
Research Journal of Applied Sciences, Engineering and Technology 7(18): 3786-3790, 2014
DOI:10.19026/rjaset.7.734
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2014 Maxwell Scientific Publication Corp.

Submitted: October 26, 2013 Accepted: December 21, 2013 Published: May 10, 2014

Corresponding Author: S. Batool, Institute of Information Technology, University of Arid and Agriculture Rawalpindi,
Pakistan

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

3786

Research Article

Secure State UML: Modeling and Testing Security Concerns of Software Systems Using
UML State Machines

S. Batool and S. Asghar
Institute of Information Technology, University of Arid and Agriculture Rawalpindi, Pakistan

Abstract: In this research we present a technique by using which, extended UML models can be converted to
standard UML models so that existing MBT techniques can be applied directly on these models. Existing Model
Based Testing (MBT) Techniques cannot be directly applied to extended UML models due to the difference of
modeling notation and new model elements. Verification of these models is also very important. Realizing and
testing non functional requirements such as efficiency, portability and security, at model level strengthens the ability
of model to turn down risk, cost and probability of system failure in cost effective way. Access control is most
widely used technique for implementing security in software systems. Existing approaches for security modeling
focus on representation of access control policies such as authentication, role based access control by introducing
security oriented model elements through extension in Unified Modelling Language (UML). But doing so hinders
the potential and application of MBT techniques to verify these models and test access control policies. In this
research we introduce a technique secure State UML to formally design security models with secure UML and then
transform it to UML state machine diagrams so that it can be tested, verified by existing MBT techniques. By
applying proposed technique on case studies, we found the results that MBT techniques can be applied on resulting
state machine diagrams and generated test paths have potential to identify the risks associated with security
constraints violation.

Keywords: Model based testing, object constraint language, role based access control, unified modeling language

INTRODUCTION

In the software industry, the use of models for

testing the software systems before its implementation
is called Model Based Testing (MBT), (Lindholm et al.,
2006). Model based testing is basically applied for
testing functional requirements of the system, but non
functional requirements such as performance, usability
and security are also important for any software system.
Many efforts are now being put forward by researchers
such as Lodderstedt et al. (2002), Jurjen (2002), Gray
(2004) and Mariscal et al. (2005), to address different
non functional aspects such as security using MBT.

Jurjen (2002) introduced UMLsec as a UML
profile for modeling security critical systems. UMLsec
uses stereo types, tags and constraints to model security
such as availability and integrity. Dynamic view of
RBAC is presented Mariscal et al. (2005) presents new
diagrams are introduced for specifying security policies
by combination of the basic security models i.e., DAC,
MAC and RBAC. It is also not easy to accommodate
the changes in the overall design of the system that will
happen due to integration of security model in the
overall functional model of the system. Introduces an
approach that uses UML sequence and state machine

diagrams in combination to model the system
functionalities and security threats.

The proper identification of threats is a difficult
task and the threats that are not relevant to the control
flow may be missed due to the fact that state machine
diagram is used to model the control based transition of
system states. Ceneys et al. (2009) analysis the two
well known UML based modeling techniques i.e.

Secure UML and UMLsec in context of modeling
RBAC. Raimundas and Dumas (2011) presented the
comparison of Secure UML and UMLsec in the context
of modeling RBAC. The authors presents later the
transformation rules for converting Secure UML
models to UMLsec and vice versa. The idea behind this
was to utilize the modeling capabilities of both the
languages for RBAC based system.

The transformation rules are based on a simple
modeling example. The need is highlighted by the
author for application of the transformation rules to a
complex system to check its validity. Moreover to
move from one extension of UML to another extension
is not a healthy approach due to its incompatibility with
standard UML models and MBT testing techniques and
tools and less expertise are available in the extended

Res. J. Appl. Sci. Eng. Technol., 7(18): 3786-3790, 2014

3787

modeling approaches when compared with the expertise
that are available in UML.

