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Abstract: The characteristic features of hard milling are variable chip thickness and intermittent cutting. Such 
tendency rapidly increases the tool wear and reduces the metal removal rate against the cutting temperature results 
poor surface finish. Therefore, the objective of this present study was to present the mathematical models for 
modeling and analysis on the effects of process parameters, including the feed per tooth, radial depth of cut, axial 
depth of cut and cutting speed on cutting temperature, tool wear and metal removal rate in hard milling of 
100MnCrW4 (Type O1) tool steel using (TiN+TiAlN) coated carbide inserts. A central composite rotatable design 
with four factors and five levels was chosen to minimize the number of experimental conditions. Further, the 
reduced developed models were used for multiple-response optimization by desirability function approach in order 
to determine the optimum cutting parameters. These optimized machining parameters are validated experimentally 
and the experimental and predicted values were in a good agreement with small consistent error. 
 
Keywords: Central composite design, cutting temperature, desirability function, hard milling, metal removal rate, 

tool wear 

 
INTRODUCTION 

 
Hard milling is a promising green technology in 

the manufacturing of precision components from 
hardened (40 HRC and more) tool steels (Ding et al., 
2010). Reliable hard milling process is a key to reduce 
many numbers of a process chain in the manufacturing 
sectors (Davim, 2011). The prime advantages are 
improve productivity, reduced increased flexibility, 
decreased capital expenses and reduced environmental 
hazards with regards to traditional route, which 
involves processes such as annealing, heat treatment, 
grinding or electrical discharge machining and manual 
finishing (Gopalsamy et al., 2010). The main limitation 
on the other side is high-heat generation in the cutting 
zone makes rapid tool wear as compared with 
conventional milling. The cutting temperature is 
dominating a surface finish and severe tool wear 
sweeps less volume of metal removal. Many research 
studies have been conducted to investigate the 
performance of coated WC and CBN tools in hard 
milling of various hardened materials. Ghani et al. 
(2004) found that the early crack initiates at the cutting 
edge due to high mechanical impact caused by the 
combined effect of high depth of cut and feed rate in 
semi-finishing and finishing end milling of hardened 
AISI H13 tool steel (50±3 HRC) at high cutting speed 
regime. The resulting tool life is highly affected by feed 

rate and depth of cut. However, the effect of cutting 
speed is less significant. Okada et al. (2011) evaluated a 
tool wear, cutting temperature, cutting forces and 
surface roughness in hard milling of JIS S55C carbon 
steel with different hardness range using CBN and 
coated WC inserts. They found that CBN and 
TiAlN/AlCrN coated carbide tools produce very fewer 
tool wears. Mativenga and Hon (2005) performed a 
cutting test at a very high speed around 40000 RPM to 
understanding the effect of various coated carbide tools 
in machining of H13 tool steel (50 HRC). They suggest 
that TiAlN coated tools outperformed well and great 
potential for HSM conditions. Toh (2005) observed that 
irrespective of milling orientation the chip surface 
temperature increased in all axial depth of cut with 
increased tool flank wear. In addition, the cutter 
condition also considerably increasing the chip surface 
temperature. Siller et al. (2009) revealed the surface 
finish of 0.1 to 0.3 µm with acceptable tool life in face 
milling of AISI D3 tool steel (60 HRC) using different 
geometric features of PVD based AlCrN coated carbide 
tools. The special features of chamfer preparation, 
cutting angle's design and radii combinations were used 
for process viability in finishing of hardened mold and 
die components. Escalona et al. (2012) showed 
different tool wear mechanisms for the cutting speed 
range of 150 to 1250 m/min in face milling of 1045 
steel.   The   abrasion,  adhesion,  diffusion,  mechanical 
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fatigue and thermal fatigue mechanisms were observed 
for different ranges of cutting speed. The feed per tooth 
has the most influence on the critical cutting speed, 
followed by the cutting time and finally, the axial depth 
of cut. The tool flank wear was influenced by in the 
order of cutting speed, feed per tooth and axial depth of 
cut. Sato et al. (2007) used two-color pyrometer to 
measure the tool-chip interface temperature in end 
milling. They found that down milling produces the 
maximum tool temperature about 50°C higher than that 
in up milling and when the cutting speed is doubled the 
temperature difference in rake face is about 90°C was 
observed. Gu et al. (1999) studied the flank wear of 
uncoated and different coated tools in face milling of 
4140 preheat treated steel. During cutting, the TiAlN 
coating produces higher wear resistance, followed by 
TiN coating and ZrN coating. The TiAlN and TiN 
coatings reduce the BUE wear at low cutting speeds 
and produce a lower wear rate at high cutting speeds 
due to low thermal conductivity. The micro-attrition, 
micro-abrasion, mechanical fatigue, thermal fatigue and 
chipping were observed in uncoated inserts as a 
function of feed rate and cutting speed. For coated 
inserts, abrasive wear was found in the coating and 
attrition; micro-attrition or micro-abrasion was found in 
exposed substrate. Cui et al. (2012) conducted 
experiments and finite-element simulations on high-
speed hard milling of H13 tool steel (47-47 HRC) using 
Ti (C, N) -Al2O3 coated carbide inserts. The cutting 
speed was utilized in the range of 200 to 2400 m/min. 
The low averaged resultant cutting force with long tool 
life was observed in the critical cutting speed of 140 
m/min. The higher cutting force, tool temperature, 
mechanical impact and thermal impact may lead the 
severe tool wear. It is understood from the literatures 
that in various research directions, the hard milling 
process were analyzed. In the current study aims to use, 
the hard milling indices are of cutting temperature, tool 
wear and metal removal rate as multi responses, as an 
effective method for finding the optimal cutting 
conditions for hard milling of 100MnCrW4 (Type O1) 
cold work tool steel using (TiN+TiAlN) coated carbide 
inserts using RSM with desirability function. 
 

