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A Computational Approach for Prediction of the Damage Evolution and Mechanical 
Characteristics of Random Fiber Composites 

 

Mohamed Daia Dine Boudiaf and Kamel Necib 
Laboratoire Génie des Matériaux, Ecole Militaire Polytechnique (16111),  

BP 17 Bordj El Bahri, Alger, Algérie 
 

Abstract: In this study we developed a computational approach by implementing the damage models proposed by 
authors for simulating the damage evolution and mechanical properties of random short fiber composites according 
to the respective characteristics of the matrix, the reinforcement and the volume fraction. Material damage induced 
by fiber de-bonding is considered. A comparison between the different existing models of homogenization was 
performed to determine the model that best reflects the response of our study material. And furthermore a range of 
simulations was carried out to study the influence of various parameters of the composite for predicting the response 
of the material and damage evolution. 
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INTRODUCTION 

 
Composite materials are increasingly used in 

several fields like automotive industry and aeronautic. 
In the automotive field, the race for energy savings 

and limitations of pollutant emission is a growing 

interest on the part of manufacturers and suppliers for 

the use of materials with low densities. Meanwhile, 

concerns to protect passengers but also pedestrians in 

accidents are responsible for safety standards more 

stringent. Made of materials with complementary 

characteristics, composites appear as good candidates to 

meet all these requirements. It is in this context that the 

study of the mechanical behavior of composite 

materials under dynamic loading is necessary. The 

analysis of behavior with the damage of a composite 

subjected to such stresses requires theoretical tools and 

experimental approaches (Averous et al., 1997). A 

better understanding of the physical mechanisms of 

failure of the material would then optimize the 

modeling of the impact resistance of structures. 

Composite materials are generally characterized by 

greater specific strength than metallic materials and 

have particularly high energy dissipation (Lemaitre and 

Dufailly, 1987).  
Among the most commonly used composite 

materials, the Sheet Molding Compound (SMC) is 
widely used in mass production because it meets the 
desired requirements (Main Lee et al., 1999). 

This study is centered on predicting the properties 
and behavior by a multi-scale approach of behavior 

laws in dynamic for the study of composites with 
randomly oriented discontinuous reinforcements. 

The laws of non-linear behavior were made 
through a homogenization type Mori-Tanaka based on 
the theory of Eshelby (1959) equivalent inclusion. The 
damage is then introduced at the local level through 
local criteria reflecting the physical phenomena of 
degradation. 

 
MATERIALS AND METHODS 

 
Raw material: SMC is a polyester matrix composite 
loaded with chalk and glass fiber reinforcement in the 
form of randomly oriented strand of 200 fibers. The 
fibers have a diameter of 15 µm and a length of 25 mm. 
The fibers represent a volume fraction of 18%. 
 
Homogenization process: The implementation of a 
model from a technical homogenization is carried out in 
three steps. 

Representation step, where the constitution of the 
VER, shown in Fig. 1, is mechanically defined by the 
laws of behavior of components and geometrically by 
their shape or distributions. 

Location step, which allows formalizing the 
relationship between the mechanical response at the 
microscopic level and the macroscopic scale. Is thus 
established, following a model of the behavior of each 
phase, the laws of location or concentration where the 
tensor strain localization, denoted A is introduced and 
the stress concentration tensor, denoted B. By 
definition, the laws of location Ai and concentration Bi  
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Fig. 1: Schematic representative elementary volume 

 
for the "i" phase are given by (Okoli, 2001; Allix and 
Corigliano, 2000): 
 �� = 〈�〉��� = 	� . �                                           (1) 
� = 〈
〉��� = �� . �                                           (2) 
 