In this research we aim to introduce a technique for
transforming the secure UML models to UML state
machine diagrams so that we can apply the existing
MBT techniques on extended UML models along with
security requirements, for verification of the required
security requirements properly modeled or not to avoid
future security risk.

MATERIALS AND METHODS

In this section we present the proposed approach

for modeling and testing security. Through study of

existing literature we highlighted the need of testing

and verification of the extended UML models used for

modeling security policies. We introduce a technique to

enable the application of existing MBT techniques on

these models. We use secure UML (Lodderstedt et al.,

2002), an extension of UML for modeling RBAC

policies. Secure UML uses stereotypes of class diagram

for modeling of the RBAC concepts. We transformed

secure UML models to UML state machines so that it

can present the dynamic view of the secure UML

models.

In the following Fig. 1 we present the overall
process of the proposed technique secure State UML.
Ellipses are used to show the activities that are
performed and boxes are used to present the input to
these activities, Boxes are used to show the output
produced in result of these activities.

Components of secure state UML: We present the
details of each activity involved in the secure state
UML modeling and testing process.

System modeling with secure UML: The modeling
capabilities of secure UML (Lodderstedt et al., 2002).
Secure UML provides the elements for modeling
RBAC policies.

The authorizations constraints of secure UM are
used to model the pre conditions on access to system
resources are very strong feature to control access to
system resources. The following steps are carried out to
model the system in secure UML:

• Identify users of the system and model each user as
a class of secure UML user.

• Identify the roles and model them as classes secure
UML.role and associate users with their specific
roles by assignment links.

• Identify and associate the permissions of the roles
and model them in secure UML.permission class.

• Model the resources in secureuml.resource class
and define the associated methods.

• Authorization Constraints (AC) are used to apply
the access control on resources based on the

Fig. 1: Process flow of secure state UML

security policies. AC can be applied on resources

directly or through permissions to roles.

Mapping of secure UML models to UML state

machines: In transformation rules, we specify mapping

of secure UML modeling elements with different

elements of UML state machines. A behavioral state

machine can be used to model the behavior of instances

of classes (UML superstructure specification 2.0).

Secure UML model is presented in form of class

diagrams stereotypes. Based on the references of UML

superstructure 2.0 we can create state machine diagrams

from Secure UML models along with the security

information that is specified in these models. For

instance, we map Authorization Constraints (AC) of

secure UML to guard conditions in state machine

diagram. Different elements of secure UML can be

mapped to state machine model as we state in the

Table 1. The first two columns presents the mapping of

RBAC concepts to secure UML (Matulevicius and

Dumas, 2011). We further extend and provide the

mapping of secure UML modeling elements to be used

for constructing UML state machine diagrams of the

proposed technique secure State UML. Most of the

techniques for testing and modelling Object Oriented

(OO) systems are focused on use of state machines and

class diagram (Thapa et al., 2010). Secure UML is

based on class diagram stereotypes. Transformation to

State machine gives its dynamic view and more testing

expertise and tool support.

Construction of UML state machine diagrams:
Through transformation rules we map each element in
secure UML model to state machine diagram. In this
way, we are able to construct a complete state machine
diagram which can become an alternate depiction

Res. J. Appl. Sci. Eng. Technol., 7(18): 3786-3790, 2014

3788

Table 1: Mapping secure UML model elements to secure state UML

RBAC concepts Secure UML model construct Secure state UML

User Class stereotype User (operation attribute at verification state)
User, role assignment <<secuml.user>> dependency stereotype Verification state
Role <<assignment>> class stereotype Role (operation attribute at verification state)
Permission assignment <<Secuml.role>> association class stereotype Requested event trigger when the associated guard if any is

evaluated
Operations <<secuml.permission>> operations of class Requested states, entry/do/exit actions
Object <<secuml.resource>> class stereotype Context of class (from secure UML. resource) where state

machine execution occurs
Permissions Authorization constraint in OCL/preconditions Guard condition/condition predicates/pre conditions

of secure UML model to present the dynamic view of

secure UML. Steps to be followed for state machine

diagram construction are given bellow:

• Start state machine diagram from initial pseudo

state, Initial state will be created as verification

state that will verify the user and role assignment

of secure UML.

