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Research Article 
Linearized Shallow-water Wave Theory of Tsunami Generation and Propagation by 

Three-dimensional Stochastic Seismic Bottom Topography 
 

M.A. Omar, Khaled T. Ramadan and Allam. A. Allam 
Department of Basic and Applied Science, College of Engineering and Technology, Arab Academy for 

Science, Technology and Maritime Transport, P.O. Box 1029, Abu Quir Campus, Alexandria, Egypt 
 

Abstract: Tsunami generation and propagation resulting from lateral spreading of a stochastic seismic fault source 
model driven by two Gaussian white noises in the x- and y- directions are investigated. Tsunami waveforms within 
the frame of the linearized shallow water theory for constant water depth are analyzed analytically by transform 
methods (Laplace in time and Fourier in space) for the random sea floor uplift represented by a sliding Heaviside 
step function under the influence of two Gaussian white noise processes in the x- and y- directions. This model is 
used to study the tsunami amplitude amplification under the effect of the noise intensity and rise times of the 
stochastic fault source model. The amplification of tsunami amplitudes builds up progressively as time increases 
during the generation process due to wave focusing while the maximum wave amplitude decreases with time during 
the propagation process due to the geometric spreading and also due to dispersion. We derived and analyzed the 
mean and variance of the random tsunami waves as a function of the time evolution along the generation and 
propagation path. 
 
Keywords: Bottom topography, Gaussian white noise, Itô integral, Laplace and Fourier transforms, shallow water 

theory, stochastic process, tsunami modeling 

 
INTRODUCTION 

 
The main reason for the generation and 

propagation of tsunamis is due to huge and rapid 
motion of the bottom of the ocean caused by an 
underwater earthquake over broad areas in comparison 
to water depth. Tsunami can also be caused by other 
undersea events such as volcanoes or landslides. 
However, in this study we focus on the purely seismic 
mechanism (i.e., underwater earthquake) which occurs 
most frequently in nature. The estimation of the 
tsunami waves caused by an underwater earthquake has 
become of great practical interest that attracts nowadays 
a lot of attention due in part to the intensive human 
activity in coastal areas. The evaluation of a local 
tsunami threat is useful to get a more effective measure 
for tsunami warning systems and for protection works. 
In recent years, there have been a number of subduction 
zone earthquakes that have generated unexpectedly 
large local tsunamis. For example, Papua New Guinea 
tsunami 17 July 1998, Sumatra earthquake and tsunami, 
26 December 2004, Solomon Islands tsunami 2 April 
2007, Samoa tsunami 29 September 2009 and the Chile 
tsunami 27 Feb 2010 and the Japan tsunami 11 March 
2011. The massive destruction and loss of life 
associated with the recent tsunamis has underscored the 

need to develop and implement tsunami hazard 
mitigation measures. In recent years, significant 
advances have been made in developing mathematical 
models to describe the entire process of tsunami event 
generated by seismic seafloor deformation caused by an 
underwater earthquake (Abou-Dina and Hassan, 2006; 
Hassan, 2009; Zahibo et al., 2006). Numerical models 
based on the non-dispersive shallow water equations 
are often used to simulate tsunami propagation and 
runup (Hassan et al., 2010b; Titov and Synolakis, 
1995). The sea bottom deformation following an 
underwater earthquake is a complex phenomenon. This 
is why, for theoretical or experimental studies, 
researchers have often used uniform bottom motions 
such as the vertical motion of a box. Most 
investigations of tsunami generation and propagation 
used integral solution (in space and time) for an 
arbitrary bed displacement based on a linearized 
description of wave motion in either a two- or three-
dimensional fluid domain of uniform depth. The 
complexity of the integral solutions developed from the 
linear theory even for the simplest model of bed 
deformation prevented many authors from determining 
detailed wave behavior, especially near the source 
region. In reality the sea bottom deformation following 
an underwater earthquake are characterized by some 
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rugosity. In practice, the available data about the 
geometries of the source model are always subject to 
some uncertainties. The missing information can be 
modeled by the inclusion of random effects. These 
circumstances have lead several authors to consider 
water  wave  propagation  in  random media (Gurevich 
et al., 1993; De Bouard et al., 2008; Nachbin, 2010). In 
this study, a stochastic model is proposed to describe 
the bottom irregularity and its effect on the generation 
and propagation of the tsunami waves. Moreover, the 
tsunami wave resulting from the random bottom source 
model is compared with the tsunami wave due to 
simplified uniform bottom topography in the form of 
sliding Heaviside step function. Using a stochastic 
source model, it is demonstrated that local tsunami 
amplitudes vary by as much as a factor of two or more, 
depending on the local bathymetry. If other earthquake 
source parameter such as focal depth is varied in 
addition to the slip distribution patterns, even greater 
uncertainty in local tsunami amplitude is expected. 

Most previous research has modeled tsunami 

waves under the effect of deterministic source model. 

Hammack (1973) studied experimentally the generated 

waves by raising or lowering a box at one end of a 

channel. He considered two types of time histories: an 

exponential and a half-sine bed movement. Todorovska 

and Trifunac (2001) investigated the generation and 

propagation of waves by a slowly spreading uplift of 

the bottom in linearized shallow-water wave theory. 

They showed that the effects of the spreading of the 

ocean floor deformation (faulting, submarine slides or 

slumps) on the amplitudes and periods of the generated 

tsunamis are largest when the spreading velocity of 

uplift and the tsunami velocity are comparable. 

Todorovska et al. (2002) investigated tsunami 

generation by a slowly spreading uplift of the sea floor 

in the near field considering the effects of the source 

finiteness and directivity. They described 

mathematically various two-dimensional kinematic 

models of submarine slumps and slides as combinations  
of spreading constant or slopping uplift functions. 
There results show that for given constant water depth, 
the peak amplitude depends on the ratio of the 
spreading velocity of the sea floor to the long 
wavelength tsunami velocity, see Trifunac et al. 
(2002a). Hayir (2003) investigated the motion of a 
submarine block slide with variable velocities and its 
effects on the near-field tsunami amplitudes. He found 
that the amplitudes generated by the slide are almost the 
same as those created by its average velocity. Both 
Trifunac et al. (2002a) and Hayir (2003) used very 
simple kinematic source models represented by a 
Heaviside step functions for representing the generation 
of tsunami. Dutykh et al. (2006) studied the generation 
of long wave through the ocean by a moving bottom. 
They demonstrated the differences between the 
classical approach (passive generation) and the active 
generation under the effect of the bottom motion. 
Abou-Dina and Hassan (2006) constructed a numerical  

