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Abstract: There are many stochastic parameters that have an effect on the reliability of steam turbine blades 
performance in practical operation. In order to improve the reliability of blade design, it is necessary to take these 
stochastic parameters into account. In this study, a variable cross-section twisted blade is investigated and 
geometrical parameters, material parameters and load parameters are considered as random variables. A reliability 
analysis method as a combination of a Finite Element Method (FEM), a surrogate model and Monte Carlo 
Simulation (MCS), is applied to solve the blade reliability analysis. Based on the blade finite element parametrical 
model and the experimental design, two kinds of surrogate models, Polynomial Response Surface (PRS) and 
Artificial Neural Network (ANN), are applied to construct the approximation analytical expressions between the 
blade responses (including maximum stress and deflection) and random input variables, which act as a surrogate of 
finite element solver to drastically reduce the number of simulations required. Then the surrogate is used for most of 
the samples needed in the Monte Carlo method and the statistical parameters and cumulative distribution functions 
of the maximum stress and deflection are obtained by Monte Carlo simulation. Finally, the probabilistic sensitivities 
analysis, which combines the magnitude of the gradient and the width of the scatter range of the random input 
variables, is applied to evaluate how much the maximum stress and deflection of the blade are influenced by the 
random nature of input parameters. 
 
Keywords: Finite element method, Monte Carlo simulation, probabilistic sensitivity analysis, reliability analysis, 

surrogate model, turbine blade 

 
INTRODUCTION 

 
The turbine blade is one of the key components in 

a steam turbine. There are many unmeasurable and 
uncontrollable factors in the process of blade design, 
manufacturing, installation and operation that result in 
the randomness of structural responses. The traditional 
deterministic design methods (Yan et al., 2005; Liu 
and Meng, 1999) ignore these stochastic parameters 
effects, or make up the randomness through a 
conservative assumption (such as safety factor). So, it 
is difficult to explain why the blade is failed in 
normal operation as it is designed correctly by the 
traditional deterministic method and is also difficult 
to evaluate quantitatively how much the blade is 
safe. To realize the high reliability performance of the 
blade, it is necessary to consider these stochastic 
parameters and carry out reliability analysis based 
design.  

In blade reliability analysis, structure responses of 
the blade (such as stress, deformation and frequencies) 
are obtained by a finite element method and the limit 
state functions are implicit with respect to basic random 
variables. Reliability analysis techniques, such as 

FORM and SORM (Choi et al., 2007; Grandhi and 
Wang, 1998), require limit state function gradients with 
respect to the basic random variables of finding most 
probable failure point at each iteration, but it is very 
difficult to obtain the gradients of the limit state 
function with respect to random variables when the 
limit state function is implicit.  

Monte Carlo Simulation (MCS) can be applied to 
many practical problems, allowing the direct 
consideration of any type of probability distribution for 
the random variables; however, the computation time 
can be prohibitively high, especially when the structure 
exhibits non-linear behavior or the numerical model is 
rather complex. Although some variance reduction 
techniques (Park, 1994; Disciuva and Lomario, 2003), 
such as importance sampling and Latin hypercube 
sampling, have been proposed to reduce the number of 
samples and reduce the computational time to a certain 
extent, it is still not widely used in practical 
engineering. 

Surrogate-based reliability analysis is considered to 

be an effective approximation approach for 

computationally expensive models with implicit limit 

functions (Queipo et al., 2005; Youn and Choi, 2004). 
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The basic idea of the approach consists in the 

substitution of the real limit state function by 

approximate simple functions in the neighborhood of 

the design points. As a surrogate model commonly 

presents a simple form and sometimes is represented by 

an explicit expression, the computational cost of the 

operation can be reduced with respect to the cost 

required when the real limit state function is used. Any 

of the classical procedures for structural reliability 

evaluation can be applied on the surrogate limit state 

function. Response Surface Method (RSM) (Duan and 

Zhao, 2009; Liu and Moses, 1994; Herbert and 

Armando, 2004), Artificial Neural Network techniques 

(ANN) (Duan and Wang, 2010; Deng et al., 2005; 

Elheewy et al., 2006), spline and kriging (Rao, 2002) 

are examples of methods used to generate surrogates.  

