the thresholds 

have been computed from pixels within the FOV. In 

order to ensure that the dark pixels outside FOV did not 

considered for the threshold computation. When the 

non availability of FOV mask, the global threshold has 

been applied to the ROP images and this become the 

best method applied to green channel images.  

The wavelet levels and thresholds need not be 

changed for all the fixed size of retinal images. But to 

extract the blood vessel from all ROP images (both low 

and high resolution) the wavelet level has to be chosen 

to third level decomposition and the threshold has to be 

fixed as 18-23% of lowest coefficients. Similarly to 

extract the ridges from the ROP images the wavelet 

levels and threshold have been chosen to fourth level 

and 15%, respectively and also the inverted binary 

image has been preferred to obtain the perfect ridge. 

 

Vessel width and ridge width measurement: The 

vessel width and ridge width measurement strategy 

consist two stages of processing first is the vessel or 

ridge middle line estimation and the second is the edge 

identification of vessel and ridge. The morphological 

thinning algorithm has been proposed to extract the 

middle line of the vessel and ridge. Thinning has 

iteratively removed exterior pixels from the detected 

vessels, finally resulting in a new binary image 

containing connected lines of ‘on’ pixels running along 

the vessel centers. The end pixels which have <2 

neighbors have been identified and the branch The ROP 

severity has various stages from stage 1 to stage 5, plus 

disease and Aggressive Progressive ROP. In which we 

have considered the ROP images up to stage 3 and plus 

diseased for the current screening process. Obviously 

the stage 4 and stage 5 are the most severe stage and the 

baby may not get the vision properly even though the 

proper clinical procedures are following to treat the 

same with utmost care. The IUWT has been applied for 

stage 1 to stage 3 ROP images and extracted the ridges 

by the fourth level of Wavelet decomposition and 

threshold has been defined to 15% with bright vessel 

selection. Since almost all the cases the ridges have 

been looking brighter than other locations. If the ridges 

have been compared with retinal vessels in the ROP 

images, they have inverse intensity and resolution 

property of the images. 

The pixels which have >2 neighbors been removed. 

Many monotonous middle lines have been eliminated 

as much as possible by removing the short segments 

which have <10 pixels. So that unwanted spur which 

produced side-effect on thinning process and end 

bifurcated vessels i.e., vascular tree into individual 

vessel segments have also been eliminated. A coarse 

estimate of vessel widths have been calculated using the 

distance transform of the inverted binary segmented 

image especially on ridge segmentation. Finally the 

connected group of pixels represented the middle line 

of a potential vessel segment which could be used for 

further analysis. 

The orientation of a vessel segment at any point 

could be estimated directly from its middle line, but 

discrete pixel coordinates have not been well suited for 

the computation of angles. A least-squares cubic spline 

or in piecewise polynomial form for any orientation of 

a vessel has been fitted to each middle line to combine 

some smoothing with the ability to evaluate accurate 

derivatives at any location. The smooth middle line 

could be obtained by using a parametric spline curve 

based on the centripetal scheme described by Lam et al. 

(1992) and Lee (1989). 

The measurement of vessel and ridge widths 

required the location of edge points, but these have no 

unique description within the image space. The ROP 

vessel and ridge profiles have resemblance of Gaussian 

functions; generally edges have previously been defined 

in different methods, including using gradients or 

model fitting. The presence of central light reflex is one 

of the major impediments while development of vessel 

width measurement strategy. It has been visualized as a 

‘dip’ or ‘hill’ approximately in the center of the vessel 

and ridge profile and which has been more likely to be 

found in higher resolution images and wider vessels. 

Some of the vessel and ridge measurement algorithms 

have misidentified the light reflex as the vessel or ridge 

edge have been reported as challenging task and 

explicit strategies for dealing with this issue have to 

ensure that any measurement should be adequately 

robust (Lee, 1989). The edge has been occurred at a 

local gradient maximum or minimum as identified to 

sub-pixel accuracy using the zero-crossings of the 

second derivative otherwise which has been defined as 

the rising edge and the falling edge. 

The average vessel or ridge width has been 

estimated from the binary profiles. The sum of ‘vessel’ 
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pixels in each profile has been computed and the 

median of these sums have been taken as the 

provisional width. Then the average of all the vessel 

profiles have been calculated and identify the locations 

of the maximum and minimum gradient to the left and 

right of the centre respectively, bounded to a search 

region of one estimated width from the centre. These 

locations have given the columns in the vessel profile 

images at which edges have been predicted to fall. The 

distance between the two columns also gave a more 

refined and robust estimate of mean vessel width, 

largely independent of the thresholds used for the initial 

segmentation (Olivo-Marin, 2002). An anisotropic 

Gaussian filter have been applied to the vessel profiles 

image to reduce noise and then a discrete estimate of 

the second derivative perpendicular to the vessel by 

finite differences have been calculated. Then locations 

where the sign of the pixels in each filtered profile 

changes have been identified and categorized these 

based upon the direction of the sign change into 

potential left and right vessel edges. Using connected 

components labeling, the possible edges into distinct 

trails have been linked. Then the trails that never come 

within 1/3 of an estimated vessel diameter from the 

corresponding predicted edge columns have been 

removed. Finally the zero-crossings belonging to the 

longest remaining trails to each side of the vessel centre 

have been estimated as edges and the diameter has 

simply the Euclidean distance between these edges 

(William et al., 1999). 