model of tsunami generation and propagation 
depending on a nonlinear theory under the effect of a 
variable bed displacement with constant water depth. 
They considered nonlinearities and omitted the linear 
effects of frequency dispersion. Dutykh and Dias 
(2007) studied theoretically the generated waves by 
multiplying the static deformations caused by slip along 
a fault by various time laws: instantaneous, exponential, 
trigonometric and linear. Kervella et al. (2007) 
performed a comparison between three-dimensional 
linear and nonlinear tsunami generation models. They 
observed very good agreement from the superposition 
of the wave profiles computed with the linear and fully 
nonlinear models. In addition, they found that the 
nonlinear shallow water model was not sufficient to 
model some of the waves generated by a moving 
bottom because of the presence of frequency dispersion. 
Moreover, they suggested that for most events the 
linear theory is sufficient. Hassan (2009) discussed the 
solution of the non-linear problem of propagation of 
waves generated in a homogeneous fluid, occupying an 
infinite channel, by the bounded motion of the bottom. 
He demonstrated that the predictions of the linear 
theory are in good agreement with those of the 
nonlinear theory for sufficiently small amplitude of the 
bottom’s motion. Hassan et al. (2010a) investigated the 
tsunami evolution during its generation under the effect 
of the variable velocities of realistic submarine 
landslides based on a two-dimensional curvilinear slide 
model. They described the tsunami generation from 
submarine gravity mass flows in three stages: The first 
stage represented by a rapid curvilinear down and uplift 
faulting with rise time. The second stage represented by 
a unilaterally propagation in the positive direction to a 
significant length to produce curvilinear two-
dimensional models represented by a depression slump 
and a displaced accumulation slide model. The last 
stage represented by the time variation in the velocity 
of the accumulation slide (block slide) by using 
transforms method. Ramadan et al. (2011) studied the 
nature of the tsunami build up and propagation during 
and after realistic curvilinear source models represented 
by a slowly uplift faulting and a spreading slip-fault 
model. They studied the tsunami amplitude 
amplification as a function of the spreading velocity 
and rise time. They also analyzed the normalized peak 
amplitude as a function of the propagated uplift length, 
width and the average depth of the ocean. 

It is becoming widely recognized that bottom 

topography is irregular and difficult to predict and its 

aspects are best revealed through random source 

models which are more realistic, because sources of 

tsunamis are generally uncorrelated. Despite this, a few 

of the analytical and numerical studies considered 

stochastic source models for the investigation of the 

generation and propagation of tsunami waves. This is 

due to the complexity in the mathematical modeling 

and analysis of the stochastic case compared to the 

deterministic   case.   The    main    complexity    in   the 
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stochastic case arises from the difficulty in the 
derivation of the integral solution of the random profile. 
Probability of tsunami occurrence frequency on the 
coast of California was evaluated first by Wiegel 
(1970). Rascón and Villarreal (1975) worked a 
stochastic evaluation of possibility of tsunami hit on the 
Pacific coast of Mexico. Successively, similar studies 
have been undertaken to study the local property of the 
tsunami occurrence frequency. Nakamura (1986) 
considered an extended Poisson process in order to get 
a better fit to the exceedance probability of local 
tsunami. Geist (2002) determined the effect that rupture 
complexity, by way of different slip distribution 
patterns on the local tsunami wave field under the effect 
of stochastic source model. Geist (2005) developed 
rapid tsunami models to forecast far-field tsunami 
amplitudes from initial earthquake information using 
stochastic source model. De Bouard et al. (2008) 
studied the motion of the free surface of a body of fluid 
over a variable bottom, in a long wave asymptotic 
regime. They focused on the two-dimensional case, 
assuming that the bottom of the fluid region can be 
described by a stationary random process whose 
variations take place on short length scales and which 
are decorrelated on the length scale of the long waves. 
Craig et al. (2009) gave a new derivation and an 
analysis of long wave model equations for the dynamics 
of the free surface of a body of water over random 
variable bottom and illustrated several numerical 
simulations of nonlinear waves. They considered the 
case where the bottom is random with uniform 
statistical properties. They described the asymptotic 
regime of small amplitude long waves, for which the 
correlation length of the bottom is short compared to 
the wavelength. Manouzi and Seaïd (2009) developed 
an efficient numerical method for solving stochastic 
water waves of Wick type driven by white noise using 
combination of the Wiener-Itô chaos expansion with a 
Galerkin finite element method. Their method 
transforms the stochastic shallow water equations into a 
system of deterministic shallow water equations that are 
solved for each chaos coefficient in the solution 
expansion. Dutykh et al. (2011) estimated the 
maximum wave runup height on a random slope plain 
shore by solving the classical Nonlinear Shallow Water 
equations using finite volume schemes. They compared 
the results of the random bottom model with the more 
conventional approaches. Ramadan et al. (2014), we, 
considered the modeling of tsunami generation and 
propagation under the effect of stochastic submarine 
landslides and slumps spreading in two orthogonal 
directions. 

In this study, we investigate the tsunami wave in 

the near and far field using the transform methods 

(Laplace in time and Fourier in space). A linearized 

solution for constant water depth is derived for a 

random sea floor uplift represented by a sliding 

Heaviside   step   function  under  the  influence  of  two 

independent Gaussian white noise processes in the � − 

and � − directions. The appearance of the Gaussian 
white noise (an irregular stochastic process) in our 
bottom topography, leads to complications in the 
integrals resulting from the transform methods. These 
integrals were found to be of a stochastic type, which 
are not solvable as a Riemann or Lebesgue integral. 
Stochastic integrals are mainly classified as Itô or 
Stratonovich integrals, (Klebaner, 2005; Kloeden and 
Platen, 1992; Oksendal, 1995; Omar et al., 2009, 2011). 
In our work, we consider the resultant integrals in Itô 
sense, which can be solved by many numerical 
methods,  see  Kloeden  and  Platen  (1992) and Omar 
et al. (2009, 2011). The objective of this study is to 
determine the effect of the stochastic bottom 
topography on the generation and propagation of the 
tsunami wave form and discuss aspects of tsunami 
generation that should be considered in developing this 
model as well as the propagation wave after the 
formation of the source model has been completed. Due 
to the stochastic nature of the bottom topography, the 
free surface elevation is considered to be a stochastic 
process, thus for each realization (sample path) of the 
bottom topography, there exist a corresponding 
realization for the free surface elevation. Studying just 
one realization of the bottom topography has no 
significance and cannot be used to analyze the behavior 
of all possible solutions. Therefore, we drive the mean 
and variance of the free surface elevation. Moreover, 
we study the fluid wave motion above the finite source, 
with different noise intensity of the stochastic source 
model for constant spreading velocity. The effects of 
dispersion due to the random bottom topography on the 
tsunami waveforms are treated analytically by means of 
measuring the variance and illustrating it graphically. In 
addition, we investigate the mean and the variance of 
the tsunami waveforms in the near and far fields during 
the time evolution. 