METHODOLOGY 

 

Response surface methodology with desirability 
function: Response surface methodology is a widely 
practiced approach for various fields, particularly in 
situations where several input variables influence a 
quality characteristic of the product or process. The 
most popular class of second-order designs called 
Central Composite Design (CCD) was used for RSM in 
the experimental design. The CCD is well suited for 
fitting a quadratic surface, which usually works well for 
the process optimization (Montgomery, 2012). 
Commonly, a quadratic response surface model with 
cross terms can be constructed to fit the experimental 
data obtained in accordance with CCD. The response 

surface model, known also as regression or empirical 
equation, represents a polynomial approximation to 
experimental data and is stated by the following 
relationship: 
 

            (1) 
 

where,  
y  = The desired response 
xi  = The values of the i

th
 hard milling parameters 

β0  = The model constant 
βi  = The linear coefficient 
βii  = Denotes the quadratic coefficient 
βij  = The interaction coefficient 
k  = The number of the factors or variables  
ε  = The statistical experimental error 
 

The empirical relations were developed to predict 
all the responses and the more popular statistical 
procedure of Analysis of Variance (ANOVA) is 
adopted to justify the significance of the developed 
empirical models. Further, there is a necessity to locate 
the region of required goals of responses reside within 
the experimental domain. Derringer and Suich (1980) 
proposed one useful approach for the optimization of 
multiple responses is to use the simultaneous 
optimization technique called desirability. The method 
makes use of an objective function, D, called the 
desirability function and transforms an estimated 
response into a scale-free value (di) called desirability. 
The desirable ranges are from zero to one (least to most 
desirable, respectively). The factor settings with 
maximum total desirability are considered to be the 
optimal parameter conditions. The simultaneous 
objective function is a geometric mean of all 
transformed responses: 
 

                                                         (2) 
 
where, m is the number of responses in the measure. If 
any of the responses fall outside the desirable range, the 
overall function becomes zero. Besides, a confirmatory 
experiment was carried out to verify the optimal setting 
of cutting conditions. 
 
Hard milling experiments: 
Experimental design: A central composite 

experimental design used for response surface modeling 

of hard milling process and was carried out using four 

independent process variables, namely, the following: 

feed per tooth (fz), radial depth of cut (ae), axial depth 

of cut (ap) and cutting speed (Vc) were selected based 

on  preliminary  experiments  and literature survey. The 

prime advantage of CCD is efficient and flexible, 

providing sufficient information about the effects of 

variables   and   overall   experimental   error    with    a  
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Table 1: Hard milling parameters and their levels 

Parameters Labels 

Levels 

------------------------------------------------- 

-2 -1 0 +1 +2 

Feed per tooth (fz) A 0.05 0.1 0.15 0.20 0.25 

Radial depth of cut (ae) B 0.20 0.3 0.40 0.50 0.60 

Axial depth of cut (ap) C 0.20 0.4 0.60 0.80 1.00 

Cutting speed (Vc) D 200 250 300 350 400 

 

 
 