 

RESULTS AND DISCUSSION 

 

This proposed work involved two main steps, the 

much faster unsupervised vessel and ridge segmentation 

by thresholding wavelet coefficients have been 

implemented as the first step, which would achieve 

better accuracy and less computation time compared 

with the other existing techniques. The second step has 

included a new alternative to the graph-based algorithm 

to extract middle lines and locate the vessel and ridge 

edges from ROP image profiles. This could be achieved 

by using the spline fitting to determine vessel 

orientations and then detecting the zero crossings of the 

second derivative perpendicular to the vessel and ridge.  

The IUWT has been performed somewhat 

extraordinary as a wavelet transform and has a 

particularly straightforward implementation. The 

efficient means of combining background subtraction 

along with noise and high-frequency content inhibition 

using an approximately Gaussian filter have become the 

outcomes of IUWT execution on ROP images. So that, 

the wavelet coefficients resemble the values that would 

be computed directly using a difference of Gaussian’s 

filter. It would be well suited for the tasks of accurate 

retinal vessel and ridge segmentation, detection and 

measurement by this algorithm, despite of its cleanness.  

 
 

 
 

Fig. 4: Original RetCam ROP image and contrast enhanced 

image 

 

The present work considered 28 premature infants 

who have the ROP issues at various stages. Each 

infant’s retinal images have been acquired with RetCam 

at the Pediatric Ophthalmology center, in the 

Coimbatore location using regular ROP screening 

procedures. For every infant the ophthalmologists have 

been considered minimum five images or some cases 

which may be increased up to 8 images/eye to analyze 

the exact stage of ROP. The ophthalmologist’s 

proficiency level plays a vital role in ROP severity 

screening. Based on the clinical features of ROP 

images, the IUWT have been adopted for left eye and 

right eye images to extract the vessels and ridges and 

measure the widths. The ROP images obtained from 

RetCam are in .hdr or .bmp file format with the size of 

640×480. These unprocessed images have been 

preprocessed and enhance contrast of the retinal vessels 

and ridges as shown in Fig. 4. These images have been 

considered as the input for the proposed IUWT based 

system. 

The various IUWT iteration levels have been 

applied for the input ROP images and observed that the 

level 3 iteration has delivered the satisfied output. Then 

the dark thresholding have been selected to 20% to 

extract the dark blood vessels. The output has more 

unwanted noise, so that the simple morphological 

functions such as erosion, dilation, connectivity and 

blob filling techniques have been utilized to obtain the 

optimum retinal vessel structures as shown in Fig. 5. 
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Fig. 5: A) IUWT level 3 applied image, B) thresholded image, C) segmented retinal vessels 

 

 
 

Fig. 6: D) IUWT level 4 applied image, E) bright thresholded image, F) segmented ridge structure 

 
Table 1: Various properties of stage 1 ridge measurement 

Stage 1 ridge measurement 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Case Eye No of widths  

Mean width 

(mm) S.D.  

Min. ridge 

width (mm) 

Max. ridge  

width (mm) 