 

MATHEMATICAL FORMULATION  

OF THE PROBLEM 
 

Consider a three dimensional fluid domain Λ as 
shown in Fig. 1. It is supposed to represent the ocean 
above the fault area. It is bounded above by the free 

surface of the ocean � = � (�, �, 
) and below by the 

rigid ocean floor � = −ℎ (�, �) + �(�, �, 
), where � (�, �, 
) is the free surface elevation, ℎ (�, �) is the 

water depth and � (�, �, 
) is the sea floor displacement 

function. The domain Λ is unbounded in the horizontal 

directions � and � and can be written as Λ = �� ×[−ℎ (�, �) + � (�, �, 
), � (�, �, 
)]. For simplicity, ℎ(�, �) is assumed to be a constant. Before the 
earthquake, the fluid is assumed to be at rest, thus the 
free surface and the solid boundary are defined by � = 0 and � = −ℎ, respectively. Mathematically, these 
conditions can be written in the form of initial 

conditions:  � (�, �, 0) = �(�, �, 0) = 0.  At time 
 > 0, 
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Fig. 1: Definition of the fluid domain and coordinate system 

for a very rapid movement of the assumed random 

source model 

 

The bottom boundary moves in a prescribed manner 

which is given by � = −ℎ + �(�, �, 
). The deformation 

of the sea bottom is assumed to have all the necessary 

properties needed to compute its Fourier transform in �, � and its Laplace transform in 
. The resulting 

deformation of the free surface � = � (�, �, 
) is to be 

found as part of the solution. It is assumed that the fluid 

is incompressible and the flow is irrotational. The 

former implies the existence of a velocity potential 

Φ (�, �, �, 
) which fully describes the flow and the 

physical process. By definition of Φ, the fluid velocity 

vector can be expressed as �� = ∇Φ. Thus, the potential 

flow Φ (�, �, �, 
) must satisfy the Laplace’s equation:  

  ∇�Φ(�, �, �, 
) = 0 �ℎ��� (�, �, �) ∈ Ω              (1) 

 

The potential Φ (�, �, �, 
) must satisfy the 

following kinematic and dynamic boundary conditions 

on the free surface and the solid boundary, respectively:  

 

Φ� = �� + Φ� �� + Φ  �  !" � = �(�, �, 
)       (2) 

 

Φ� = �� + Φ� �� + Φ  �  !" � = − ℎ + �(�, �, 
)                                             (3) 

 

and  

 

Φ� + #�  (∇Φ)� +  $ � = 0 !" � = �(�, �, 
)        (4) 

 

where, g is the acceleration due to gravity. As described 

above, the initial conditions are given by: 

 

Φ(�, �, �, 0) = �(�, �, 0) = �(�, �, 0) = 0           (5) 

 

Linear shallow water theory: Various approximations 

can be considered for the full water-wave equations. 

One is the system of nonlinear shallow-water equations 

that retains nonlinearity but no dispersion. Solving this 

problem is a difficult task due to the nonlinearities and 

the apriori unknown free surface. The concept of 

shallow water is based on the smallness of the ratio 

between water depth and wave length. In the case of 

tsunamis propagating on the surface of deep oceans, 

one can consider that shallow-water theory is 

appropriate because the water depth (typically several 

kilometers) is much smaller than the wave length 

(typically several hundred kilometers), which is 

reasonable and usually true for most tsunamis triggered 

by submarine earthquakes, slumps and slides, see 

Dutykh and Dias (2007) and Hammack (1973). Hence, 

the problem can be linearized by neglecting the 

nonlinear terms in the boundary conditions (2)-(4) and 

applying the boundary conditions on the non-deformed 

instead of the deformed boundary surfaces (i.e., � = −ℎ 

and on � = 0 instead of � = −ℎ + �(�, �, 
) and � = �(�, �, 
)). The linearized problem in dimensional 

variables can be written as:  

 ∇�Φ(�, �, �, 
) = 0 where (�, �, �) ∈ �� × [−ℎ, 0]   (6) 
 
subjected to the following boundary conditions: 
  

Φ� = ��  on � = 0                                                 (7) 
 

Φ� = ��  on � = −ℎ                                            (8) 
 

Φ� + g � = 0 on � = 0                                         (9) 
 

The linearized shallow water solution can be 
obtained by the Fourier-Laplace transform.  
 
Solution of the problem: Our interest is the resulting 
uplift of the free surface elevation � (�, �, 
). An 
analytical analysis is carried out to illustrate the 
generation and propagation of a tsunami for a given bed 
profile � (�, �, 
). Mathematical modeling is carried out 
to obtain waves generated by vertical and lateral 
displacements of underwater earthquake using the 
combined Fourier-Laplace transform of the Laplace 
equation analytically. All our studies were taken into 
account constant depths for which the Laplace and Fast 
Fourier Transform (FFT) methods could be applied. 
The Eq. (6) to (9) can be solved by using the method of 
integral transforms. We apply the Fourier transform in (�, �): 
  ℱ� -.(�, �)/ = .∗∗(1#, 1�) =2  

∞3∞
2  

∞3∞
�34(56�758 ) .(�, �) 9� 9�  

 
With its inverse transform:  
 ℱ56583# -.∗∗(1#, 1�)/ = .(�, �) =#(�:)8  2  

∞3∞
2  

∞3∞
�4(�567 58) .∗∗(1#, 1�) 91# 91�  

 

And the Laplace transform in time 
: 
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ℒ-$(
)/ = $<(=) = 2  
∞> �3?�  $(
) 9
   

 
Combining (7) and (9) yields the single free-

surface condition:  
 

Φ��(�, �, 0, 
) +  $ Φ�(�, �, 0, 
) = 0             (10) 
 

 After applying the transforms and using the 

property @ℱ ABC DB�C E = (F 1)G .∗(1)H and the initial 

conditions (5), Eq. (6), (8) and (10) become:  
 

ΦI ��∗∗ (1#, 1�, �, =) − (1#� + 1��)  
ΦI ∗∗(1#, 1�, �, =) = 0                                           (11) 

  

ΦI �∗∗(1#, 1�, −ℎ, =) = = �J∗∗(1#, 1�, =)                  (12) 
  =� ΦI ∗∗(1#, 1�, 0, =) +  $ ΦI �∗∗(1#, 1�, 0, =) = 0   (13) 
 

The transformed free-surface elevation can be 
obtained from (9) as: 
 �̂∗∗(1#, 1�, =) = − ? L  ΦI ∗∗(1#, 1�, 0, =) = 0         (14) 

 
 A general solution of (11) will be given by:  
 

ΦI ∗∗(1#, 1�, �, =) = M(1#, 1�, =) cosh (1 �) +P(1#, 1�, =) sinh(1 �)                                        (15) 
 

where, 1 = R1#� + 1��. The functions M (1#, 1�, =) and P (1#, 1�, =) can be easily found from the boundary 
conditions (12) and (13):  
 M(1#, 1�, =)cosh(1 �) = −  L ? ST ∗∗(56,58,?)UVWX(5 Y)[?87 L 5 Z[\X(5 Y)] (16) 

 P(1#, 1�, =)cosh(1 �) = ?] ST ∗∗(56,58,?)5 UVWX(5 Y) [?87 L 5 Z[\X(5 Y)]  (17) 

 
Substituting (16) and (17) in the general solution 

(15) yields:  
 

ΦI ∗∗(1#, 1�, �, =) = −  L ? ST ∗∗(56,58,?)UVWX(5 Y)(?87^8)   _cosh(1 �) − ?8
 L 5  sinh(1 �)`                            (18) 

 

where, a = R $ 1 tanh(1 ℎ) is the circular frequency of 

the wave motion. The free surface elevation �∗∗(1#, 1�, =) can be obtained from (14) as:  
 �̂∗∗(1#, 1�, =) = ?8 ST ∗∗(56,58,?)(?87^8) UVWX(5Y)                          (19) 