• Request the resource class operation that will be

placed as event in the state transition.

• Put the Requested operation name as event and

place the precondition if any in guard section of the

transition. In case guard is true, move to the target

state, else the request rejected state will be

constructed and in both cases next transition will

lead to the final state of the state machine diagram.

Application of existing MBT technique: Model based

testing is an evolving field in the industry for testing.

Model based testing techniques are introduced to cover

different testing levels such as system level testing,

integration level, component level and regression level

testing (William, 2006). We transform secure UML

models i.e., class diagram stereotypes to UML state

machines. By transformation of secure UML models to

UML state machines we are able to apply existing MBT

techniques on the resulting models for verification of

the security requirements. In the Secure State UML for

generation of test paths from resulting state machines

diagrams. We use test path generation technique

presented by Shaukat et al. (2006). The output of this

activity is the abstract Test Paths.

Test path generation: Application of Existing MBT

techniques on State Machines results in generation of

test paths. These test paths can be further transformed

to executable test cases and run on the system under test

to find the unsecure states of the system. These test

paths have potential to save cost and time and identify

the security design errors in the system as well. Each

test path contains set of actions along with pre

condition and source state. Execution of action leads to

destination state on the approval of associated guard

condition. The syntax of test paths and representation of

its elements are described below by (Shaukat et al.,

2006):

[Condition] message $ class_name @ current_state
→ [guard] destination_state

The elements included in the test path format are

explained in the following lines.

Condition: Condition that should be met before
execution of message/operation

Message: Operation that transform state machine form
one state to another

Class name: Represent class of states

Current_state: State where execution of message/
operation takes place

Destination state: State that appears on execution of
message/operation.

RESULTS AND DISCUSSION

In this section we present validation and verification
of the proposed technique by applying it on the case
study. Comparison of the results is also presented with
the previous techniques (Matulevicius and Dumas,
2011). Ttransformation technique for converting secure
UML models to UMLsec and vice versa. Description of
the case study is presented below.

Case study:
Meeting scheduler system: We illustrate meeting
scheduler system presented by Matulevicius and Dumas
(2011). The requirements of the system are stated
below:

• There are two types of roles in the system, meeting
initiator and meeting participants.

• Meeting initiator is authorized to insert and update

meeting schedule.

• Meeting participants are permitted to view the

details of the meeting in which they are

participating.

The secure UML model of the system is presented

in the following Fig. 2. Meeting initiator is authorized

to enter agreement details and change it as well,

meeting participant has the permission to view the

Res. J. Appl. Sci. Eng. Technol., 7(18): 3786-3790, 2014

3789

Fig. 2: Secure UML model of the meeting scheduler system

Fig. 3: Transformed state machine diagram of change time place ()

Table 2: Mapping secure UML model elements to UML state machines

Secure UML model element Mapping element of state machines

Bob User (operation attribute at verification state)
User role assignment relationship Verification state
Meeting initiator Role (operation attribute at verification state)
Change time place operation Requested action/event trigger when the associated guard if any is evaluated
Change time place operation Requested states, state entry/do/exit actions
Meeting agreement Context of class (from secure UML. resource) where state machine execution occurs
Pre condition: meeting initiator.user = ”Bob” Guard condition on requested state transition of change time place

agreement details. These requirements are depicted in
the secure UML model.

We construct the State Machine diagram by
applying the mapping rules of secure UML to UML
State Machines presented in the proposed approach on
the following change time place () operation. The

authorization constraint associated with change time
place () operation is given below. Authorization
Constraint with Operation Change Time Place ().
Context Meeting Agreement::change Time Place ():
void Pre: meeting Initiator. user = “Bob”). The
following Table 2 presents the mapping of secure UML

Res. J. Appl. Sci. Eng. Technol., 7(18): 3786-3790, 2014

3790

model elements to UML State Machines for the Change
Time Place protected operation of the meeting
scheduler to Stat Machines.