Sensitivity analysis can quantitatively specify how 

the random input variables parameters influence the 

structural response. But in deterministic sensitivity 

analysis (Xie et al., 2005), a deterministic variation of 

an input parameter that is used to determine the 

gradient usually does not take the physical range of 

variability into account and gradient information is 

local information only. 

A variable-section twisted blade, which usually 

locates in intermediate pressure stage and low pressure 

stage of steam turbine, has more complex geometrical 

shape than an equal-section blade. It operates in an 

extremely harsh environment, i.e., high temperature, 

high pressure, large centrifugal force, steam force and 

steam-excited vibration. So far, there is seldom 

discussion on the strength reliability analysis of a 

variable-section twisted blade considering stochastic 

parameters effects and there is no discussion on how to 

quantitatively evaluate the sensitivities of structural 

responses with respect to the random input parameters 

considering the physical range of variability of the input 

parameter.  

In this study, a variable-section twisted steam 

turbine blade is investigated and a finite element model 

is built parametrically. The geometrical parameters, 

material parameters and load parameters of the blade 

are considered as random input variables, while the 

maximum deflection and maximum equivalent stress 

are stochastic outputs. Design of Experiments (DOE) is 

applied to create sample points. A quadratic polynomial 

with cross terms and a feed-forward back-propagation 

network (BP network) are separately selected to 

construct an approximation function as a surrogate of 

the finite element solver according to sample points. 

Then the Monte-Carlo method is used to obtain the 

statistical characteristics and cumulative distribution 

function of the maximum deflection and the maximum 

equivalent stress of the blade. Probabilistic sensitivities 

analysis, which not only takes the gradient at a 

particular location into account, but also all the values 

of the random input parameter, is considered to 

evaluate how much the output parameters are 

influenced by the random input parameters. Scatter 

plots of structural responses with respect to the random 

input variables are illustrated to analyze how to 

optimize the random input variables to improve the 

reliability of blade.  

 
MATERIALS AND METHODS 

 
Response surface method: In the original conceptual 
form of the response surface technique, polynomials are 
used to approximate structural response functions. 
Polynomials employed in the response surface usually 
have a quadratic form. The response surface, 
approximated by a quadratic polynomial with cross 
terms, can be expressed as: 
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where, )(xf  is the quadratic polynomial with the cross 

terms used to represent the real structural response 
function, x = (x1, x2, …, xi, …, xn) (i = 1, 2, …, n) are 
design variables vector, n is the number of design 
variables, β0, βi, βij are called regression coefficient and 
among them β0 is the coefficient of the constant term, βi 
are the coefficient of the linear terms, βij are the 
coefficient of the quadratic terms. 

For Ns sample points, the set of equations specified 
in Eq. (1) can be expressed in matrix form as: 
 

εXβf += , 0)( =εE , IV 2)( σ=ε                        
(2) 

 
where, 
X =  An Ns×Nc matrix with the design variable values 

as the sampled points 
Nc  =  The number of regression coefficients 
β  =  The regression coefficient column matrix 
ε  =  The error column matrix, the error expected 

value E (ε) is zero matrix 
V (ε)  =  Variance of error 
 

The estimated parameters �� (by least squares) are 

unbiased and have minimum variance. It can be found 

as: 

 

fXXXβ T1T )(ˆ −=                  (3) 

 

The predicted response function is given by: 

  

fXXXXβXf T1T )(ˆˆ −==               (4) 

 

Artificial neural network: An Artificial Neural 

Network (ANN) includes nodes and connections which 

link the nodes. Before a neural network can act as a 

surrogate,  it   has   to   be   trained   by  adjusting  these 
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Fig. 1: BP neural network architecture 

 

weights. The most widely used network type for 

approximation problems is the multi-layer perception, 

which is also called a feed-forward Back-Propagation 

network (BP network). In this study, a typical three-

layer BP network is used and its architecture is shown 

in Fig. 1. 