 
The circular frequency a describes the dispersion 

relation of tsunamis and implies phase velocity d = 5̂  

and group velocity e = BB̂5 . Hence, d = fg Z[\X(5Y)5  and 

e = #�  d _1 + �5YWi\X(�5Y)`. Since, 1 = � :j , hence as 1ℎ → 0, both d → Rgℎ and e → Rgℎ, which implies 

that the tsunami velocity l� = Rgℎ for wavelengths m 

long compared to the water depth ℎ. The free surface 

elevation � (�, �, 
) can be evaluated for a specified � (�, �, 
) by obtaining its transform �J∗∗(1#, 1�, =), then 

substituting it into (19) and inverting �̂∗∗(1#, 1�, =) 

analytically to obtain �∗∗(1#, 1�, 
) which is further 
converted to � (�, �, 
) by using double inverse Fourier 
Transform. The above linearized solution is known as 
the shallow water solution. We considered the 
stochastic source model for the sea floor displacement 
as a variable slip-fault, propagating unilaterally in the 
positive � −direction for time 0 ≤ 
 ≤ 
∗ with finite 

velocity l. In the � −direction, the model randomly 
propagate instantaneously. 

The free surface elevation �∗∗(1#, 1�, 
) can be 
evaluated by using inverse Laplace transform of �∗∗(1#, 1�, =) from the Convolution theorem as follows:  

 �∗∗(1#, 1�, 
) = #UVWX(5Y)  @�∗∗(1#, 1�, 
) −a0
 sin(a(
−o)) �∗∗11,12,o 9o            (20) 

 
The sea floor displacement is taken as:  
 �(�, 
) = �#(�, 
) + ��(�, 
)                           (21) 

 

where,  

 �#(�, 
) = �> q _
 − �r`                           (22) 

  ��(�, 
) = s> t(�) t(�) q _
 − �r`                     (23) 

 

where, q (�) represents the Heaviside function, �> 

denotes the initial uplift of the bottom topography, t�  (�) and t  (�) denote two independent Gaussian 

white noise processes with a real valued parameter s> ≥ 0 that controls the strength of the induced noise 

and l is the rapture velocity of the stochastic bottom in 

the � −direction. 

Laplace and Fourier transforms can now be applied 

to the bottom topography (21) to obtain: 

  �J∗∗(1#, 1�, =) = �J#∗∗(1#, 1�, =) + �J�∗∗(1#, 1�, =)   (24) 

 

where,  

 

�J#∗∗(1#, 1�, =) = #3vwxy8z
4 58  S{?  #3vw_xy6|}~`�

4567}~              (25) 

  �J�∗∗(1#, 1�, =) = �{?  2  
�>  �3458  t(�) 9�    

2  
�>  �3_4567}~`� t(�) 9�                                       (26) 
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where, � and � are the propagated length and width of the stochastic bottom topography in the �-and �-direction, 

respectively. 

The transformed free surface elevation, �̂∗∗(1#, 1�, =), can be obtained by substituting (24) into (19) as: 

  �̂∗∗(1#, 1�, =) = �̂#∗∗(1#, 1�, =) + �̂�∗∗(1#, 1�, =)                                                                                                   (27) 

 

where,  

 �̂4∗∗(1#, 1�, =) = ?8 STx∗∗(56,58,?)(?87^8) UVWX(5Y)  F = 1, 2                                                                                                             (28) 

 

Substituting (26) into (28), yields:  

 �̂�∗∗(1#, 1�, =) =  �{ ?(?87^8)UVWX(5Y)  2  
�0 �−F12� t(�) 9� 2  �0  �−_F11+=l`� t(�) 9�                                                          (29) 

 

The free surface elevation ��∗∗(1#, 1�, 
) can be evaluated by using inverse Laplace transform of �̂�∗∗(1#, 1�, =) as 

follows:  

 ��∗∗(1#, 1�, 
) = �{UVWX(5Y)  2  
�>  �3458  t(�) 9� 2  

�>  �3456� cos �a _
 − �r`�  q _
 − �r` t(�) 9�
                         = �{UVWX(5Y)  2  

�>  �3458  9�(�) 
���
��2  

�>  �3456� cos �a _
 − �r`�  9�(�) for    
 > 
∗

2  
�r>  �3456� cos �a _
 − �r`�  9�(�) for    
 ≤ 
∗

�                       (30) 

 

where, 
∗ = �r. The integrals in (30) are stochastic integrals that can be considered as Itô integrals. Such integrals can 

be solved by various methods, see Omar et al. (2011) and Kloeden and Platen (1992). The solution �̂#∗∗(1#, 1�, =) for �J#∗∗(1#, 1�, =) can be obtained from (25) and (28) as:  

 �̂#∗∗(1#, 1�, =) = S{UVWX(5 Y)  #3vwxy8z
458  r _#3vw(xy6~|})�∗`4 56 r7?                (31) 

 

That can be transformed to the time domain as:  

 �#∗∗(1#, 1�, 
) = _ S{UVWX(5Y)  #3vwxy8z
458  r^83568 r8`  ×

���
��a sin(� 
) + F 1# l cos(� 
)−�3456r�∗� a sin��(
 − 
∗)� + F 1# l cos��(
 − 
∗)� � for 
 > 
∗

a sin(� 
) + F 1# l cos(� 
) − F 1# l �3456r� for 
 ≤ 
∗
�           (32) 

 

This completes the solution of the problem, �∗∗(1#, 1�, 
) = �#∗∗(1#, 1�, 
) + ��∗∗(1#, 1�, 
), in the double Fourier 

transform domain. 

Finally, � (�, �, 
) is evaluated using the Inverse Fast Fourier Transform (IFFT). The IFFT is a fast algorithm 

for efficient implementation of the Inverse Discrete Fourier Transform (IDFT). In this study, this inversion is done 

using the MATLAB IFFT algorithm. 

In order to implement the algorithm efficiently, singularities should be removed by finite limits as follows:  

 

• As 1 → 0, implies 1# → 0, 1� → 0 and a → 0, then �#∗∗(1#, 1�, 
) and ��∗∗(1#, 1�, 
) have the following limits:  

 lim5→> �#∗∗(1#, 1�, 
) = �> l � � 
∗ for 
 > 
∗ 
 for 
 ≤ 
∗ �  
  lim5→> ��∗∗(1#, 1�, 
) =  s> �(�) � �(�) for 
 > 
∗ �(
l) for 
 ≤ 
∗ � 
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• As 1# → 0, implies 1 = 1� and a = Rg 1� tanh(1�ℎ), then �#∗∗(1#, 1�, 
) and ��∗∗(1#, 1�, 
) have the following 

limits:  
 

lim56→> �#∗∗(1#, 1�, 
) = � �>cosh(1�ℎ) 1 − �3458�F1�  la� �sin(� 
) − sin��(
 − 
∗)� for 
 > 
∗
sin(� 
) for 
 ≤ 
∗ �  