Fig. 1: Hard milling experimental setup  

 
minimum number of experiments (Montgomery, 2012). 
Therefore, a central composite design with four factors 
at five levels was conducted in the present work. Thirty 
experiments were augmented with six replications at 
the center point to evaluate   the   pure   error. Table 1 
shows the hard milling parameters and their levels. For 
statistical calculations, the variables Xi were coded as xi 
according to the following empirical relationship: 
 

                                             (3) 
 
where,  
X0 = The value of the Xi at the center point  
δX  = The step change 

Experimental work: The machining trials were carried 
out  at  the  CNC  vertical  machining center (MAZAK- 
NEXUS 510C-II) with a maximum spindle speed of 
12000 rpm, a power output of 25 HP and a capability to 
employ feed rates up to 36 m/min The tool steel blocks 
are of final dimensions 150×150×25 mm were prepared 
after heat treatment and corresponding compositions are 
0.95% C; 1.1% Mn; 0.6% Cr; 0.6% W; 0.25% Si; 0.03 
P; 0.01% S; 0.1% Mo. The typical uses are making dies 
and molds, punches, master tools and precision gauges. 
The work-pieces were quenched in oil from the 
austenitising temperature and were double tempered. 
Different tempering cycles were employed in the steel 
to obtain the hardness of 50 HRC (ASM Handbook, 
1991). A Taegutec tool holder (2S-TE90AP 320-W20-
09) and TT9080 grade (APKT 09T320R-EM) carbide 
inserts were selected for the present work. The hard 
milling experimental setup is shown in Fig. 1. The 
experiments were conducted in a random fashion as per 
the CCD design matrix of ‘RUN’ column and total 
cutting pass kept 300 mm length. For each cutting 
condition, the values of tool flank wear of all tools were 
measured with an optical microscope and were 
examined using Scanning Electron Microscopy (SEM) 
(JSM-6510LV, Japan) and Energy-Dispersive X-ray 
Spectroscopy (EDS) to understand the various wear 
mechanisms in tool and chip morphology. Further, the 
tool flank wear was measured three times for each 
insert in accordance with ISO 8688-1989 standard and 
the average value was taken for analysis. A non-contact 
fluke type (Type 8839) pyrometer was utilized to 
capture the maximum cutting temperature during 
machining. Figure 2 depicts that a single-point laser 
beam was focused to capture noticeable temperature at 
tool-chip interface zone (Cydas, 2010) by adjusting the

 

 
 

Fig. 2: 3D surface plot for CT 
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Table 2: CCD design matrix with responses 

Std Run 

Factors 

--------------------------------------------------------------------------- 

Responses 

---------------------------------------------------------- 

A mm/z B mm C mm D m/min CT °C TW mm MRR g/min 

1 2 0.10 0.30 0.40 250 334.09 0.107 1.196 

2 17 0.20 0.30 0.40 250 407.01 0.183 2.282 

3 22 0.10 0.50 0.40 250 349.57 0.113 2.027 

4 25 0.20 0.50 0.40 250 378.68 0.191 4.055 

5 26 0.10 0.30 0.80 250 419.04 0.125 2.433 

6 3 0.20 0.30 0.80 250 441.52 0.195 4.866 

7 19 0.10 0.50 0.80 250 438.82 0.129 4.355 

8 21 0.20 0.50 0.80 250 460.71 0.201 7.981 

9 8 0.10 0.30 0.40 350 575.26 0.135 2.696 

10 28 0.20 0.30 0.40 350 650.84 0.209 3.885 

11 18 0.10 0.50 0.40 350 609.02 0.139 3.237 

12 5 0.20 0.50 0.40 350 693.78 0.213 6.175 

13 10 0.10 0.30 0.80 350 600.35 0.144 3.085 

14 30 0.20 0.30 0.80 350 673.63 0.210 7.770 

15 29 0.10 0.50 0.80 350 696.61 0.153 6.475 

16 24 0.20 0.50 0.80 350 705.47 0.219 9.640 

17 11 0.05 0.40 0.60 300 469.66 0.093 1.696 

18 16 0.25 0.40 0.60 300 575.46 0.243 7.348 

19 14 0.15 0.20 0.60 300 505.20 0.169 2.674 

20 15 0.15 0.60 0.60 300 546.17 0.187 7.581 

21 9 0.15 0.40 0.20 300 491.55 0.175 2.178 

22 6 0.15 0.40 1.00 300 591.67 0.199 8.424 

23 12 0.15 0.40 0.60 200 244.02 0.112 1.088 

24 27 0.15 0.40 0.60 400 719.09 0.152 5.241 

25 13 0.15 0.40 0.60 300 560.73 0.148 5.038 

26 7 0.15 0.40 0.60 300 559.81 0.142 4.930 

27 4 0.15 0.40 0.60 300 567.64 0.148 5.865 

28 23 0.15 0.40 0.60 300 574.94 0.143 4.664 

29 1 0.15 0.40 0.60 300 552.28 0.145 5.554 

30 20 0.15 0.40 0.60 300 568.37 0.142 5.839 

 