There are m nodes in the input layer, q nodes in 

hidden layer and n nodes in output layer and wji is the 

connecting weight from the j neuron in the hidden layer 

to the i neuron in the input layer, while θj is the 

threshold of the j neuron in the hidden layer. wkj is the 

connecting weight from the k neuron in the output layer 

to the j neuron in the hidden layer and θk is the threshold 

of the k neuron in the output layer. In the reliability, the 

m neurons of the input layer represent the m random 

input variables xi (i = 1, 2, … , m). These values are 

directly transmitted to the q neurons of the hidden layer 

affected linearly by weight wji and threshold θj. The total 

activation value of each neuron in this layer is: 

  

∑
=
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m

i

jijij xwa
1

θ                  (5) 

 

The output of each neuron in the hidden layer is a 

linear or nonlinear function of this activation value: 
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where, f (.) is called the activation function. The most 

common non-linear activation function is the logistic 

sigmoidal function. It is given by: 
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where, α is a parameter defining the slope of the 

function, usually α = 1. 

Finally, the information is transformed by the 

neuron of the output layers in the same way. The 

activation function in the output layers is a linear 

function, so the expectant output value Ok is given by: 

∑ +=
j

kjkjk ywO θ                  (8)  

 

Usually the predicted output value Ok from the 

network will not be the same as the actual output value 

tk used in the training process. For each input-output 

pattern, the square of error Ep is written as follows: 
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where, 

k = The number of neurons in the output layer 

 

The average system error is given by: 
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where, 

P = The number of training patterns 

 

The standard back-propagation algorithm is to 

adjust the different weights and thresholds as well as 

the derivatives of Ep with respect to the input data to 

make the square of error least. More details of this 

process can be seen in the reference (Haykin, 1994). 

 

Surrogate model-based Monte Carlo simulation: It is 

time consuming to perform finite element analysis if 

Monte Carlo Simulation (MCS) is used directly. In 

contrast, evaluating a surrogate model requires only a 

fraction of a second. Hence, the Monte Carlo simulation 

samples can be produced by an approximation function 

from the surrogate model and the structural responses 

can be simulated for thousands and thousands of times. 

The basic idea of MCS based on a surrogate model is 

that according to the distribution of random input 

variables, the locations and values of sampling points of 

input variables are created by design of experiments, 

such as Central Composite Design (CCD), or Latin-

Hypercube Sampling (LHS) (Haldar and Mahadevan, 

2000). The values of sampling points of output 

variables are obtained by FEM and a quadratic 

polynomial or a BP network is employed to fit these 

sample points and obtain the approximate function 

between the output responses and the input variables. 

When the errors of the approximate function are less 

than the desired requirement, the approximate function 

(surrogate model) is substituted for the FEM model and 

is used to create the Monte Carlo simulation. 

Furthermore, the statistical characteristics and 

cumulative distribution function of output variables are 

obtained and the reliability analysis can be carried out 

according to the limit state function. 
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Fig. 2: Probabilistic sensitivity analysis 

 

Probabilistic sensitivity analysis: Sensitivity analysis 

can quantitatively show how the random input variables 

parameters influence the structural response and denote 

how to modify which random input parameters to 

improve the structure reliability. But deterministic 

sensitivity analysis has some disadvantages. For 

example, to evaluate deterministic sensitivities, each 

input parameter can be varied by ±10% (one at a time) 

while keeping all other input parameters constant and 

then seeing how the output parameters react to these 

variations. An output parameter would be considered 

very sensitive with respect to a certain input parameter 

if a large change of the output parameter value is 

observed.  

A deterministic variation of an input parameter that 

is used to determine the gradient usually does not take 

the physical range of variability into account. An input 

parameter varied by ±10% is not meaningful for the 

analysis if ±10% is too large or too little compared with 

the actual range of physical variability and randomness. 

Moreover, the gradient information in deterministic 

sensitivities is local information. It does not take into 

account that the output parameter may react more or 

less with respect to variation of input parameters at 

other locations in the input parameter space. However, 

in the probabilistic sensitivities, the physical range of 

variability is inherently considered because of the 

distribution functions for input parameters. The 

probabilistic sensitivities approach not only takes the 

magnitude at a particular location into account, but also 

all the values the random output parameter can have 

within the space of the random input variables. 

Probabilistic sensitivities measure how much the range 

of scatter of an output response is influenced by the 

scatter of the random input variables. Hence, both 

effects have an influence on probabilistic sensitivities: 

the magnitude of the gradient, plus the width of the 

scatter range of the random input variables. This is 

illustrated in the Fig. 2. If a random input variable has a 

certain given range of scatter ∆X, then the scatter of the 

corresponding random output response is larger and the 

larger the magnitude of the output response curve is, 

∆Y1>∆Y2, denoted in Fig. 2a. But remember that an 

output response with a moderate magnitude can have a 

significant scatter if the random input variables have a 

wider range of scatter, shown in Fig. 2b. 