Homogenization Step, where representation and 
localization are used to construct the "macro 
mechanics" behavior law of ERV (Okoli, 2001): 
 ����� = �� + ∑ ������� ��� − ���: ��              (3) 
  ���� =   � + ∑ ������� � � −  ��: 	�               (4) 
 

where, �����  = Effective stiffness matrix   ����  = Effective compliance matrix 
 
Micromechanical approach: In general, the 
micromechanical modeling methods permeate research 
or actual overall behavior from the properties of the 
various components, interfaces and interactions. The 
first simple models have been proposed by Voigt 
(1990) for a load imposed displacement and Reuss 
(1929) for traction imposed. These models, as will be 
shown later Hill (1952), respectively provide upper and 
lower bounds of effective elastic constants. Then came 
the study of Eshelby (1959) that served as the basis for 
model of Tanaka and Mori (1970, 1972) and the self-
consistent scheme of Kroner (1958). The Voigt and 
Reuss models do not take into account the shape and 
orientation of reinforcements unlike the model of 
Eshelby and Mori-Tanaka. 

To choose the model best suited to our material we 
made a comparison between Young modulus obtained 
by different methods with experimental results. 

We note in Fig. 2 that’s the model of Mori-Tanaka 
gives the closest to experimental results. 
 
Mori-Tanaka’s model: This model is the most suitable 
for our material because it has several advantages. This 
model can take into account in the actual behavior of 
the homogenized material, the presence of a large 
number of heterogeneities and the interactions between 
the local phases (Benveniste, 1987) where in the matrix 
immersed in the heterogeneous medium is already 
disturbed by the presence of other heterogeneities. In 
addition, this model is an improved model of the 
equivalent inclusion of Eshelby. 
 
Damage and failure criteria: Generally, damage is 
defined as a set of micro-structural changes in the 
material which causes more or less irreversible 
deterioration characteristics. In our material the damage 
observed phenomena are the de-bonding fiber/matrix 
and matrix cracking (Voigt, 1990), it is called an 
effective field in which we are reduced to solving the 
problem of heterogeneity with loading at infinity. 
Le localization tensor of phase i is given by: 
 ��!" = ���#$: %�1 − ���. ' + ��#$()�              (5) 
 

With ���#$: localization effectif tensor of Eshelby 
for phase i, given by: 

 ���#$ = %' + *��#$:  ���� − ���()�              (6) 
 ��#$: Effective localization tensor of Eshelby given by: 
 ��#$ = ∑ ������� . ���#$                             (7) 
 

where, *��#$is Eshelby Shape Tensor  
The equivalent stiffness matrix of homogenized 

material by the method of Mori-Tanaka is expressed as: 
 �!" = ����� = �� + ∑ ������� ��� −���: ���#$: %�1 − ���. ' + ��#$()�                      (8)

 

 
 
Fig. 2: Evolution of the equivalent young's modulus depending on the volume fraction for various models 
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Fig. 3: Calculation of the local stresses in the matrix around the fiber 

 
After numerical applications carried out for the 

studied material, the stiffness tensors of the matrix and 

the reinforcement are, respectively: 

 

�� =
+
,,-

4.8148 2.5926 2.59262.5926 4.1848 2.59262.9526 2.9526 4.8148  
 1.1111    1.1111    1.11114

556 

 

�7 =
+
,,-

93.3239 36.2926 36.292636.2926 93.3239 36.292636.2926 36.2926 93.3239  
 28.5159    28.5159    28.51594

556 

 

And the Eshelby shape tensor corresponding to 

ellipsoidal reinforcements is: 

 *�#$

=
+
,,-

0.6923 0.0769 0.2692 0.0769 0.6923 0.2692 0 0 0  
  0.2500     0.2500    0.30774

556 

 

Note that the stiffness tensor of the matrix and the 

reinforcement are isotropic, but the Eshelby tensor is 

not because of the ellipsoidal geometry of 

reinforcements. 