emissivity value of 0.8 for this work-piece. The 

measuring range of a pyrometer is -50 to 1000°C with 

an accuracy of ±2°C. The temperatures were calculated 

for a maximum of fifteen peak points for each run and 

three replicates were considered. In all the experiments, 

the machining time was noted at the end of each 300 

mm cutting length and loss of weight method was used 

to calculate the metal removal rate. For each 

experiment, the work-piece weight was measured using 

a digital balance with 0.001 mm accuracy. The 

experiments were triplicate and each experiment 

response for all the experiments was listed in Table 2. 
 

RESULTS AND DISCUSSION 

 

The mathematical model for CT, TW and MRR: 
Based on experimental design results the regression 

models have been developed using DESIGN EXPERT 

software in order to determine the functional 

relationship for approximation and prediction of 

responses. Thus, the final second-order models with un-

coded variables obtained in hard milling process are as 

follows: 

 

CT (°C) = -1207.1727 + 1996.746429 × A + 

55.7226 × B + 529.527 × C + 6.51711 × D - 

849.125  ×  AC  +  2.2335  ×  BD  - 0.897375 × 

CD - 3289.571429 × A
2 

- 744.2678571 × B
2 

- 

0.00739 × D
2
                  (4) 

TW (µm) = + 0.06604 + 0.1275 × A - 0.635833 × 
B - 0.21645 × C + 0.0010575 × D - 0.175 × AC - 
0.0001625 × CD + 2.3583 × A

2 
+ 0.8395 × B

2 
+  

0.266145833 × C
2 
- 0.000001241 × D

2
                (5) 

 

MRR (g/min) = - 26.331 + 25.3575 × A + 1.5279 × 

B - 5.3404 × C + 0.14648 × D + 41.675 × AC + 

15.19375 × BC - 77.725 × A
2 
- 0.000213475 × D

2  

                                                                              (6) 

Statistical analysis: Statistical results were obtained 

from the Analysis of Variance (ANOVA) for the 

validity  of  the final quadratic models is shown in 

Table 3. The ANOVA table summarizes the sum of 

squares of residuals and regressions together with the 

corresponding degrees of freedom, F-values and 

ANOVA coefficients (i.e., coefficients of multiple 

determination R
2
 and adjusted R

2
 statistics for each 

empirical model corresponding to each response). As 

can be seen, the coefficients of determination (R
2
) of 

each response were 98.96, 99.75 and 96.97%, 

respectively which guarantee high validity of the 

regression functions. Furthermore, these values indicate 

that more than 98.96% for CT, 99.75% for TW and 

96.97% for MRR of the data deviation can be explained 

by the each empirical model. The value of ‘Prob>F’ for 

models is less than 0.05, indicated that the model is 

significant, which is desirable as it indicates that the 

terms to the model have a significant effect upon the 

response. The models F-values of 180.45, 755.8774383  
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Table 3: ANOVA table for the fitted models 

Source S.S. df M.S. F Prob>F   

For CT             

Model 408300 10 40828.21 180.45 <0.0001 Significant 
Residual 4298.96000 19 226.26    

Lack of fit 3981.33000 14 284.38 4.48 0.0537 Not significant 

Pure error 317.63000 5 63.53    
Cor total 412600 29     

Std dev 15.04200   R2 0.9896  

Mean 532.03300   Adjusted R2 0.9841  
C.V.% 2.82726   Pred R2 0.9728  

PRESS 11217.62000   Adeq precision 53.5340  

For TW             
Model 0.04167272 10 0.00416727 755.8774383000 <0.0001 Significant 

Residual 0.00010475 19 5.5132E-06    

Lack of fit 0.00006542 14 4.6726E-06 0.593976998 0.7968 Not significant 
Pure error 0.00003933 5 7.8667E-06    

