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Abstract: The problem of the ground-borne vibration caused by high speed trains has received considerable 
attention in recent years, due to the effects of vibration on buildings, in terms of physical damage and on population, 
in terms of discomfort. The problem has become more significant with the increase of speed and weight of trains, 
which results in heavier loads on the tracks. Therefore, there is the necessity to find a method, which allows 
investigating the propagation of vibration waves in the soil. This study aims to study the train-induced ground 
vibration and the mitigation effects of barriers using a Finite Element Method (FEM) model. Two different types of 
barriers were evaluated considering their stiffness and a benchmark model without mitigation measures was also 
analyzed to evaluate the effectiveness of the considered barriers. The results of the proposed elaborations have been 
finalized to the assessment of the incidence of the barrier on the vibration state induced from the passage of a high 
speed trains and the following conclusions can be made: concrete seems to provide a significative reduction of the 
vibration. The proposed method can be successfully applied to a preliminary analysis of the influence of different 
types of barriers on the dynamic properties of vibration waves in the soil. 
 
Keywords: Damping coefficient, FEM, finite element analysis, ground vibration, railway, Rayleigh wave, trains, 

wave barriers, wave propagation 
 

INTRODUCTION 
 

Trains traffic related noise and vibration is a source 
of pollution which can cause severe damage to 
communities in terms of health and social welfare 
(Cirianni and Leonardi, 2012, 2011). 

Large forces between wheels and rails cause 
railway vibrations during the passage of the train. The 
main source of excitation of the track is represented by 
vertical force determined by the wheel-rail interaction 
during the passage of trains (Ferrara et al., 2012, 2013). 
Such vibrations are transmitted through the track 
structure, including rails, sleepers, ballast and sub-
layers and propagate through the ground by means of 
two types of non-dispersive waves, which can freely 
propagate and are called the body waves (Fig. 1). The 
first is a dilatational wave, or a pressure wave (known 
as the P-wave). This is a longitudinal wave, where the 
wave-front and the medium particles move in the same 
direction. The second is the shear wave (known as the 
S-wave). This is a transverse wave, where the wave-
front and the medium particles move perpendicular to 
each other. 

Both types of body waves decay at the surface and 
only Rayleigh wave propagates freely at the surface. 
The pressure wave is the fastest and arrives first, the 

shear wave comes next and finally Rayleigh wave 
arrives and it is associated with large amplitudes.  

Rayleigh wave (known as the R-wave or the 
surface wave) is non-dispersive and it is confined near 
to the surface at a depth approximately equal to the 
wavelength. The particles move in elliptical shape in 
the same plane as the wave-front. The vertical 
component of particle motion is greater than the 
horizontal component; both components decay 
exponentially with depth. Away from the surface where 
the Rayleigh wave disappears, motion of particles is 
attributed to body waves. 

For all type of waves, the energy decreases as the 
distance from the source increases. This is due to the 
geometric dispersion and energy absorption in the 
ground. The lowest frequencies are the least damped. 

Among the mitigation measures, the trenches (open 
and in-filled) and barriers between the source and the 
structure or building to be protected have exhibited a 
good performance.  

The mitigation effects of different types of wave 
barriers, varying from very stiff concrete walls to very 
flexible elements, are discussed in different studies 
(Chouw et al., 1991; Massarsch, 1994; Kattis et al., 
1999a, b; Buonsanti et al., 2009b). 

These researches reveal that efforts have been 
directed  mainly  towards analytical studies and some  
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Fig. 1: Modes of propagation of ground vibration 
 
experimental works to investigate the problem of 
isolation by means of trench barriers. Only a few  
experimental studies present some practical design 
guidelines that can be applied in the process of 
buildings and infrastructures project (Adam and Von 
Estorff, 2005). We can remember the studies of Barkan 
(1962), Woods (1968) and Richart et al. (1970), they 
conducted a series of field experiments and analytical 
studies in order to study the effectiveness of open 
trenches. 

Nevertheless, open trenches pose stability 
problems from the engineering point of view. This 
difficulty can be overcome by using in-filled tranches 
or barriers. 