 

Consideration of fiber/matrix interface de-bonding: 

The behavior of composite materials is generally a 

damageable elastic or elastoplastic behavior. For our 

study material, the main source of nonlinearity is the 

damage of the fiber-matrix interface. To integrate this 

damage we are now interested in the calculation of 

stress and strain fields in the fiber/matrix interface. The 

elastic model of Mori-Tanaka allows us to calculate the 

stress fields and deformation in each phase through the 

localization and concentration tensors. Fields in the 

fiber/matrix interface are determined by the constraints 

prevailing in the fiber. 

We consider a single fiber representing a family of 

fibers oriented (;, =) in the axis system represented in 

Fig. 3. The vector >?@ is the outward normal vector of the 

fiber at the point A and T is the stress vector.  

For a macroscopic stress Σ, the average stress 

tensor inside a fiber oriented in the direction θi is given 

by the following equation (Voigt, 1990): 
 �� = 	�  ∑                                                         (9) 
 �� = ���' + � � − '�A���' + � < � − '� A >���)�∑               (10) 

 A� = D��� − ����*��#$ − '� − ��E)�
  ��� − ���                                                           (11) 

 

where, A�  is the localization Tensor for each family of 
reinforcements indexed "i". 

The stress tensor in the interface can be calculated 
using the continuity condition of the normal stress at 
the interface. Normal and tangential stresses at a point 
of interface with the normal vector >?@ are obtained by 
simple projection of the stress tensor in the fiber: 

 �� = ��>?@ ∙ >?@ = G?@ ∙ >?@                                         (12) 

 

H = IJG?@J − ��K                                         (13) 

 

The vector >?@ in the axis system (1, 2, 3) is: 

 

>?@ = L −MNO P OQ> = + OQ> P MNO ; MNO =MNO P MNO = + OQ> P;= MNO ; OQ> =−OQ> P OQ> ; R
��,K,S�

     (14) 

 
Probability of failure in fiber/matrix interface: The 
process of breaking the fiber/matrix interface results of 
de-bonding on one or more sites (points on the equator 
of the fiber) emanating from a coupling between normal 
and tangential stress which produces different 
macroscopic damage levels for the different states of 
strain. 

Several forms of interfacial failure criteria can be 

adopted. They consist of various combinations of 

normal and tangential stresses. There are two forms of 
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failure criteria, linear and quadratic. For example the 

linear   Coulomb   criterion   is   given   by  Main  Lee 

et al. (1999): 
 TU = �� + V H ≤ TUX                                         (15) 

 

where, V and TUX are parameters to identify. This 

criterion is attained when the value of RZ reached RZX. 

Fitoussi and Jendli et al. (2004) proposed a 
quadratic criterion with an elliptic form like: 

 ��� �X⁄ �K + �H HX⁄ �K = 1                                   (16) 
 

where, local constraints, normal and shear (��, τ), at the 

same point of the fiber/matrix interface are function of 

the macroscopic load Σ, the fiber orientation (θ, φ), the 

point considered on the fiber/matrix and the mechanical 

properties of each phase. And two intrinsic parameters 

of the interface (�X, HX) will be identified depending on 

the material. 

In short fiber composites, several studies have 

shown that there are two general types of dispersions of 

the microstructure (Bay, 1991; Yen, 2002; Xiao and 

Mai, 1999). The first type is due to the difference in 

fiber concentration, this therefore uses the concept of 

distribution of the local fiber volume fraction. The 

second type is related to the presence of some relatively 

large pores which can sometimes be very close to the 

fibers, thus affecting the state of stress at the interface 

of fibers. For this, it is necessary to introduce a 

probabilistic aspect to the failure criterion. 

The coupling between the probabilistic aspects and 

the Mori-Tanaka model is done through the 

introduction of statistical functions that can translate the 

kinetics of damage type of de-bonding. The kinetics of 

damage mechanisms involved is governed by a Weibull 

probability: 

 \7��� , H, ]� =  1 − ^_`a−b����, H, �X, HX�c�d     (17) 

 

The function ����, H, �X, HX� may take the form of 

one of the criteria of interfacial failure (linear or 

quadratic), the parameter m is a coefficient reflecting 

the sensitivity of the dispersion intensity of the damage. 