Cor total 0.04177747 29     

Std dev 0.00234801   R2 0.9975  
Mean 0.16213333   Adjusted R2 0.9962  

C.V.% 1.44819787   Pred R2 0.9933  
PRESS 0.00027793   Adeq precision 102.6900  

For MRR             

Model 151.14633250 8 18.8932916 84.106440140 <0.0001 Significant 
Residual 4.71734530 21 0.22463549    

Lack of fit 3.43439330 16 0.21464958 0.836545651 0.6449 Not significant 

Pure error 1.28295200 5 0.2565904    
Cor total 155.86368000 29     

Std dev 0.47395730   R2 0.9697  

Mean 4.67593330   Adjusted R2 0.9582  
C.V.% 10.13610000   Pred R2 0.9400  

PRESS 9.35942670     Adeq precision 36.4730   

 
and 84.10644014 imply the models are significant. The 
value of p<0.0001 indicates that there is only a 0.01% 
chance that a ‘model F-value’ this large could occur 
due to noise. In this case, for CT (A, B, C, D, AC, BD, 
CD, A

2
, B

2
 and D

2
), for TW (A, B, C, D, AC, CD, A

2
, 

B
2
, C

2
 and D

2
), for MRR (A, B, C, D, AC, BC, A

2
 and 

D
2
) are significant model terms. The insignificant 

model terms can be removed and may result in an 
improved model.  The ‘Lack of Fit   F-value’   for CT = 
0.0537, TW = 0.7968 and MRR = 0.6449 imply the 
Lack of Fit is not significant relative to the pure error. 
There is a 180.45, 755.8774383 and 84.10644014%, 
respectively chance that a ‘Lack of Fit F-value’ this 
large could occur due to noise for CT, TW and MRR. 
Insignificant lack of fit is good as sufficiently good 
model fitting is desirable. Moreover, for all responses 
the predicted R

2
 values are in agreement with the 

Adjusted R
2
 values. This means that significant terms 

have been included in all empirical models. The 
adequate precision value is an index of the signal-to-
noise ratio; value of more than 4 is desirable. For all 
models, the adequate precision values were greater than 
35. The statements are leading to a conclusion that the 
developed models were a good fit. 
 
The effect of process parameters on cutting 
temperature: The Fig. 2 illustrates the interaction 
between axial depth of cut and feed rate per tooth on 
cutting temperature for the fixed factors of radial depth 
of cut (0.40 mm) and cutting speed (225 m/min) at the 
middle level. The CT was raised by the increase of feed 
per tooth and axial depth of cut for all ranges of 

conditions. It seems that increase of chip volume causes 
more power consumption for plastic shearing of metal 
to form the chips. Due to high power consumption, the 
great rate of mechanical energy from cutting forces 
converted into heat and high cutting temperature near 
the cutting edge on the tool (Palanisamy et al., 2006; 
El-Wardany et al., 2000). The cutting temperature 
varies by the type of material being machined and 
cutting  conditions.  It  can be observed in the SEM 
(Fig. 3), the presence of fissures was generated due to 
the cutting temperature and mechanical load were 
involved in during the hard milling process. These 
fissures are characteristics of a worn tool involved in a 
thermal fatigue tool wear mechanism (Escalona et al., 
2012). 

  

 
 

Fig. 3: SEM picture on tool rake face 
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Fig. 4: 3D surface plot for TW 

 

 
 

Fig. 5: SEM picture for experiment number 16 

 

The effect of process parameters on tool wear: The 

effects of the axial depth of cut and feed per tooth on 

tool wear are shown in Fig. 4. The feed per tooth had a 

linear effect on tool wear, whereas the axial depth of 

cut had a quadratic effect. It is clear from the figure that 

the tool wear definitely increases for the increase in 

feed rate for all axial depths of cut was observed. For 

the cutting speed of 225 m/min, the tool-chip contact 

length is shorter, which causes the high mechanical 

stresses and cutting forces adjacent to the main cutting 

edge was concentrated. Due to generations of high 

cutting temperature, the cutting edge becomes to soften 

and the concentrated high cutting forces at the cutting 

edge lead to accelerate a tool wear (Liu et al., 2002). It 

can further be noted that in Fig. 5, the presence of 

adhering particle on the tool surface was observed in 

the experiment 16. The particle comes from the milled 

material and confirms the presence of the adhesion tool 

wear mechanism. The magnitude of flank wear widely 

varies reasonably the tool possess to sharp variation in 

stresses and temperature during machining. 