In the last decades, various researches, both 
experimental and numerical, have been carried out to 
investigate the propagation of vibration waves across 
different types of barriers or in-filled trenches 
(Shrivastava and Kameswara Rao, 2002; Kim et al., 
2000; Ahmad and Al-Hussaini, 1991; Al-Hussaini and 
Ahmad, 1991; Ahmad et al., 1996; Al-Hussaini et al., 
2000). 

While full-scale model test results are often 
difficult to extrapolate, numerical methods, such as 
Finite Difference Method (FDM), Finite Element 
Method (FEM) and Boundary Element Method (BEM), 
can be a valid alternative to study the efficiency of 
barriers and trenches.  

Aboudi (1973) and Fuyuki and Matsumoto (1980) 
applied the Finite Difference Method (FDM) to model 
the ground vibration propagation and response in 
different conditions. 

Several studies used Finite Element Method (FEM) 
to study the influence of barriers and trenches on 

vibration, such as Buonsanti et al. (2009a), Hall (2003), 
Yang  et  al.  (2010), Yang  and  Hung  (2009)  and Gao 
et al. (2008). 

The Boundary Element Method (BEM) can be one 
of the ideal methods to study the vibration isolation 
problem since it requires only surface discretization and 
because the radiation condition at the boundary is 
automatically accounted in the formulation. Many 
authors adopted the BEM for the analysis of isolation 
effects of open and in-filled trenches in different types 
of soils. Banerjee et al. (1988), Emad and Manolis 
(1985), Dasgupta et al. (1986) and Ahmad and Al-
Hussaini (1991) adopted the BEM for the analysis of 
isolation effects of open and in-filled trenches, 
investigating different types of soils. 

In this study, after an introduction on some general 
concepts of theory of the vibration, the focus is set on 
vibrations in a homogenous elastic and isotropic semi-
space, where a two-dimensional constitutional 
discontinuity is localized, representing the artificial 
barrier. Also THE ground-borne vibrations produced by 
a high-speed moving load on an embankment are 
investigated, studying in particular the effects due to the 
presence of concrete and compacted soil barriers (De 
Azevedo and Patricio, 2010). A benchmark model was 
also analyzed without any mitigation measure and the 
results of the models were compared to evaluate the 
barriers effectiveness. 
 

MATERIALS AND METHODS 
 
Theoretical characterization: wave’s theory in semi-
infinite media: We analyze a more particular case of 
waves generated from a surface source. Under general 
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conditions of normal and shear loads applied to the 
surface of the half-space, both dilatational and shear are 
generated with the resulting mathematical expression 
for the wave propagation being more complicated than 
those classic questions. In according to Lamb classic 
theory (Lamb, 1904), harmonic loadings were 
considered and superposition techniques were used to 
obtain results for pulse loadings. The approach taken 
will be to consider the case of harmonic normal loading 
in the half space in some detail, as in according to 
Ewing et al. (1958), Miller and Pursey (1955, 1954) 
and finally to Graff (1991). Now, we consider a half-
space subjected to a loading normal to the surface, 
applied parallel to the z axis. The load produces waves 
from a harmonic normal line force and so the resulting 
situation is one of plane strain. The basic equations 
follow: 
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Considering the harmonic time variation of the 

loading expit the Eq. (1) can be written: 
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where,    u. 

The resulting stresses may be expressed in terms of 
 and : 
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2. 
According to Graff (1991) the formal solution follows: 
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Through the Fourier transform on the spatial variable x: 
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Considering the boundary conditions and their 

transformed: 
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The solutions of the Eq. (5) have the form: 
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For completeness, we will briefly illustrate the 

main aspects of a case closer to our problem: 
distribution of displacement and energy in dilatational, 
shear and surface waves from a harmonic normal load 
on a half-space. 

Using the Helmholtz’s theorem, we can introduce 
the scalar and vector potential  and , such that, for 
any displacement field u, the following form is valid: 
 

u =                                            (10) 
 

Using the polar coordinates the displacement 
vector hold: 
 

u (r, z, t) = ur er + uzez                                         (11) 
 
And in scalar and vector potential terms: 
 

u =     e                                           (12) 
 
The field equations assume the form: 
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Putting  = -r, the resulting displacements 

are given by: 
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The resulting stresses becomes: 
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For the boundary conditions, it is possible the 

following form: 
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where, F (r) is an opportune and arbitrary function to 
represent as particular form of the Fourier-Bessel 
integral and, under opportune conditions, becomes: 
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where, Z represents the magnitude of the applied force. 