The initiation of the interfacial failure is introduced into 

the multi-scale model by using a local statistical 

criterion. We choose the quadratic form of the failure 

criterion for fiber-matrix interface which is written as 

follows: 

 \7��� , H, ]� =  1 − ^_`�−���� �X⁄ �K +HH02]                                                       (18) 

 �σX, τX, m� are parameters reflecting the strength of 

the fiber/matrix interface as well as the kinetics of 

damage to the statistical point of view. There are two 

methods for assessing the failure criterion interface. 

First, to evaluate the criterion, at each point of the 

interface to determine a percentage of failure of the 

interface. The second method is to evaluate the criterion 

to find the point where the criterion is maximum (Main 

Lee et al., 1999). 

In this study we use the second method because we 

are interested in evaluating the volume fraction of the 

de-bonded fibers. 

 

Damage evolution by interface de-bonding: The de-

bonding occurs as the criterion is reached on one of the 

points of the interface (Lataillade et al., 1996). This de-

bonding decreases the participation of the fiber to the 

reinforcement of the composite. This effect is translated 

by the replacement of the fiber de-bonded by an 

"equivalent reinforcement". 

One way of taking into account the fiber/matrix de-

bonding is to consider de-bonded fiber as anellipsoidal 

cavity of stiffness zero (Zairi et al., 2008). The de-

bonded fibers, shown schematically in Fig. 4, no longer 

contribute to the strengthening of the composite 

(Zouhaier et al., 2009). 
After this, the compositeis consisted of three 

phases: matrix, reinforcing fibers and de-bonded fibers. 
The interface de-bonding occurs after the threshold for 
nonlinearity when the local de-bonding criterion for 
fiber-matrix interface is reached. It is therefore 
necessary to consider the probabilistic aspects to 
estimate the rate of damaged fibers (Zaïri, 2008; 
Lachaud and Michel, 1997). 

For the i-th family of fibers with the orientation (θ, 

φ), the volume fraction of damaged fibers ���U is 

determined by the percentage of damage relative to the 

total volume fraction of fibers Vfi. For each family of 

reinforcement, the maximum value of the failure 

probability maxPr (α) is calculated on achieving 

interface with each increment charge. (Depending on 

the angle α around the fiber):  

 ���U = ��� . \f�;, =, P�                          (19) 

 

Later it is this proportion of damaged fibers that 

will be replaced with ellipsoidal cavities like Fig. 5 

shows. 

The Fig. 6 shows the homogenization of the 

composite material which is then carried out in two 

successive  stages.  This  schema  takes into account the 

redistribution of stresses related damage. The model 

takes into account the evolving anisotropy of the 

material related to the evolution of the damage. It also 

allows predicting the evolution of the loss of elastic 

modulus for all the coefficients of the stiffness tensor of 

the composite. 

  

Damage model algorithm for fiber/matrix interface: 

All the steps of the algorithm are summarized in  Fig. 7. 
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(a) None damaged composite         (b) Interface de-bonding 

 

Fig. 4: Schematic of the composite system with de-bonding 

interface 

 

 
 

Fig. 5: Representation of the damage in the model, (a) fiber 

tow oriented θ, partially damaged, (b) equivalent 

system in terms of the theoretical model representation 

 

 
 

Fig. 6: Procedure for two-stage homogenization 

 
 

Fig. 7: Algorithm of damage model 

 
Initially, the mechanical properties of the matrix and 
the reinforcement are introduced. Then we do a first 
homogenization before load application. 

If the applied load is less than the damage limit, it 
is within the elastic field. 

If we go into the plastic range then we calculate 

interfacial constraints and the failure probability, after, 

if the damage criterion is satisfied, that is to say that 

there was de-bonding of fiber/matrix, then is made the 

two-step homogenizing procedure. 