 

lim56→> ��∗∗(1#, 1�, 
) = �{UVWX(56Y)  2  
�>  �3458  9�(�) 

���
��2  

�>  cos �a _
 − �r`� 9�(�) for 
 > 
∗

2  
�r>  cos �a _
 − �r`� 9�(�) for 
 ≤ 
∗

�  
  

• As 1� → 0, implies 1 = 1# and a = Rg 1# tanh(1#ℎ), then �#∗∗(1#, 1�, 
) and ��∗∗(1#, 1�, 
) have the following 

limits:  
 lim58→> �#∗∗(1#, 1�, 
) = _ S{UVWX(56Y)  r �^83568 r8` ×

���
�� a sin(� 
) + F 1# l cos(� 
)−�3456r�∗� a sin��(
 − 
∗)� + F 1# l cos��(
 − 
∗)� �, for 
 > 
∗

 a sin(� 
) + F 1# l cos(� 
) − F 1# l �3456r� , for 
 ≤ 
∗
�   

 

lim56→> ��∗∗(1#, 1�, 
) = �{UVWX(5Y)  �(�) 
���
��2  

�>  �3456�  cos �a _
 − �r`�  9�(�) 
 > 
∗

 2  
�r>  �3456�  cos �a _
 − �r`�  9�(�) 
 ≤ 
∗

�   
  
Mathematical derivation of the mean and variance of the stochastic tsunami waveforms: The presence of 
Gaussian white noise in the model of the bottom topography, leads to randomness in the generated waveforms. 
These waveforms are considered to be a stochastic process, which has an infinite number of trajectories 
(realizations). All these trajectories are considered as solutions for our stochastic model, but some trajectories may 
be more probable than others. Thus, instead of dealing with only one of these trajectories, we drive mathematically 
the mean and variance of the stochastic tsunami waveforms to get a better insight of the overall behavior of the 
stochastic tsunami waveforms. 

First, we derive the mean of the tsunami waveforms by expressing the transformed free surface elevation, �̂∗∗(1#, 1�, =), using (29) and (31) as:  
 �̂∗∗(1#, 1�, =) = �̂#∗∗(1#, 1�, =) + �<∗∗(1#, 1�, =)  2  

�>  �3458  9�(�) 2  
�>  �3_4567}~`�  9�(�)                       (33) 

  
where,  
 �<∗∗(1#, 1�, =) = �{UVWX(5Y)  ?(?87^8)                (34) 

 
Taking the expectation of (33) and using the property that the expectation of an Itô integral equals zero, see 

Oksendal (1995), yields:  
 �[�̂∗∗(1#, 1�, =)] = �̂#∗∗(1#, 1�, =)                (35) 
 

As the free surface elevation is a continues function in (�, �, 
), thus the Fubini’s theorem, see page 64 in 
Kloeden and Platen (1992), can be applied to obtain the mean of the tsunami waveforms:  
 �[�(�, �, 
)] = �(�, �, 
) = �#(�, �, 
)               (36) 
 
Second, to derive the variance of the tsunami waveforms we need to introducing the following operators:  
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• For a function .(
#, 
�), the double Laplace transform, ℒ�6�8-.(
#, 
�)/ is defined by:  

 ℒ�6�8-.(
#, 
�)/ = 2  
∞> 2  

∞>  �3(?6�67?8�8) .(
#, 
�) 9
# 9
�   
 

• Let ℱ�-.(�)/ = .∗(1) = 2  
∞3�  �345�  .(�) 9� represents the Fourier transform of a function .(�). By ℱ��-.(�)/, 

we mean ℱ��-.(�)/ = .•(1) = 2  
∞3�  �45�  .(�) 9�. 

• For a function .(�, �), we define ℱ� �-.(�, �)/ by:  

 

 ℱ� �-.(�, �)/ = .∗•(1#, 1�) = 2  
∞3∞

2  
∞3∞

�34(56�358 ) .(�, �) 9� 9� 

  
In addition to the previous operators, the following two lemmas are needed for the derivation of the variance.  
 
Lemma 1:  
 #4 5634 587   .∗(1#) $∗(1�) = ℱ� �¡2  

∞>  �3 ¢ .(� − o) $(� − o) 9o£, 1�  < 1# , ¥ ≥ 0   
 
where $ denotes the conjugate of the function $.  
 
Proof:  
 ℱ� �¡2  

∞>  �3 ¢ � �.(� − o) $(� − o) 9o£= ℱ� �¡2  
∞3∞

 �3 ¢ .(� − o) $(� − o) q(o) 9o£= ℱ � Aℱ�¡2  
∞3∞

 .(� − o) �3 ¢ $(� − o) q(o) 9o£E
= ℱ � A.∗(1#) ℱ�¡�3 �  $(� − �) q(�)£E= .∗(1#) ℱ�¡2  

∞3∞
 �458  �3 �  $(� − �) q(�) 9�£= .∗(1#) ℱ�¡�3 �  q(�) 2  

∞3∞
 �458  $(� − �) 9�£

= .∗(1#) ℱ� A�3 �  q(�) 2  
∞3∞

 �3458  $(� − �) 9�E
= .∗(1#) ℱ� A�3 �  q(�) �3458� $∗(1�)E= .∗(1#) $∗(1�) 2  

∞3∞
 �3456�  �3 �  q(�) �458� 9�= .∗(1#) $∗(1�) 2  

∞>  �3(45634587 )�  9�= #4 5634 587   .∗(1#) $∗(1�) 

                           (37) 

 
Lemma 2:  
 ℱ��′�  ℱ  ′�  ℒ��′ �2  

∞>  . _� − o, �, 
 − ¢r`  q _
 − ¢r` $ _�′ − o, �′, 
′ − ¢r`  q _
′ − ¢r`  9o¦
= #4 5634 5′67}~7}′~  .J∗∗(1#, 1�, =) $<∗∗(1′#, 1′�, =′)   

  
Proof: 
 ℱ��′�  ℱ  ′�  ℒ��′ �2  

∞>  . _� − o, �, 
 − ¢r`  q _
 − ¢r` $ _�′ − o, �′, 
′ − ¢r`  q _
′ − ¢r`  9o¦
= ℱ��′�  ℱ  ′� §2  

∞>  .J(� − o, �, =) �3}~¢ $<(�′ − o, �′, =′) �3}′~¢ 9o¨
= ℱ��′� �2  

∞>  �3_}~7}′~`¢ .J∗(� − o, 1�, =) $<∗(�′ − o, 1′�, =′) 9o¦ 
                         (38) 

 
Using Lemma 1, we obtain: 
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ℱ��′�  ℱ  ′�  ℒ��′ �2  
∞>  . _� − o, �, 
 − ¢r`  q _
 − ¢r` $ _�′ − o, �′, 
′ − ¢r`  q _
′ − ¢r`  9o¦

= #4 5634 5′67}~7}′~  .J∗∗(1#, 1�, =) $<∗∗(1′#, 1′�, =′) .                        (39) 

 

Let �ΩΩ′ (�, �, 
, �′, �′, 
′) = � @Ω(�, �, 
) Ω′(�′, �′, 
′)H denotes the auto-correlation function of the process 