The probabilistic sensitivity analysis is based on 

the results of Monte Carlo Simulation. A statistical 

significant test is used to judge probabilistic 

sensitivities. Suppose the probabilistic sensitivity of an 

output response Yi with respect to random input 

variable Xi is denoted as ���/���; the hypothesis 

testing is: 

 

0:

0:

1

0

≠
∂

∂

=
∂

∂

i

i

i

i

X

Y
H

X

Y
H

             (11) 

 

Given a confidence level γ, calculate the 

probability Pi that H0 is true based on MCS results. 

If Pi>1-γ, accept this hypothesis test, which means 

the Yi is not sensitive to Xi. The sensitivity of Yi 

with respect to the Xi can be negligible. Otherwise, 

accept the Xi and use 1-Pi to express the 

probabilistic sensitivity of Yi with respect to Xi. 

 

Performance functions of blade: When the steam 

turbine blade operates in a stable condition, the 

orientation and flow of steam remains almost 

unchanged and the steam flow is considered as a steady 

flow. According to the strength limit condition, when 

the maximum stress σmax of the blade is less than the 

yield strength σs of the material, the blade can satisfy 

the static strength requirement, so the corresponding 

performance function G1 (X) is: 

  

max1 )( σσ −= sG X                (12) 

 

where,  

X  = The random variables vector influencing σmax 

and σs 

 

According to the deformation limit condition, when 

the maximum deflection of blade δmax is less than the 

allowable maximum deflection [δmax], the blade can 

satisfy the deformation requirement, so the 

corresponding performance function G2 (X) is: 

 

maxmax2 ][)( δδ −=XG                    (13) 

 

A case study: A variable-section twisted blade of the 

24
th

 low pressure stage in steam path of some steam 

turbine is selected to be an example. The main 

parameters of the 24
th

 low pressure stage are shown in 

Table 1. 
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Table 1: Main parameters of the 24th low pressure stage 

Parameters name  Symbol Value Parameters name Symbol Value 

Blade number Zb 94 Enthalpy drop (kJ/kg) △ht
0 74.020 

Nozzle number Zn 42 Degree of reaction* Ω  0.414 
Nozzle diameter (m) dn 1.677 Pressure before stage (N/m2) ps1  553000 
Blade diameter (m) db 1.678 Pressure behind stage (N/m2) ps2 (Pa) 423000 
Nozzle span (m) ln 0.426 Temperature before stage (°C) T1 374.100 

Blade span (m) lb 0.432 Temperature behind stage (°C) T2 313.500 

Nozzle angle* (°) α1m 13.550 Blade chord* (m) B 0.070 
Blade angle* (°) β2 20.160 Blade stagger angle (°) βy 79.250 

*: α1, β2 and Ω are the values at the blade average diameter; B: The chord of the first cross-section at the blade root 

 
Table 2: Random parameters and statistical characteristics 

Parameters Mean value  Coefficient of variance Distribution type 

lb (m) 0.432  0.02 Normal 

B (m) 0.070  0.02 Normal 

βy (°) 79.000  0.01 Normal 

α1m (°) 13.550  0.01 Normal 

E (N/m2) 2.17×1011  0.05 Normal 

ρ (kg/m3) 7850  0.05 Normal 

Ω (r/min) 3000  0.01 Normal 

σs (N/m2) 370×106  0.05 Normal 

 

 
 

Fig. 3: Blade profile 

 

 
 

Fig. 4: Finite element model of blade 

 
In this study, the blade span lb, the blade chord B, 

stagger angular βy, nozzle steam angle α1m, Young’s 

modulus E, density ρ, rotation speed ω and material 

yield strength σs are considered as random variables. 

We calculate the statistical characteristics and 

cumulative distribution functions of structural 

responses, including the maximum stress σmax and the 

maximum deflection δmax of the blade and their 

sensitivities with respect to random input parameters 

and evaluate the blade reliability. The material of the 

blade is chromium alloy 1Cr13. The random parameters 

and their statistical characteristics are shown in Table 2. 