The composite has three phases: matrix (Vm), 

reinforcing fibers (Vf 
r
) and damaged fiber (Vf 

d
). For 

the increment n we have:  

 �� = ���7 + ���U �� + �� = 1                                                       (20) 

 

For n = 0: ��XU = 0, ��X7 = ��, initial fiber 

fraction of the formulation. 

At each load increment n+1 we have: 

 ���g�U = \f� . ���7                                         (21) 

 

We define a new material: 

 ;�, =� , ��, ���g�U , ���g�7 , �� �� = ���g�7 + ���g�U  �� + �� = 1                                                       (22) 
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Fig. 8: Tensile modulus and shear composite according to the number of family (R = 25000/15) 

 

At each load increment, the introduction of 
damaged fibers of characteristic zero produces a 
gradual decrease in the stiffness of the composite. The 
damage is characterized by a drop in Young's modulus 
as a function of loading. 
 

RESULTS AND ANALYSIS 
 

The model built on the basis of the homogenization 
method of Mori-Tanaka is best suited for estimating the 
elastic properties of the material studied. This 
homogenizing method allows to take into account the 
shape and size of the reinforcement and to establish a 
coherent behavior with a law of distribution of fiber 
orientation. 

 

Influence of the number of reinforcement family: A 

family is a group of reinforcing fibers that share the 

same geometric properties. For our study, we varied the 

number of families from 1 to 20 to see the influence of 

this parameter on the material properties. 

The  evolution  of  tensile and shear modulus in 

Fig. 8 shows that from a certain value of Nf = 3, the 

calculated modules tend to a limit. So we can say that 

the fibers divide into 3 families is sufficient to represent 

the material. 

The equivalent stiffness tensors obtained by 

combining 3 and 10 families of inclusions are: 

 �h����i� = 3�
=

+
,,-

 6.6988 3.4103 3.3663 3.4103 9.1291 5.3555 3.3663 5.3555 16.3715
−0.03032.11682.8674−0.0303 2.1168 2.8674  3.9413 1.7095 0.03370.0337 1.66044

556 

 �h����i� = 10�
=

+
,,-

 6.6162  3.3492 3.3492 3.3492  13.0391 5.3866 3.3492  5.3866 13.0391  
 3.8262    1.6598    1.65984

556 

 
 

Fig. 9: Evolution of tensile and shear modules depending on 

the form ratio 

 

These two tensors verify the symmetry properties 

of the tensor rigidities. The first tensor is monoclinic 

(13 independent coefficients). In the second case, the 

number of families has increased; the equivalent tensor 

is transverse isotropic (5 independent coefficients). 

If we increase the number of families of 

reinforcements and we multiply their combinations (θ, 

φ), we find the elastic behavior of the equivalent 

homogeneous material. Thus, the random orientation of 

non-spherical reinforcements led to a transverse 

isotropic composite. 

 

Influence of the form ratio of reinforcement: The 

evolution of Young's and shear modulus based on the 

form ratio R (fiber length/fiber diameter) is directly 

related to the length of the fiber as the fiber diameter is 

constant. We begin the study with a wide range of form 

ratio (1-1000). The results are shown in Fig. 9. 

Note that the calculated modules tend to a limit 

value from a value of 120. The diameter of the fibers 

being constant, it is in fact the length of the fibers 

increases and the values 120 of shear and tensile 

module tend to those of a long fiber composite. This 

implies that R must be in the range (1-120), we then 
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Fig. 10: Tensile and shear modulus depending on the form ratio R in the range (1, 120)  

 

 
 

Fig. 11: Tensile and shear modulus function of fiber volume fraction in the interval (0, 100%) (R = 25000/15) 

 

made a more refined study of changes in elastic 

properties  in  this  interval. The results  are  given in 

Fig. 10. 

More generally, Fig. 10 shows that the tensile 

modulus is more sensitive to the value of the form ratio 

than the shear modulus for values of R<40. 