Ω (�, �, 
). It can be shown that:  

 ℱ��′�  ℱ  ′�  ℒ��′¡�ΩΩ′
(�, �, 
, �′, �′, 
′)£ = � @ΩI ∗∗(1#, 1�, =) Ω′ª∗∗(1′#, 1′�, =′) H                          (40) 

 

Assuming that ΩI ∗∗(1#, 1�, =) is the difference between the transformed free surface elevation (33) and its mean (35): 

  

ΩI ∗∗(1#, 1�, =) = �<∗∗(1#, 1�, =)  2  
�>  �3458  9�(�) 2  

�>  �3_4567}~`� 9�(�)            (41) 

 

Then,  

 ��ΩI ∗∗ � �(1#, 1�, =)Ω′ª∗∗(1′#, 1′�, =′) H
= � @_�<∗∗(1#, 1�, =)  2  

�>  �3458  9�(�) 2  
�>  �3_4567}~`� 9�(�)` ×�

 ���<∗∗(1′#, 1′�, =′)  2  
�>  �458  9�(�) 2  

�>  �_45′63}′~`�  9�(�)�«
= _�<∗∗(1#, 1�, =) �<∗∗(1′#, 1′�, =′) ` � ¬_2  

�>  �3_4567}~`�  9�(�)` �2  
�>  �_45′63}′~`� 9�(�)�« ×

 � @_2  
�>  �3458  9�(�)` _2  

�>  �458  9�(�)`H 
           (42) 

 

Recalling the fact, see (Klebaner, 2005), that if ­(
) and ®(
) are regular adapted processes, such that: 

 � @2  >̄  ­�(
) 9
H  <  ∞ ¥"9 � @2  >̄  ®�(
) 9
H  <  ∞              (43) 

 

Then, we have: 

  � @_2  >̄  ­(
) 9�(
)` _2  >̄  ®(
) 9�(
)`H = 2  >̄  �[­(
) ®(
)] 9
             (44) 

 

Hence (42) becomes: 

  ��ΩI∗∗(1#, 1�, =)� �Ω′I ∗∗(1′#, 1′�, =′) H
= �<∗∗(1#, 1�, =) �<∗∗(1′#, 1′�, =′)  2  �>  �3(45834 5²8)  9� 2  �>  �3_45634 5²67}~7}³~ `�  9�
= �<∗∗(1#, 1�, =) �<∗∗(1′#, 1′�, =′)  #3vw(xy8wxy³8)z(4 5834 5²8)  #3vw_xy6wxy³6|}~|}³~ `�

_4 5634 5²67}~7}³~ `= #(4 5834 5²8)  #_4 5634 5²67}~7}³~ `  @�<∗∗(1#, 1�, =) �<∗∗(1′#, 1′�, =′)�
−(�<∗∗(1#, 1�, =) �3458�) (�<∗∗(1′#, 1′�, =′) �345²8�)
− _�<∗∗(1#, 1�, =) �3_4567}~`�` _�<∗∗(1′#, 1′�, =′) �3_45²67}³~ `�`
�− _�<∗∗(1#, 1�, =) �3_456�7458�7}~�`` _�<∗∗(1′#, 1′�, =′) �3_45²6�745²8�7}³~ �`` ´ 

         (45) 

 

Applying Lemma 2 to (45), we obtain:  
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� @ΩI∗∗(1#, 1�, =) Ω′I ∗∗(1′#, 1′�, =′) H
= ℱ��²�  ℱ  ²� ℒ��² �2  �>  2  �>  � _� − o, � − µ, 
 − ¢r`  q _
 − ¢r` � _�′ − o, �′ − µ, 
′ − ¢r`  q _
′ − ¢r`  9o 9µ�
 − 2  �>  2  �>  � _� − o, � − � − µ, 
 − ¢r`  q _
 − ¢r` ×
 � _�′ − o, �′ − � − µ, 
′ − ¢r`  q _
′ − ¢r`  9o 9µ
 − 2  �>  2  �>  � _� − � − o, � − µ, 
 − �7¢r `  q _
 − �7¢r `  q _
 − ¢r` ×
 � _�′ − � − o, �′ − µ, 
′ − �7¢r `  q _
′ − �7¢r `  q _
′ − ¢r`  9o 9µ
 + 2  �>  2  �>  � _� − � − o, � − � − µ, 
 − �7¢r `  q _
 − �7¢r `  q _
 − ¢r` ×
 �� _�′ − � − o, �′ − � − µ, 
′ − �7¢r `  q _
′ − �7¢r `  q _
′ − ¢r`  9o 9µ¦

   (46) 

 

From (40) and (46), we can deduce that:  

 �ΩΩ′
(�, �, 
, �′, �′, 
′)

 = 2  
∞>  2  

∞>  � _� − o, � − µ, 
 − ¢r`  q _
 − ¢r` � _�′ − o, �′ − µ, 
′ − ¢r`  q _
′ − ¢r`  9o 9µ
 − 2  

∞>  2  
∞>  � _� − o, � − � − µ, 
 − ¢r`  q _
 − ¢r` ×

 � _�′ − o, �′ − � − µ, 
′ − ¢r`  q _
′ − ¢r`  9o 9µ
 − 2  

∞>  2  
∞>  � _� − � − o, � − µ, 
 − �7¢r `  q _
 − �7¢r `  q _
 − ¢r` ×

 � _�′ − � − o, �′ − µ, 
′ − �7¢r `  q _
′ − �7¢r `  q _
′ − ¢r`  9o 9µ
 + 2  

∞>  2  
∞>  � _� − � − o, � − � − µ, 
 − �7¢r `  q _
 − �7¢r `  q _
 − ¢r` ×

 � _�′ − � − o, �′ − � − µ, 
′ − �7¢r `  q _
′ − �7¢r `  q _
′ − ¢r`  9o 9µ 

                        (47) 

 

Finally, the variance can be obtained by taking �′ = �, �′ = � and 
′ = 
 in the auto-correlation function (47):  

 ¶¥�[Ω(�, �, 
)] = �··(�, �, 
)
= 2  �>  2  �>  ¸� _� − o, � − µ, 
 − ¢r`  q _
 − ¢r`¸�  9o 9µ
− 2  �>  2  �>  ¸� _� − o, � − � − µ, 
 − ¢r`  q _
 − ¢r`¸�  9o 9µ
− 2  �>  2  �>  ¸� _� − � − o, � − µ, 
 − �7¢r `  q _
 − �7¢r `  q _
 − ¢r`¸�  9o 9µ
+ 2  �>  2  �>  ¸� _� − � − o, � − � − µ, 
 − �7¢r `  q _
 − �7¢r `  q _
 − ¢r`¸�  9o 9µ
= 2  �>  2  � r>  ¸� _� − o, � − µ, 
 − ¢r`¸�  9o 9µ
+ 2  �>  2  � r>  ¸� _� − o, � − � − µ, 
 − ¢r`¸�  9o 9µ