 

Finite element parametric model of blade: The 
twisted blade is composed of blade profile and blade 
root. The blade profile is a complex shape assembled by 
several  cross  sections  with molded lines, shown in 
Fig. 3. The blade root is a fork-type and is wedged 

tightly. The parameters lb, B, βy, α1m, E, ρ and ω are 
selected as basic random input variables, which are also 
the variables in the process of finite element parametric 
model. The maximum stress σmax and the maximum 
deflection δmax are chosen as random output 
responses. The three-dimension solid element Solid 45 
is used to mesh the blade, the whole model is composed 
of 2494 nodes and 7784 elements, shown in Fig. 4, 
here, the coordinate system x, y, z represent the blade 
peripheral direction, span direction and axial direction. 

  
Steam force calculation: The steam force acting on the 
blade can be expressed by the peripheral component 
force Px and axial component Pz, shown in Fig. 5. The 
1-1 axis and the 2-2 axis are the minimum principal 
axes of inertial and maximum principal axes of inertial 
respectively.  

For a variable cross-section twisted blade, the 

variation of steam force along the blade span must 

be considered because the steam flow will be 

changed a lot along the blade span. It is difficult to 

find analytical expressions to calculate the steam 

parameters of blade, so the steam force of blade is 

usually calculated by an approximate method. The 

blade is divided into n segments along its span and the 

total number of the cross section is n+1. The length of 

every segment is denoted as ∆xj (j = 1, 2, …, n), the 

peripheral component of steam force Pxj and the axial 

component of steam force Pzj at the j
th

 segment can be 

obtained by: 
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where, 

tbj  = The pitch of the j section, tbj = 
	
��


�
 

dbj  = The diameter of the j section 

c1uj, c2uj = Respectively the steam tangential 

component velocity at nozzle exit and at 

blade inlet in the j section 

c1zj, c2zj = Respectively the axial component 

velocity at nozzle exit and at blade exit in 

the j section 
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Fig. 5: Steam force on blade 

 

 
 

Fig. 6: Segments of twisted blade 

 

p1j, p2j = Blade inlet pressure and outlet pressure 

in j section respectively 

∆Gj = The steam flow of the j
th

 segment and it 

can be calculated by: 
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where, µb is the blade flow coefficient, v2t is the 

blade export isentropic specific volume and w2t is the 

idea relative velocity of steam exporting from 

blade. In this study, the blade span is divided in to 10 

segments  and  a  total  of  11  cross  sections, shown in 

Fig. 6. 

The steam flow parameters in every section, Pxj 

and Pzj in every segment are obtained according to 

the thermodynamic calculation, here, µb is given as 

0.96, v2t is 3.645 m
3
/kg from ps1 expanding 

isentropic to ps2. The details of process are 

presented in reference (Duan, 2009).  

The loading boundaries of blade finite element 

model are: to put the steam force on every segment 

of blade to the corresponding loading surface and at 

the same time to load rotating speed to consider the 

role of centrifugal force. The displacement 

boundaries are: to constraint the x displacement and 

z displacement of fork-type blade root, i.e., ux = 0, 

uz = 0 and to constraint the all the degree of 

freedom in the pin holes, i.e., ux = uy = uz= 0.  

When all the basic input random variables are 

equal   to  mean  values,  the  equivalent  stress  and  the  

 
 

(a) Equivalent stress of blade 

 

 
 

(b) Deformation of blade 

 

Fig. 7: Equivalent stress and deformation of blade 

 

deformation  distribution  of  the blade are shown in 
Fig. 7. The value of the maximum stress is 125 MPa 

and it is located near the middle of steam-out edge 

because of the twisted recovery produced by centrifugal 

force, which makes the distribution of maximum stress 

access to the middle profile. The value of the maximum 
deflection is 1.65 mm and it occurs on the tip of the 

blade. 

 
Design of experiments: As there are 7 random input 
variables, 79 sample points are created by CCD method 
and perform looping of finite element model for 79 
times. The sample points to regress the approximate 
function are shown in Fig. 8.  