Ridge length 

(mm) Tortuosity 

1 LE 150 1.2565 0.3453 0.5698 1.8546 40.2521 1.0426 

 RE 224 1.8739 0.6387 0.5863 3.1948 61.1355 1.4863 
2 LE 36 0.9281 0.2379 0.5562 1.3894 9.8343 1.0426 

 RE 56 2.4762 0.2722 1.9707 3.0259 14.6168 1.0373 

3 LE 75 1.4324 0.3834 0.6698 2.2404 22.0379 1.7674 
 RE 39 0.9860 0.3906 0.4614 1.5760 11.3950 1.0014 

4 LE 27 2.5868 0.4526 2.1369 3.5550 7.6361 1.0139 

 RE 154 3.0761 0.8193 1.6144 4.9752 41.3855 1.1154 
5 LE 32 1.4758 0.2811 0.8311 2.0621 14.0854 1.0372 

 RE 32 2.7008 0.3904 2.2960 3.4052 8.1493 1.0268 

6 LE 66 1.6279 0.5722 1.0049 2.7470 17.2139 1.0353 
 RE 40 2.8902 0.4635 2.5172 4.0160 10.4776 1.0627 

7 LE 42 1.3230 0.4044 0.5615 1.8969 12.1323 1.0462 

 RE 47 2.2613 0.5299 0.9300 3.1178 11.8788 1.2101 
8 LE 31 2.0188 0.5628 0.9202 2.6923 10.0124 1.0167 

 RE 27 1.4944 0.1349 1.2199 1.6646 7.5061 1.0136 
9 LE 171 1.7477 0.5694 0.3946 3.1787 52.9401 1.2459 

 RE 300 2.1121 0.6290 0.7003 3.3932 86.8941 1.0238 

S.D.: Standard deviation; Min.: Minimum; Max.: Maximum 

 
The tortuosity level of the retinal vessels have been 

estimated for the required vessel portions by manual 

selection using relative length variation method. 

The IUWT iteration has been extended from third 

level to fourth level to extract the ridges available in the 

ROP images. In this process, instead of dark 

thresholding, the bright thresholding has been chosen to 

15% to extract the ridges. Then the similar 

morphological operators have been used to extract the 

ridges and the ridge portions alone have been selected 

manual intervention as shown in Fig. 6. In this study, 1 

pixel is approximately equivalent to 0.27 mm has been 

considered to extract the ridge length from the 

segmented images. Then the properties of a ridge such 

as maximum and minimum width, mean width, 

standard deviation and tortuosity levels have been 

computed to screen the stage of ROP. For each and 

every stage’s various ridge values have been tabulated 

as shown in Table 1 to 3. 

The various parameters such as number of widths, 

mean width, standard deviation, minimum width, 

maximum width, ridge length and tortuosity of stage1,
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Table 2: Various properties of stage 2 ridge measurement 

Stage 2 ridge measurement 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Case Eye No of widths  
Mean width 
(mm) S.D.  

Min. ridge 
width (mm) 

Max. ridge 
width (mm) 

Ridge length 
(mm) Tortuosity 

1 LE 356 1.5567 0.4405 0.5816 2.4556 98.6751 1.3586 
 RE 466 1.9771 0.6512 0.4739 3.6394 129.1242 1.1927 
2 LE 246 1.9274 0.6171 0.6338 3.5667 66.7943 1.0738 
 RE 336 2.7246 0.8241 0.7097 4.4254 90.2561 1.0361 
3 LE 137 1.2707 0.3312 0.6372 1.9306 37.8547 1.0238 
 RE 317 2.1354 0.7496 0.9501 4.2921 86.2478 1.0604 
4 LE 156 5.5231 1.0212 2.9668 7.1383 42.1550 1.0996 
 RE 165 5.4279 1.4210 3.4821 8.0491 44.8270 1.1470 
5 LE 33 3.0385 0.2071 2.8099 3.4272 9.2086 1.1079 
 RE 57 2.8210 0.5750 1.9593 3.9476 19.8108 1.0308 
6 LE 250 1.8003 0.6017 0.4965 3.3842 66.9522 1.0605 
 RE 112 2.0325 0.7240 0.7245 3.1498 29.2821 1.0219 
7 LE 303 2.6150 0.7733 0.4318 4.0229 80.9361 1.0489 
 RE 112 2.6314 1.0497 0.6025 4.7064 29.9288 1.8599 
8 LE 145 1.6832 0.4940 0.7429 2.7112 39.2842 1.1471 
 RE 357 1.3892 0.5496 0.1754 2.6700 110.6390 1.0947 
9 LE 134 3.3090 1.1099 1.4049 5.3819 37.4287 1.0468 
 RE 259 3.8011 1.3430 1.4925 6.2773 70.2925 1.1839 
10 LE 198 1.8817 0.8385 0.4081 3.9992 54.3638 1.1094 

 RE 95 1.8679 0.4085 0.7458 2.6647 26.2608 1.1051 

S.D.: Standard deviation; Min.: Minimum; Max.: Maximum 
 
Table 3: Various properties of stage 3 ridge measurement 

Stage 3 ridge measurement 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Case Eye 

No of widths 

(mm) 

Mean width 

(mm) S.D.  

Min. ridge 

width (mm) 

Max. ridge  

width (mm) 