 

Influence of the volume fraction of reinforcement: 
we study the influence of the volume fraction of 

reinforcement, taking a ratio of R = 25000/15 (fiber 

length Lf  = 25 mm, fiber diameter df  = 15 mm). 

We see from Fig. 11 that the extreme values of E1 

are logically those properties of the matrix or fibers, 

respectively, for Vf = 0 we have Em = 3000 MPa and for 

Vf = 1 we obtain Ef  = 73000 MPa. Note that the 

modules are highly sensitive to variations in fiber 

volume fraction. We find that for a volume fraction of 

18%, corresponding to our material, tensile modulus E1 

is equals to 14,640 MPa. 

In addition, this choice also involves restricting the 

range of variations in study modules depending on the 

volume fraction Vf. Indeed, the fiber volume fraction, 

which can go up to 60-70% in the long-fiber reinforced 

composites, cannot practically exceed 40% in the case 

of short fibers and polymer matrix. More, it is 

important to note that beyond a value greater than 40%, 

the method of Mori-Tanka no longer reflects correctly 

the behavior of the composite. The restriction comes 

from the method itself, it is not capable of taking into 

account the interactions "medium distance" between 

heterogeneities. 

 

Parameter identification of interfacial de-bonding 

criterion: To take into account the de-bonding 

fiber/matrix in the model, we identify the parameters 

(σ0, τ0, m) which are the characteristics of the interface 

and the statistics of interfacial failure. The local 

probability of inter-facial failure is given by: 

 \7��� , H, ]� =  1 − ^_`b−b��� �X⁄ � K +HH0 2 ]                                          (23) 

 

With ��X, HX, ]� = f�
j� 

 

The first step is the identification of the local 

failure criterion parameters for the fiber-matrix 

interface; it’s performed by inverse method. Indeed,  for 
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Table 1: Identification of the parameters (σ0, τ0, m) 
j� )�� �X�k`l� HX�k`l� m 

0.0002 33 30 2.43 

20 67 61 2.74 

22 80 73 2.94 

150 108 98.7 3.21 

160 109 100 3.23 

 

Table 2: Comparison of characteristics obtained experimentally and 

by simulation 

Comparison Exp Mod Error (%) 
j (S-1) = 150 s-1    

E (MPa) 11500 11913 3.59 

Yield stress (MPa) 46 51 10.87 

Threshold deformation (%) 0.4 0.4281 7.03 

σR (MPa) 158 153 3.16 
� (%) 2.2 2.1240 3.45 
j (S-1) = 22 s-1 

E (MPa) 12000 11729 2.25 

Yield stress (MPa) 48 51 6.25 

Threshold deformation (%) 0.4 0.4348 8.70 

σR (MPa) 130 144.5000 11.15 
� (%) 2.2 2.1830 0.77 

 

a set of parameters (σ0, τ0, m) given, the model predicts 

the evolution of densitie m���7�  of created cracks in the 

fiber-matrix interface in accordance with the imposed 

deformation.  

From Fig. 12, we obtain the values shown in Table 1. 

Once matched the criteria according to the strain 

rate, the model predicts the stress-strain regardless of 

the strain rate curves. 

 

Predicting the behavior of SMC at different strain 

rates: Figure 13 shows a comparison experiment-

simulation for the tensile response to different rates of 

deformation. We can see a good concordance regardless 

of the strain rate. 

From Fig. 13 it is easy to see that the phase of the 

elastic behavior (ε≤0.45%) remains insensitive to the 

effect of strain rate. The slope of this phase remains 

relatively unchanged. On a macroscopic scale, 

increasing the strain rate creates a delay in the onset of 

non-linearity behavior. This then leads to an increased 

level of non-linearity as well as the stress and strain at 

rupture.  

From Table 2 we see that the maximum value of 

the error is 11.15% for the yield stress and for the 

young modulus and the 
� the maximum value is 3.59 

which is very acceptable.  