 

The effect of process parameters on metal removal 

rate: The 3D surface graph, axial depth of cut versus 

feed per tooth in Fig. 6, shows that a significant mutual 

interaction occurs between feed per tooth and axial 

depth of cut for MRR as a response. Increase of MRR 

with the increase of feed per tooth for all the axial depth 

of cut. In general, general, the axial depth of cut 

determines the cutting edge to engage for removing the 

metal and feed per tooth ensures the cross-sectional 

area of uncut chip. Therefore, for low values of axial 

depth of cut and feed per tooth combines to give less 

metal removal. The reason is insufficient undeformed 

chip thickness produces fewer amounts of metal 

removal due to rubbing rather than efficient cutting 

(Gopalsamy et al., 2009a). While, the highest 0.8 mm 

axial depth of cut and 0.20 mm/tooth of cutting is very 

deeper to ensure maximum metal removal based on 

temperature generation at the tool-chip interface. 

Resulting from high temperature softens the work piece 

material enabling to facilitate the chip removal process 

more effectively with high level of feed per tooth and 

axial depth of cut. 

 

Chip morphology: In hard milling, the removal of 

chips was a significant role to determine the desired 

surface finish and tool life. The cutting speed, work 

material hardness, undeformed chip thickness, tool rake 
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Fig. 6: 3D surface plot for MRR 

 

 
 

Fig. 7: Saw tooth chips observations for experiment 24 

 

angle and flank wear are significantly influencing the 

chip morphology (Gopalsamy et al., 2009b). The chip 

formation is analyzed using scanning electron 

microscope for the collected chip of experiment 24 

(0.15 mm/z feed rate, 0.40 mm radial depth of cut, 0.60 

mm axial depth of cut and the cutting speed of 400 

m/min). It is noticed from Fig. 7 that the typical 

homogeneous stabled saw-toothed chips are formed 

while machining of O1 tool steel. Visual examination 

suggests that a crack initiate on the work piece surface 

instead of plastic flow through the material during 

metal cutting. This crack, while releasing the stored 

energy acts a sliding plane for the material segments, 

allowing the chip segment to be forced out between the 

parting surfaces. Simultaneously, plastic deformation 

and heating of the work-piece material occur at the 

cutting tool edge. The crack will continue until 

cessation occurs in the limit of the material plastic 

deformation zone, which is facilitated by the high heat 

generated near the cut (Gopalsamy et al., 2009b). The 

side flows were observed in zone A due to piling up of 

a chip on cutting tool rake surface, the highly deformed 

material flowed downwards under the friction between 

cutting tool and chip and this depresses the deformed 

material to flow upwards. Further, increasing of cutting 

speed, the necessary thermal softening occurred. This 

makes the plastic deformation more concentrated at the 

inner end of the segment. Correspondingly, the side 

flows at higher cutting speed appear more abrupt form. 

In zone B, the outer portion of the uncut chip bends 

outwards under the squeeze of inner material. Localize 

deformation then is caused by the curvature of the free 

surface due to stress concentration there. This localized 

shear is regarded as the second initiation point of the 

concentrated shear band. The lamellae thickness is 

relatively constant and independent of undeformed chip 

thickness. The change in the structure of the free 

surface of continuous to saw tooth chip mainly depends 

on the work material hardness, cutting speed and feed 

(Su and Liu, 2013). 

 
Multi-response optimization: Using derringer 
desirability function approach, a combination of input 
variables jointly optimizes a set of three responses by 
satisfying the requirements for each set in the response. 
The objective of this study is the minimization of 
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Table 4: Optimized hard milling parameters 

Number A B C D CT TW MRR Desirability   

1 0.13 0.50 0.74 250 431.148 0.142 5.513 0.595 Selected 
2 0.13 0.50 0.74 250 430.992 0.142 5.511 0.595  
3 0.13 0.50 0.74 250 431.476 0.143 5.534 0.595  
4 0.13 0.50 0.74 250 431.564 0.143 5.525 0.595  
5 0.13 0.50 0.74 250 430.890 0.142 5.485 0.595  
6 0.14 0.50 0.73 250 430.899 0.143 5.518 0.595  
7 0.13 0.50 0.74 250 432.161 0.143 5.542 0.595  
8 0.14 0.50 0.75 250 433.618 0.144 5.630 0.595  
9 0.13 0.50 0.73 250 427.809 0.140 5.339 0.594  
10 0.13 0.50 0.72 250 426.818 0.139 5.306 0.594   

 

 

 
 