When we apply the mapping rules and the steps for
creation of state machines are followed than we
construct the state machine diagram as presented in the
following Fig. 3.

When we apply the test path generation technique
by Ceneys et al. (2009), by following the syntax, we are
able to generate the following test paths from the above
given State Machine diagrams in Fig. 3:

• Change Time Place (time: Date Time, place:
String) $ Meeting Agreement @ Requesting
Change Time Place→ (meetingInitiaor. user =
Bob) Process Update Schedule

• Change Time Place (time: Date Time, place:
String) $ Meeting Agreement @ Requesting
Change Time Place→ (meetingInitiator. user! =
Bob) Request Rejected

CONCLUSION

Through our experimental results from various case

studies, we found that Secure UML model can be used
to design UML behavioral model (such as State
Machine) by following predefined mapping rules. An
additional advantage of the transformation to UML
behavioral diagrams is that existing MBT techniques
can be applied to model and test paths can be generated
which can verify the behavior of the system under
development.

Raimundas and Dumas (2011), have used
transformation rules to map Secure UML model with
UMLsec model but it required self assumption and
modeller’s knowledge about problem domain. Although
their approach focus on transforming one secure model
to another but ambiguities and incompleteness of
transformation rules in different modeling situations
hinders the abilities to properly specify RBAC policies
in resulting models.

Secure UML model itself describes structural
aspects of the system such as class members, operations
and static assignment of authorization constraints on
roles to perform particular operation. Through UML
State Machine model we can present dynamic or
behavioral aspects of system through operation
execution and representation of states as a result of
states transitions. Test paths generation using existing

techniques enables us to verify the security policies and
identify unsecure states of the system.

REFERENCES

Ceneys, A., A. Normantas and L. Radvilavicius, 2009.

Designing role based access control policies with

UML. J. Eng. Sci. Technol. Rev., 2 (1): 48-50.

Gray, M., 2004. Software security testing. J. IEEE

Comput. Soc., 2(5): 32-36.
Jurjen, J., 2002. UMLsec: Extending UML for secure

system development. Proceeding of the 5th
International Conference on Unified Modeling
Language, pp: 412-425.

Lindholm, J., 2006, M.A. Thesis, Department of
Computer Science, University of Helsinki, 2006.

Lodderstedt, T., B. David and D. Jurgen, 2002. Secure
UML: A UML basid modeling language for model-
driven security. Proceeding of the 5th International
Conference on Unified Modeling Language, pp:
426-441.

Mariscal, J., T. Doan, L. Michel, S. Demurjian and
T. Ting, 2005. Role slices: A notation for RBAC
permission assignment and enforcement.
Proceeding of 19th Annual IFIP WG 11.3 Working
Conference on Data and Applications Security.

Matulevicius, R. and M. Dumas, 2011. Towards model
transformation between secure UML and UMLsec
for role based access control. Proceeding of the
2011 Conference on Databases and Information
Systems. Netherlands, pp: 339-352.

Raimundas, M. and M. Dumas, 2011. Towards model
transformation between SecureUML and UMLsec
for role-based access control. Proceedings of the
2011 Conference on Databases and Information
Systems, pp: 339-352.

Shaukat, A., C.L. Briand, J. Rehman, H. Asghar,
M.Z. Iqbal and A. Nadeem, 2006. A state-based
approach to integration testing based on UML
models. J. Inform. Software Technol., 49(11-12):
1087-1106.

Thapa, V., E. Song and H. Kim, 2010. An approach to
verifying security and timing properties in UML
models. Proceeding of the 15th IEEE International
Conference on Engineering of Complex Computer
Systems. Oxford, Mar. 22-26, pp: 193-202.

William, E.C., 2006. Software testing and the UML.
Proceeding of 1st Workshop on Model-based
Testing and Object Oriented Systems.