Finally, we will emphasize the scattering of 
compressional waves against an obstacle case, as an 
elastic inclusion in the elastic half-space. Doing so, it 
considers a plane harmonic compression wave 
impacting a ground immersed obstacle of spherical 
form. In potentials function terms we have: 
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In according to Graff (1991) briefly we recall the 

resulting displacements field: 
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where, Kr and K: 
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Specifying that: in the incident field   inc and 

  ; in the scattered field   sca and   sca; and 
in the refracted field   ref and   ref. 
 
Finite element model: The proposed model of rail 
track is the conventional one and consists of an 
axisymmetric scheme to reproduce a more realistic 
simulation. The principal elements of the model are 
reported in Table 1. 

The dimensions and the material characteristics of 
the elements are those requested by the Italian standard 
(RFI) for high speed lines (Fig. 2). 

To analyze the propagation process of the 
vibrations in the soil, the model assumed that the 
embankment was supported by soil to a depth of 7 m. 
 
Table 1: Principal elements of the model 
Element Thickness (cm)
Protective compacted layer 30.00
Sub-ballast layer 12.00
Traditional ballast layer 35.00
Embankment 58.00

 

 
 
Fig. 2: Considered soil-railway system 
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Table 2: Material proprieties of the track-embankment-soil system 
Mechanical  
characteristics 

Rail UIC60 
(steel) 

Sleeper 
(concrete) 

Ballast 
(crushed stone) 

Sub-ballast 
(HMA) 

Protective layer 
(sand/gravel) 

Embankment 
(compacted soil) 

Ground 
(natural soil)

Density  (kg/m3) 7850 2400 1250 2200 2000 1400 2040 
Modulus E (MPa) 210000 30000 130.00 6000 160 170 18.00 
Poisson’s ratio  0.30 0.15 0.30 0.40 0.45 0.36 0.20 
 
Table 3: Material proprieties of the barrier 
Material Density  [kg/m3] Modulus E [MPa] Poisson’s ratio  Dumping ratio 
Compacted soil 2040 18.00 0.20 0.10 
Concrete 2500 25000 0.15 0.05 

 

 
 
Fig. 3: Time history of loading of ETR 500 train travelling at speed of 250 km/h 
 

The materials properties used in the model were 
derived from tests and available experimentations in 
literature (Buonsanti et al., 2009b; Yang and Hung, 
2009). The material properties of the soil and the track 
structure are tabulated in Table 2. 

Finally, a discontinuity (40 cm thick and 4.0 m 
deep) in the semi-space at a given distance from the rail 
track (3.0 m from the embankment’s end) was 
considered (Fig. 2). 

In wave propagation problems, elements dimension 
are influenced by the highest frequency and the lowest 
velocity wave (VR). Kuhlemeyer and Lysmer (1973) 
suggested the mesh size should be shorter than 1/8-1/10 
of the wave length, following this recommendation the 
maximum element size was 0.2 m considering the 
Rayleigh wave  velocity  of  the  ground (VR = 0.54 
VP = 53.47 m/s) and the considered highest frequency 
(100 Hz). 

The axisymmetric 2-D model, shown in Fig. 2, was 
composed of 2159 elements and 2264 nodes. The 
elements comprised of 4-node, linear axisymmetric, 
solid and reduced-integration elements (CAX4R). 

The train was simplified to a series of vertical loads 
(Yang and Hung, 2009; Younesian and Sadri, 2012), 
which were placed according to the geometry and the 
composition of the train (locomotives, bogies, wheels, 

axles) and moving at a constant speed v on the track. In 
the following, a simplified composition (two 
locomotives and three bogies) of the Italian high-speed 
train ETR 500 was considered (Fig. 3). 

The forces are applied using a time function that 
represents the time history of the force in the 
considered node as shown in Fig. 3. 