+
���
�
���2  �>  2  � r3�>  ¸� _� − � − o, � − � − µ, 
 − �7¢r `¸�  9o 9µ

− 2  �>  2  � r3�>  ¸� _� − � − o, � − µ, 
 − �7¢r `¸�  9o 9µ .!� 
 > 
∗
0 .!� 
 ≤ 
∗

� 

         (48) 
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RESULTS AND DISCUSSION 
 

 In this section, we present numerical results to 

illustrate the nature of the tsunami build up and 

propagation during and after the uplift process of the 

assumed stochastic bottom topography. The numerical 

results demonstrate the waveform amplification 

resulting from source spreading in the � −direction and 

wave focusing in the near-field and the tsunami 

spreading in the far-field. When the source process is 

completed and for rapid lateral spreading, the 

displacement of the free surface above the source 

resembles the displacement of the ocean floor 

(Ramadan et al., 2011; Todorovska and Trifunac, 

2001). For velocities of spreading smaller than l�, the 

tsunami amplitudes in the direction of the source 

propagation become small with high frequencies. As 

the velocity of the spreading approaches l�, the tsunami 

waveform has progressively larger amplitude, with high 

frequency content, in the direction of the slip spreading, 

(Ramadan et al., 2011; Todorovska and Trifunac, 

2001). These large amplitudes are caused by wave 

focusing (i.e., during slow earthquakes). Examples of 

such slow earthquakes are the June 6, 1960, Chile 

earthquakes which ruptured as a series of earthquakes 

for about an hour, see Kanamori and Stewart (1972) 

and the February 21, 1978, Banda Sea earthquake, 

(Silver and Jordan, 1983). 

Tsunami generally occurs due to vertical 

movement of the seafloor that vertically displaces the 

water column. Large vertical displacement of the sea 

bottom ground causes a corresponding large motion at 

the sea surface. The generation of tsunami by vertical 

displacements of the ocean floor depends on the 

characteristic size (length � and width �) of the 

displaced area and on the time 
 it takes to spread the 

motion over the entire source region. Therefore, 

researchers presented kinematic source models in the 

form of Heaviside functions to describe  the  generation 

of tsunamis, see Todorovska and Trifunac (2001), 

Trifunac and Todorovska (2002), Todorovska et al. 

(2002), Trifunac et al. (2002a, b) and Hammack (1973). 

It is difficult to estimate, at present, how often the 

amplification may occur during actual faulting, sliding 

or slumping, because of the lack of detailed knowledge 

about the ground deformations in the source area of 

past tsunamis. Therefore, we constructed 

mathematically a reasonable random tsunami source 

model represented by a sliding Heaviside step function 

under the influence of two independent Gaussian white 

noise processes in the � − and � −directions. Due to 

the stochastic nature of the tsunami waveforms, we 

mainly examine the mean and variance of the tsunami 

generation and propagation during time evolution. 

 

Time-evolution during tsunami generation: The 

effects of variations of the uplift of the considered 

stochastic source model in the � − and � −directions 

are studied as a function of time 
 on the generation of 

tsunamis. These effects are studied through the 

investigation of the generation of tsunamis by unilateral 

displacements of the ocean floor and under the effect of 

the normalized noise intensity s = s>/�>. The velocity 

of the sea floor spreads, l, is chosen to be equal to the 

long wave tsunami velocity l� = R$ℎ, (i.e., maximum 

amplification). The tsunami waveforms generated for 

the stochastic source model with normalized noise 

intensity s = 0 (deterministic case), 1 and 2 are 

illustrated in Fig. 2 to 4, respectively. These waveforms 

are generated at constant water depth ℎ = 2 1º, 

propagated length � = 100 1º, source width � =50 1º at rise time 
 = 0.25 
∗, 0.5 
∗, 0.75 
∗ and 
∗ 

where 
∗ = �r and l = l� . It can be seen from these 

figures that the amplitude of the wave builds up 

progressively as t increases and the focusing and the 

amplification of tsunami amplitudes occur above the 

spreading edge of the source model Fig. 5. 

 
 

                                       (a) 
 = 0.25 
∗                                                                                 (b) 
 = 0.5 
∗ 
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                                        (c) 
 = 0.75 
∗                                                                                   (d) 
 =  
∗ 

 

Fig. 2: Generation of the normalized tsunami waveforms, 
½(�, ,�)S{ , for different rise times at s = 0, � = 100 1º, � = 50 1º , 
∗ = �r and l = l� 

 

 
 

                                          (a) 
 = 0.25 
∗                                                                               (b) 
 = 0.5 
∗ 
 

 
 

                                         (c) 
 = 0.75 
∗                                                                                  (d) 
 =  
∗ 

 

Fig. 3: Generation of the normalized tsunami waveforms, 
½(�, ,�)S{ , for a sample trajectory of the stochastic source model at 

different rise times with s = 1, � = 100 1º, � = 50 1º , 
∗ = �r and l = l� 
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This amplification occurs above the source 

progressively, as the source evolves, by adding uplifted 

fluid to the fluid displaced previously by uplifts of 

preceding source segments. As the spreading length in 

the fault increases, the amplitude of the tsunami wave 

increases.  Moreover, it  can  be  observed  from  Fig. 5, 

that  at 
 = 0.5 
∗, the deterministic waveform is in 

complete agreement with the aspect of the tsunami 

generated by a slowly spreading uplift of the ocean 

bottom presented by Todorovska and Trifunac (2001) 

who considered a very simple kinematic source model 

on the form of Heaviside step function. 

 

 
 

                                         (a) 
 = 0.25 
∗                                                                               (b) 
 = 0.5 
∗ 
 

 
 

                                         (c) 
 = 0.75 
∗                                                                                  (d) 
 =  
∗ 

 

Fig. 4: Generation of the normalized tsunami waveforms, 
½(�, ,�)S{ , for the same trajectory of the stochastic source model at 

different rise times with s = 2, � = 100 1º, � = 50 1º , 
∗ = �r and l = l� 

 

 
 

(a) s = 0 (deterministic case) 



 

 

Res. J. App. Sci. Eng. Technol., 7(19): 4035-4055, 2014 

 

4048 

 
 

(b) s = 1 

 

 
 

(c) s = 2 

 

Fig.  5: Side view of the generated normalized tsunami waveforms, 
½(�, ,�)S{ , for the same trajectory of the stochastic source model 

at different rise times with noise intensities s = 0, 1 and 2, � = 100 1º, � = 50 1º, l = l� and 
∗ = �r 

 

 
 

Fig.  6: Effect of the normalized noise intensity s on the generation of tsunami waveforms for the same trajectory of the 

stochastic source model with � = 100  1º and � = 50  1º for 
 = 
∗ = �r 

 

Effect of normalized noise intensity ¾ on tsunami 
generation waveform: We studied the effect of the 
normalized noise intensity s on the tsunami generation 

in Fig. 2 to 4. It can be observed from these figures that 
the increase in the normalized noise intensity leads to 
an increase in the deformation in the bottom 
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topography, while the wave behavior is mainly the 
same. Figure 6 present a collection of the waveforms 
from Fig. 5 at 
 = 
∗ to get a better insight of the effect 
of the normalized noise intensity on the tsunami 
generation, where it can be observed that the increase of 
the normalized noise intensities on the bottom 
topography leads to slight difference in the peak 
amplitude of the waveforms in addition an increase in 
oscillations in the free surface elevation. These 
differences can be further investigated by discussing the 
variance of the generated tsunami waveforms. We 

investigated   the   normalized   variance   (
¿ À�8 )   of   the  

tsunami generation in Fig. 7 and 8 at ℎ = 2 1º, � = 100 1º, � = 50 1º  at   time  
 = 0.25 
∗, 0.5 
∗, 0.75 
∗ and 
∗. It can be seen in Fig. 8 that the variance 

increases with the increase in time and the maximum 

amplitude of the variance occurs above the spreading 

edge of the bottom topography. The maximum variance 

occurs at 
 = 
∗ (maximum amplification of the wave). 