In order to validate the BP network, 20 

validation sample points, which are different from 

the former sample points created by CCD, are 

created by Latin-Hypercube Sampling method and 

corresponding sample points of σmax and δmax are 

obtained by performing loop of finite element 

model for 20 times. The validation sample points 

are shown in Fig. 9. 
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                                                 (a) Sample points for σmax                            (b) Sample points for δmax 

 

Fig. 8: Sample points for constructing surrogate 

 

 
 

                                          (a) Validation sample points for σmax            (b) Validation sample points for δmax 

 

Fig. 9: Sample points for validation 

 

Construct surrogate model: 

Response surface: A quadratic polynomial with cross 

terms is used to fit these sample points. Using the 

forward-stepwise regression technology, a confidence 

level of 95% was used to filter out insignificant terms 

of the regression equation. As the variables dimension 

has large difference, all the random input variables are 

first to be carried out a linear centralization processing. 

The transformed random input variables are denoted as 

lb', B', βy', α1m', E', ρ', ω'. The linear transformation is 

shown in Eq. (17): 
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The regression result is the sum of every random 

input variables multiplying the corresponding 

coefficient, that is: 

Table 3: Regression terms and coefficients for σmax 

X b X b 

C 1.20730E+08 ω' 2.14720E+06 
lb' 5.42382E+06 lb'.βy' -6.07942E+05 
βy'

 4.30207E+06 lb'. ρ' 2.03939E+05 
α1m' 1.41890E+05 lb'ω' 9.58327E+04 
ρ' 3.73107E+06 βy'.ρ' 1.61684E+05 
 

Table 4: Regression terms and coefficients for δmax 

X b X b 

C 1.61907E-03 ω' 1.84203E-05 
lb' 1.37174E-04 lb'.lb' -3.70115E-06 
βy'

 5.37609E-05 E'.E' 3.90049E-06 
E' -7.40151E-05 lb'.E' -6.28007E-06 
ρ' 1.60900E-05   

 

∑
=

10

1i

ii Xb  

 
Table 3 and 4 show the input variables and their 
corresponding coefficients for regressing maximum 
stress σmax and maximum deflection δmax, respectively. 

 
BP network: The input variables lb, B, βy, α1m, E, ρ 
and ω act as network input corresponding to seven 
neurons of the input layer, while σmax and δmax are 
network outputs corresponding to two neurons of 
the output layer. The number of hidden neurons in the 
BP network is 25. The BP network of the blade is 
shown in Fig. 10.  
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Fig. 10: BP model of blade 
 

 
 
Fig. 11: RR of σmax              
 

 
 
Fig. 12: RR of δmax 
 

The mapping relationship between output responses 
and input variables is denoted as the following: 
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The learning rate is given 0.05 and the minimum 

value of expected error is given 1×10
-5

. Seventy nine 

training samples are used to train the BP network by 

Levenberg-Marquardt rule (Haykin, 1994). The 

training errors attained 9.50634×10
-6

 after 96 

iterations. The weights and thresholds in the hidden 

layer and the output layer are also obtained. 

Surrogate model evaluation: The relative residual 

error RR is used to describe the error of predicted values 

with actual values in validation set, RR is defined as: 

  

y

yy
RR

ˆ−
=                 (20) 

 

where, 

y =  The actual value obtained from FEM calculation 

��  = The predicted value obtained from the surrogate 
model 

 

The 20 sample points produced by LHS are used as 

validation of surrogate model. Figure 11 and 12 show 

the values of RR of σmax and δmax obtained by 

Polynomial Response Surface (PRS) and BP 
Artificial Neural Network (ANN) respectively. For 

the σmax, the maximum values of RR from the two 

surrogate model are 1.6e-2 (PRS) and 4.95e-4 (ANN) 

respectively; for the δmax, the maximum values of RR are 

2.8112e-3 (PRS) and 2.3065e-3 (ANN) respectively. 
The precision of ANN model is little higher than PRS 

model.  

 

RESULTS AND DISCUSSION 
 

Substitute the surrogate model for the FEM model 
and create the 100000 Monte-Carlo simulation samples 
to carry out the statistical analysis for these simulation 
results, the following quantities can be obtained: 
 

• Statistical characteristics of the maximum stress 
σmax and the maximum deflection δmax, shown in 

Table 5. It can be seen that the statistical 

parameters of σmax and δmax from the two 

methods are approached; the data discreteness 

from ANN-MCS is larger. 