Ridge length 

(mm) Tortuosity 

1 LE 139 5.5142 2.0437 2.5772 9.9167 156.3164 1.3224 

 RE 69 5.3912 0.7315 3.7353 6.5336 18.4460 1.0483 
2 LE 219 6.5009 2.0079 3.0970 11.2826 316.0073 1.3359 

 RE 338 1.2440 0.3847 0.6125 2.3965 91.4554 1.4785 

3 LE 118 7.4700 0.7838 6.0497 9.0362 32.8272 1.0515 
 RE 254 6.7396 1.5353 3.0328 8.9062 68.1560 1.0520 

4 LE 184 3.2598 0.6371 2.0034 4.6751 48.0983 1.0841 

 RE 471 4.5965 1.2589 1.4389 6.3851 133.7524 2.9524 
5 LE 192 3.3379 1.3022 1.4426 5.9724 52.0834 1.2329 

 RE 192 3.1302 0.7198 1.6426 4.7580 57.6215 1.0371 

6 LE 168 2.6522 1.0557 0.6989 4.5476 48.9944 1.0179 
 RE 134 2.3415 0.5327 1.2345 3.6966 35.5252 1.0953 

7 LE 416 2.5721 1.1854 0.8158 6.3361 111.2873 1.1022 

 RE 38 5.7070 0.2137 5.2092 5.9663 9.4643 1.0041 
8 LE 390 4.1397 1.2984 1.3384 7.2142 104.5571 1.0440 

 RE 178 3.9205 0.9196 1.3425 5.7484 48.0624 1.0473 
9 LE 148 4.8142 1.5413 2.7642 7.6954 39.9464 1.2096 

 RE 148 4.2671 0.9421 2.7325 6.4683 41.2754 1.0485 

S.D.: Standard deviation; Min.: Minimum; Max.: Maximum 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Stage 1 ridge parameters measurement (mean, 

minimum and maximum width) for different cases left 

and right eye 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Stage 2 ridge parameters measurement (mean, 

minimum and maximum width) for different cases left 

and right eye  
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Fig. 9: Stage 3 ridge parameters measurement (mean, 

minimum and maximum width) for different cases left 

and right eye 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Various stages ridge length measurement for 

different cases left and right eye 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11: Various stages ridge tortuosity level measurement for 

different cases left and right eye 

 

stage 2 and stage 3 for the left and right eye have been 

measured and tabulated. These values have been 

contributed very important role in the ROP severity 

stage screening. 

The Fig. 7 to 9 illustrated the ridges mean width, 

minimum and maximum ridge width versus various 

cased have the stage 1, stage 2 and stage 3 level of ROP 

diseases. The stage 3 ridge parameters measurement has 

highest span of widths starts from 2.3965 to 11.2826 

mm. The other two stages such as stage 1 and stage has 

the maximum ridge width of 4.9752 and 8.0491 mm 

respectively. The mean ridge width measurements have 

also been specified that the stage 3 has more 

predominant value compared with other two stages. 

Surprisingly, the minimum ridge width measurement 

indicated that stage 2 has the lowest value i.e., 0.1754 

mm when compared with the stage 1 minimum width 

value i.e., 0.3946 mm. 
The ridge length of various stages versus the cases 

has been shown in the Fig. 10. This represented that the 
stage 3 has largest ridge length. Similarly the Fig. 11 
symbolized that the tortuosity level in various stages of 
ROP cases which has been depicted the stage 3 has the 
biggest value. The stage 1 and stage 2 has very low 
discriminant features when compared with stage 3. So 
the ROP screening systems considered these ridge 
parameters and which have been measured for the new 
input retinal image and categorize the stage 
accordingly.  
 

CONCLUSION 

 

A fast and accurate unsupervised algorithm to 

detect and measure blood vessels and ridges in various 

stages of ROP images have been described in this 

study. This developed algorithm have been 

implemented for various stages of ROP images and 

identified that it could deliver high level of accuracy, 

low measurement error and short computation time for 

both low and high resolution images. From the 

outcomes of the IUWT implementation on ROP 

images, it is observed that this proposed method is more 

suitable than the existing techniques.  

The various parameters measurement of retinal 

vessels and ridges for various stages of ROP images has 

been quantified and further screening has been 

progressed. Based on the measured parameters, the 

stage 3 has more significant parameters compared with 

other stages such as stage 1 and stage 2. From the 

implementation of this system, we observed that the 

ROP screening system could be easily identify the stage 

3 cases and the system felt fuzziness at stage 1 and 

stage 2. The ROP severity stage quantification and 

screening system produced 93% accurate result on 

stage 3 and 85% accuracy in stage 1 and stage 2. The 

effectiveness of the proposed method has been 

demonstrated through experimentation using various 

ROP diseased cases. The outputs from the developed 

system have been validated with the results of experts.  

The best ROP classification could be achieved by 

the implementation of efficient soft computing based 

classifier using the retinal vessel and ridge parameters. 

The thresholding based retinal image mask can be 

created to classify the various zones in the retina. The 
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fusion of the retinal vessels and ridges with retinal 

mask  images  could  be  delivered  the  proper  severity 

stage of ROP. The work could be extended with these 

techniques and could achieve better results in future. 

The Graphical User Interface (GUI) based menu 

options will also be provided user friendly environment 

for non ophthalmologist so that the time consumption 

of ophthalmologists can be considerably reduced i.e., 

instead of analyzing all RetCam images they provide 

prominent diagnosis on the infants who have suffered 

with severe stage ROP. 
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