Fig. 8: Contour plot for overall desirability function 

 

cutting temperature and tool wear with maximization of 

metal removal rate. The combination of the input 

variables leading to the optimum outputs can be 

identified by the Design Expert software. In response 

optimization, a measure of how the solution has 

satisfied the combined goals for all responses must be 

assured. The design variables used during an 

experimental study are: feed per tooth, radial depth of 

cut, axial depth of cut and cutting speed. The weight 

values assigned for all responses as one and each 

response can be assigned an importance relative to the 

other responses. Importance varies from the least 

important (+) a value of 1, to the most important 

(+++++) a value of 5. For each response, most 

importance was considered. When designing the 

individual desirability functions for each response, their 

lower and upper limits were set as maximum and 

minimum responses that could be obtained from the 

regression functions. Three responses have been 

optimized simultaneously using developed models, i.e.,  

Table 5: Predicted and observed optimum values of responses 

Response Goal Predicted Observed Error (%) 

CT (°C) Minimize 430.9652400 433.4200 0.56960 
TW (mm) Minimize 0.1422036 0.1501 5.55291 

MRR 

(g/min) 

Maximize 5.5014567 5.9168 7.54970 

 

Eq. (4), (5) and (6). The best ten solutions obtained 

through the optimization are presented in Table 4. 

Always, the desired global solution for the maximum 

overall desirability is preferred. For the multi-response 

optimization problem, the optimal input parametric 

setting was selected with highest desirability of 0.595. 

The corresponding current optimal process parameter 

settings of 0. 13 mm/tooth feed, 0.50 mm of radial 

depth of cut, 0.74 mm of axial depth of cut and 250 

m/min of cutting speed are considered. Finally; the 

contour plot of the overall desirability function was 

drawn as shown in Fig. 8. The near optimal region was 

located left-hand side approximately near the central 

region of the plot, which had a composite desirability 
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0.595 that gradually diminish towards right and left 

downwards. 

 

Model verification: In the final step, a hard milling 

experiment based on the obtained optimal cutting 

conditions was conducted in order to verify the validity 

of the obtained optimal values. Table 5 shows the 

predicted and experimental responses at the optimal 

condition. As can be seen, the differences between the 

estimated and experimental responses are within the 

margin of 8%. The results are closely related to the data 

obtained from optimization analysis using desirability 

functions, indicating central-composite design 

incorporates with desirability functions could be 

effectively used to obtain the minimum value of CT, 

TW with a maximum value of MRR. Obviously, this 

confirms excellent reproducibility of the experiment 

conclusions. 

 

CONCLUSION 

 

In the present work, it was demonstrated the 

applicability of central composite design, response 

surface methodology and desirability function approach 

for modelling and multi-response optimization of a hard 

milling process. The results are summarized as follows: 

 

• The predicted values match the experimental 

values reasonably well, with an R
2
 of 0.98958 for 

CT, R
2
 of 0.99749 for TW and R

2 
of 0.96973 for 

MRR. 

• The developed regression models and the obtained 

optimal cutting condition are valid within the 

experimental range as a region of interest. 

• The optimal solution confirmed by experiment 

involves the following levels of factors from the 

multi-response optimization: Feed per tooth = 0.13 

mm/z, radial depth of cut = 0.5 mm, axial depth of 

cut = 0.74 mm and cutting speed = 250 m/min. 

• A thermal fatigue tool wear mechanism was 

characterized by the presence of fissures at higher 

cutting temperature in the worn tool. 

• Stabled saw tooth chips were produced while hard 

milling of tool steel. 

• The feed per tooth and axial depth of cut 

significantly influencing CT, TW and MRR. 

• The CT majorly affects in the order of cutting 
speed, axial depth of cut, feed per tooth, the 
quadratic term of cutting speed and radial depth of 
cut. 

• The most influential parameters on TW are 

identified as the feed per tooth, a quadratic term of 

axial depth of cut, cutting speed, a quadratic term 

of radial depth of cut and feed per tooth in order. 

• The MRR was found to be more sensitive to an 

axial depth of cut, radial depth of cut, feed per 

tooth and cutting speed. 

• The results obtained would be useful and serve as a 
technical database for mold and die manufacturing 
industries. 

 
REFERENCES 

 
ASM Handbook, 1991. Heat Treating. 10th Edn., Vol. 

4, ASM International, pp: 387-424. 
Cui, X., J. Zhao and X. Tian, 2012. Tool wear in high-

speed face milling of AISI H13 steel. J. Eng. 
Manuf., 226: 1684-1693. 

Cydas, U., 2010. Machinability evaluation in hard 
turning of AISI 4340 steel with different cutting 
tools using statistical techniques. J. Eng. Manuf., 
224: 1043-1055. 