  

Predicting the macroscopic damage: At the 

macroscopic scale, the loss modulus is translated 

through a damage variable Dmacro: 

 n�o�7� = 1 − b*pqq *X⁄ c                          (24) 

 

We see from the Fig. 14 that  for  a  strain rate of 

20 s
1
,  the  degradation  occurs  at  a  macroscopic  level 

 

 
 

Fig. 12: The evolution of σ0, τ0 and m depending on strain rate 

 

 

 
 

Fig. 13: Comparison test-modeling: examples of macroscopic 

stress-strain curves obtained for strain rate 22 and 

150 s-1 

 

 
 
Fig. 14: Evolution of the macroscopic damage in the SMC-R 

depending on the strain for different strain rates 

 
deformation of 0.2%, while for a strain rate of 160 s

-1
, 

the first stiffness reduction occurs at a deformation of 
0.35%. In addition, we can see that the damage is 
relatively small when the strain rate increases. To 
explain this phenomenon, we can say that the local 
growth of damage is changed in terms of deformation 
and exhibits a reduced kinetic due to the effect of  strain 
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Fig. 15: Evolution of cracks density as a function of fiber 

orientation for a strain rate of 20 s–1 

 

 
 

Fig. 16: Evolution of crack density as a function of fiber 

orientation for a strain rate of 150 s-1 

 

 
 

Fig. 17: Effect of form ratio R on the behavior of the SMC-

R26 

 

rate. Both aspects are closer to the effect of viscosity 

produced by the delay reaching the dissipation 

interfacial areas. Therefore, we can notice a delay in the 

macroscopic damage thresholds. In addition, the 

evolution of slopes also changed considerably. 

Predicting the evolution of microscopic damage: 
Microscopically, damage resulted through the variable 
dmicro representing the amount of micro-cracks d (θ), 
introduced at each increment of stress, is directly 
functions of interface failure probabilities Pr (θ), 
calculated for each family orientation at each increment 
of macroscopic stress (∆∑���) is given by: 
 m�;� = \f�;�                                                    (25) 
 

We have defined 3 families of orientation: θ1 (0°-
30°), θ2 (31°-60°), θ3 (61°-90°) and in Fig. 15 we see 
the evolution of microscopic damage depending on the 
strains for the strain rate of 20 and 150 s

-1
. 

From the results shown in Fig. 16 we can say that 
for a tensile test, the fiber-matrix interfaces of the θ3 
family are mainly subjected to normal stress while 
interfaces of θ1 and θ2 families are subject to a stress of 
tensile shear coupling. It was noted that the level of 
deformation increases when the orientation of the fiber 
decreases. The fiber-matrix interface failure is 
developed for θ3 family than other families of 
orientation. We can conclude that the damage coming 
from the fiber/matrix interface de-bonding are mainly 
caused by pure normal interfacial stress. 

This leads to specify that the fiber-matrix interface 
damage is anisotropic in nature. Therefore, composites 
SMC-R are characterized by a damageable visco-elastic 
behavior. 

 
Influence of form ratio: We conduct our numerical 
simulations  with  a volume fraction of reinforcement 
Vf = 18%. Figure 17 illustrates the effect of the 
reinforcement’s geometry on the equivalent behavior. It 
is found that the elastic-plastic behavior depends on the 
reinforcement’s elongation. More reinforcement is long 
more modules and the yield increase. 
 

CONCLUSION 
 

The main objective of this study is to establish the 
behavior of composite materials with short fiber SMC-
R in order to predict the elastic properties and damage. 

We have developed a general application that 
provides the mechanical properties of a heterogeneous 
material by introducing the respective characteristics of 
the matrix, the reinforcement and the volume fraction. 
And also to predict the damage of this material as a 
function of strain rate, orientation angles, the number of 
families and the volume fraction. 

The laws of behavior used in this study were 
applied to the finite element analysis of the behavior 
under impact. The objective is to enable the prediction 
of damage of composite structures with short fibers. 
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