• The CDF of σmax and the CDF of δmax from the 
PRS-MCS and ANN-MCS are shown in Fig. 13. 

• Reliability evaluation of blade: As the mean 

�����
 and the standard deviation �����

 of the 

maximum stress σmax are obtained in the above step 
and the statistical characteristic of σs is also given, 

the reliability index β1 corresponding to G1 (X) is: 

 

22
1

max

max

σσ

σσ

σσ

µµ
β

+

−
=

s

s             (21) 

 

where,  

���
= The mean value of σs  

���
= The standard deviations of σs 

 

The reliability of blade corresponding to G1 (X) 

is: 

 

)( 11 βΦ=P                                       (22) 
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Table 5: Statistical characteristics of σmax and δmax 

Parameters Mean S.D. Min. value Max. value 

σmax  
(MPa) 

PRS-MCS 120.7400 87.1590 154.2900 8.9510 
ANN-MCS 126.9700 89.3310 177.3900 9.4345 

δmax  
(10-3 m) 

PRS-MCS 1.6194 0.9187 2.4289 0.1844 
ANN-MCS 1.7000 1.2000 2.6000 0.1944 

S.D.: Standard deviaton; Min.: Minimum; Max.: Maximum 
 
Table 6: Strength reliability of blade 

Reliability β1 P1 β2 P2 

PRS-MCS 20.55 1 2.854 0.9978 
ANN-MCS 11.70 1 2.310 0.9896 
MCS 11.45 1 2.031 0.9788 

 

 
 

(a) CDF of σmax   

 

 
 

(b) CDF of δmax 

 

Fig. 13: CDF of σmax and δmax

 
 

where, 
Φ(.) = The standard normal cumulative 

distribution function 
 

The reliability index β2 corresponding to G2 (X) 
is: 

 

22

][

][

2

maxmax

maxmax

δδ

δδ

σσ

µµ
β

+

−
=             (23) 

 
where, 

�����
, �[����] =  The mean values of δmax and 

[δmax] respectively 

�����
, �[����] =  The standard deviations of δmax 

and [δmax] respectively. Here, 

[δmax] is lb/200 

 
(a)     

      

 
 (b) 

 
Fig. 14: Probability sensitivities of σmax and δmax

 
 
Table 6 shows the results of β1, β2 and P1, P2 
from the different methods PRS-MCS, ANN-
MCS and direct MCS. For G1 (X), the 
reliability P1 from the three methods is the 
same, but β1 from ANN-MCS is more approach 
to that from direct MCS. For G2 (X), the value 
β2 from ANN-MCS is also more approach to 
that from direct MCS. 

• Probability sensitivities of σmax and δmax with 

respect to the random input variables: The 

confidence level γ is given to 0.025 which means 

the incorrect probability of hypothesis testing is 

2.5%. According to the results of statistical 

significant test, the input random variables are 

divided into two groups: important group and 

unimportant group. The variables which accept the 

statistical significant test belong to unimportant 

group and the other variables refusing the test 

belong to important group. The variables in the 

important group are sorted by the absolute value of 

their   probability sensitivity   (1-Pi),  shown  in 

Fig. 14. The sequence of sensitivity of σmax with 

respect to random input variables from high to low 

is lb, βy, ρ and ω, while the sequence of the 

sensitivity of δmax with respect to random input 

variables is lb, E, βy, ω and ρ. 

 

CONCLUSION 

 

• This study combines the finite element, 

surrogate model (including quadratic 

polynomial response surface and BP artificial 

neural network) and Monte Carlo simulation 
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method to obtain the statistical characteristics 

and cumulative distribution functions of 

maximum stress and maximum deflection of a 

variable-section twisted blade of a steam turbine 

and carries out strength reliability analysis in the 

presence of random geometrical parameters, 

material parameters and load parameters. 

• Comparison of PRS-MCS and ANN-MCS with 
direct MCS shows the surrogate-based reliability 
analysis approach can act as an ideal tool for the 
reliability analysis and design of a steam turbine 
blade. The approach is applied to complex 
structure reliability analysis with an implicit limit 
state function. 

• Probability sensitivities analysis is used to 
quantitatively specify the degree of influence of 
random input variables on maximum deflection 
and maximum stress of the blade.  
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