Davim, J.P., 2011. Machining of Hard Materials. 
Springer-Verlag Ltd., London. 

Derringer, G. and R. Suich, 1980. Simultaneous 
optimization of several response variables. J. Qual. 
Technol., 12(4): 214-219. 

Ding, T., S. Zhang, Y. Wang and X. Zhu, 2010. 
Empirical models and optimal cutting parameters 
for cutting forces and surface roughness in hard 
milling of AISI H13 steel. Int. J. Adv. Manuf. 
Tech., 51: 45-55. 

El-Wardany, T.I., H.A. Kishawy and M.A. Elbestawi, 

2000. Surface integrity of die material in high speed 

hard machining-part 2: Microhardness variations 

and  residual  stresses. J. Manuf. Sci. Eng., 122: 

632-640. 

Escalona, P.M., N. Diaz and Z. Cassier, 2012. 

Prediction of tool wear mechanisms in face milling 

AISI  1045  steel.  J.  Mater. Eng. Perform., 21: 

797-808. 

Ghani, J.A., I.A. Choudhury and H.H. Masjuki, 2004. 

Performance of P10 TiN coated carbide tools when 

end milling AISI H13 tool steel at high cutting 

speed.  J.  Mater.  Process. Technol., 153/154: 

1062-1066. 

Gopalsamy, B.M., B. Mondal and S. Ghosh, 2009a. 

Optimisation of machining parameters for hard 

machining: grey relational theory approach and 

ANOVA.   Int.   J.   Adv.   Manuf.  Tech., 45: 

1068-1086. 

Gopalsamy, B.M., B. Mondal, S. Ghosh, K. Arntz and 

F. Klocke, 2009b. Investigations on hard 

machining  of  Impax  Hi  Hard  tool   steel.   Int.  

J. Mater. Form., 2: 145-165. 
Gopalsamy, B.M., B. Mondal, S. Ghosh, K. Arntz and 

F. Klocke, 2010. Experimental investigations while 
hard machining of DIEVAR tool steel (50 HRC). 
Int. J. Adv. Manuf. Tech., 51: 853-869. 

Gu, J., G. Barber, S. Tung and R.J. Gu, 1999. Tool life 
and wear mechanism of uncoated and coated 
milling inserts. Wear, 225-229: 273-284. 

Liu, Z.Q., X. Ai, H. Zhang, Z.T. Wang and Y. Wan, 
2002. Wear patterns and mechanisms of cutting 
tools in high-speed face milling. J. Mater. Process. 
Tech., 126: 222-226. 



 

 

Res. J. App. Sci. Eng. Technol., 7(18): 3916-3925, 2014 

  

3925 

Mativenga, P.T. and K.K.B. Hon, 2005. Wear and 

cutting forces in high-speed machining of H13 

using physical vapour deposition coated carbide 

tools. J. Eng. Manuf., 219: 191-199. 

Montgomery, D.C., 2012. Design and Analysis of 

Experiments. 8th Edn., Wiley, New York. 

Okada, M., A. Hosokawa, R. Tanaka and T. Ueda, 

2011. Cutting performance of PVD-coated carbide 

and CBN tools in hard milling. Int. J. Mach. Tool. 

Manu., 51: 127-132. 

Palanisamy, P., I. Rajendran, S. Shanmugasundaram 

and R. Saravanan, 2006. Prediction of cutting force 

and temperature rise in the end-milling operation. 

J. Eng. Manuf., 220: 1577-1587. 

Sato, M., T. Ueda and H. Tanaka, 2007. An 

experimental technique for the measurement of 

temperature  on CBN tool face in end milling. Int. 

J. Mach. Tool Manu., 47: 2071-2076. 

Siller, H.R., C. Vila, C.A. Rodríguez and J.V. Abellán, 

2009. Study of face milling of hardened AISI D3 

steel  with  a  special  design  of carbide tools. Int. 

J. Adv. Manuf. Tech., 40: 12-25. 

Su, G. and Z. Liu, 2013. Analytical and experimental 

study on formation of concentrated shear band of 

saw  tooth  chip  in  high-speed  machining.   Int.  

J. Adv. Manuf. Tech., 65: 1735-1740. 

Toh, C.K., 2005. Comparison of chip surface 

temperature between up and down milling 

orientations in high speed rough milling of 

hardened  steel.  J.  Mater. Process. Tech., 167: 

110-118. 

 

 

 

 