The effects of discontinuity are estimated 
considering two different barriers of Compacted Soil 
(CS) and concrete (Table 3). 

As the calculations were performed in the time 
domain, the material damping was modelled with the 
Rayleigh damping model. 

Following the Rayleigh method the damping 
matrix [C] can be obtained from the relation: 
 

[C] = α [M] + β [K]                                            (24) 
 
where,  
[M]  = The mass matrix 
[K]  = The stiffness matrix 
α and β  = Pre-defined constants 
 
 For a given mode i, the critical damping value i 
and the Rayleigh damping values, α and β, are related 
through: 
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From Eq. (25) it can be observed that the damping 

ratio is proportional to the natural frequencies of the 
system. 

In this study, considering the frequencies of 
interest, the method of determining the Rayleigh 
damping coefficient proposed by Chopra (2001) was 
used. 

 
RESULTS AND DISCUSSION 

 
The finite element simulations of train-induced 

ground vibration were developed, using the ABAQUS® 

software (Simulia Ltd., 2010), considering a 2D finite 
element model perpendicular to the track. All the finite 
element analyses in this study were performed in the 
time domain. A total period of 1.70 sec for 250 km/h 
speed was considered (Fig. 3). A maximum time 
increment (0.0014 sec) was considered according to the 
suggestions by Zerwer et al. (2003), though the 
automatic time option was activated to select the time 
increment. 

The graphs of the outcomes of the analyses for a 
train speed  of  250 km/h are shown in the following 
Fig. 4. From this figure, different wave fronts could be 
observed. 
 
Effect of barriers in ground vibration: To investigate 
the effects of material proprieties of wave barriers 
several simulations were carried out. Furthermore, a 
benchmark model was run without any mitigation 
measure in order to have an appropriate reference for 
the comparison. 

 
 

 
 
Fig. 4: Wave propagation acceleration in ground at different 

time steps (t = 0.0144 sec and t = 0.0432) 

 

 
 
Fig. 5: Geometrical localization the considered nodes 
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Fig. 6: Variation of velocities (m/s) and accelerations (m/s2) of node N 
 

 
 
Fig. 7: Time histories of acceleration on ground surface (node N) 
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Figure 5 shows the localization of some particular 
nodes of the model considered for the following 
analysis. 

Figure 6 shows the variation of velocity and 
acceleration (x-direction and y-direction) of the node N 
(Fig. 5) localized at a distance on 1 m form the barrier. 
The effects of barrier discontinuity comparing the 
acceleration evolution on ground surface (node N), are 
presented in Fig. 7. 

In order to investigate the mitigation effects of the 
considered barriers on vibration wave the evolution of 
acceleration Fig. 8 and 9 show the attenuation curves of 
the maximum vertical acceleration at the ground 

surface and at a depth of 2 m from the ground for 
different barriers in addition to the benchmark model. 

As a general result of the analyses, as illustrated in 
Fig. 6 to 8, for the considered loads, it is concluded 
that, when the load is travelling with high speeds, 
concrete barriers provide a more efficient vibration 
reduction than the compacted soil barriers. 

The results obtained supply useful information for 
the making and positioning of barriers, especially when 
it is required to respect regulation’s limit for vibration, 
as expressed in terms of velocities and accelerations 
(i.e., Italian regulation UNI 9916/2220).  

 

 
 
Fig. 8: Attenuation at the ground surface 
 

 
 
Fig. 9: Attenuation at a depth of 2 m from the ground surface 
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CONCLUSION 
 

The results of the proposed elaborations have been 
finalized to the assessment of the incidence of the 
barrier on the vibration state induced from the passage 
of a high-speed train and the following conclusions can 
be made: concrete seems to provide a better reduction 
of the vibration then compacted soil. In spite of the 
greater density of the material, it involves an increase of 
the reflection phenomena and a consequent increase of 
the phenomenon at the top side of the barrier. 

The proposed approach can be applied to a 
preliminary analysis of the influence of different types 
of barriers on the dynamic properties of vibration waves 
in the soil.  

There is also the possibility to consider at the 
design stage these technical means (barriers and 
trenches) to limit the dynamic effects of railway 
transport. 
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