Thus we can conclude that the variance and the tsunami 

waveforms behave similarly during the generation 

process under the effect of the normalized noise 

intensities which is also clear in Fig. 7.  

 

 
 

                                         (a) 
 = 0.25 
∗                                                                                (b) 
 = 0.5 
∗ 

 

 
 
                                        (c) 
 = 0.75 
∗                                                                                   (d) 
 =  
∗ 

 

Fig. 7: Normalized  wave  dispersion (variance) of the tsunami generation at different time evolution for ℎ = 2  1º with � = 100  1º and � = 50  1º  

 

 
 

Fig. 8: Side view of the normalized wave dispersion of the tsunami generation at different time evolution for ℎ = 2  1º with � = 100  1º and � = 50  1º  
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Time evolution during tsunami propagation: The 

effects of variations of the faulting on the propagation 

of tsunami wave, after the completion of the formation 

of the stochastic source model, are studied as a function 

of time 
. These effects are studied through the 

investigation of the propagation of tsunami wave under 

the effect of the normalized noise intensity s. Figure 9 

and 10 illustrate the propagation process of the mean 

and the variance of tsunami propagation waveforms, 

respectively,  in  the  far-field  for  times  
 = 2 
∗, 3 
∗,  

4 
∗, where 
∗ = �r and l = l� . It can be seen from 

these figures that the maximum wave amplitude 
decreases with time, due to the geometric spreading and 
also due to dispersion, causing a train of small waves 
behind the main wave. It can be seen from Fig. 8 that 
the amplitude of the leading normalized mean decreases 
from 1.775 at 
 = 2 
∗ to 0.7424 at 
 = 4 
∗, while from 
Fig. 9 the amplitude of the leading normalized variance 
decreases from 0.000654 at 
 = 2 
∗ to 0.000111 at 
 = 4 
∗. 

 

 
 

                                          (a) 
 = 2 
∗                                                                                     (b) 
 = 3 
∗ 

 

 
 

                                          (c) 
 = 4 
∗                                                                   (d) Side view at 
 = 2 
∗, 3 
∗, 4 
∗ 

 

Fig. 9: The normalized mean of the propagated tsunami waveforms at different propagation times for propagated uplift length � = 100 1º, width � = 50 1º ℎ = 2 1º at 
 = 2 
∗, 3 
∗, 4 
∗ where 
∗ = �r and l = l�  

 

 
 

                                           (a) 
 = 2 
∗                                                                                    (b) 
 = 3 
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                                           (c) 
 = 4 
∗                                                                     (d) Side view at 
 = 2 
∗, 3 
∗, 4 
∗ 

 

Fig. 10: The normalized variance of the propagated tsunami waveforms at different propagation times for propagated uplift 

length � = 100 1º, width � = 50 1º ℎ = 2 1º at 
 = 2 
∗, 3 
∗, 4 
∗ where 
∗ = �r and l = l�  

 

 
 

                                          (a) 
 = 4 
∗                                                                                     (b) 
 = 6 
∗ 

 

 
 

                                          (c) 
 = 8 
∗                                                                      (d) Side view at 
 = 4 
∗, 6 
∗, 8 
∗ 

 

Fig. 11: Propagation of the normalized tsunami waveforms, 
½(�, ,�)S{ , for different rise times at s = 0, � = 100 1º, � = 50 1º, l = l� and 
∗ = �r 

 

Effect of normalized noise intensities ¾ on tsunami 
propagation waveform: Figure 11 to 13 illustrate the 

propagation tsunami waveforms away from the 

stochastic source model presented in Fig. 1 to 3, 

respectively at noise intensity s =  0 , 1 and 2. These 

waveforms    are   the   propagation   of   the   generated 

tsunami waveforms represented in Fig. 6 at propagated 

times 
 = 4 
∗, 6 
∗ and 8 
∗ where 
∗ = �r and l = l�. 

It can be seen from these figures that the maximum 
wave amplitude decreases during the time evolution 
due to geometric spreading and due to dispersion for 
noise intensities s =  0, 1 and 2. It can be observed
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                                           (a) 
 = 4 
∗                                                                                    (b) 
 = 6 
∗ 

 

 
 

                                           (c) 
 = 8 
∗                                                                    (d) Side view at 
 = 4 
∗, 6 
∗, 8 
∗ 

 

Fig. 12: Propagation of the normalized tsunami waveforms, 
½(�, ,�)S{ , for the same trajectory of the stochastic source model at 

different rise times with s = 1, � = 100 1º, � = 50 1º, l = l� and 
∗ = �r 

 

 
 

                                          (a) 
 = 4 
∗                                                                                     (b) 
 = 6 
∗ 
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                                          (c) 
 = 8 
∗                                                                     (d) Side view at 
 = 4 
∗, 6 
∗, 8 
∗ 

 

Fig. 13: Propagation of the normalized tsunami waveforms, 
½(�, ,�)S{ , for the same trajectory of the stochastic source model at 

different rise times with s = 2, � = 100 1º, � = 50 1º, l = l� and 
∗ = �r 

 

 
 

(a) 
 = 4 
∗ 

 

 
 

(b) 
 = 6 
∗ 
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(c) 
 = 8 
∗ 

 

Fig. 14: Effect of the normalized noise intensity s on the propagation of tsunami waveforms for the same trajectory of the 

stochastic source model with, � = 100 1º, � = 50 1º for different propagation times 
 where  
∗ = #>>r  

 

from Fig. 14 that the increase of the normalized noise 

intensity leads to an increase in oscillations and more 

dispersion in the normalized free surface elevation but 

leads to a slight difference in the peak amplitude of the 

waveforms.  

 

CONCLUSION 

 

In this study, the process of tsunami generation and 

propagation was investigated over a stochastic bottom 

topography represented by a sliding Heaviside step 

function under the influence of two independent 

Gaussian white noise processes in the � − and � −directions, respectively. We demonstrated the 

waveform amplification resulting from stochastic 

source spreading and wave focusing in the near-field 

and the tsunami propagation in the far-field. Due to the 

stochastic nature of the bottom topography, the free 

surface elevation becomes a stochastic process having 

infinite number of trajectories (realizations). Therefore 

we derived mathematically the mean and variance of 

the stochastic tsunami waveforms and illustrated them 

graphically to get a better insight of the overall 

behavior of the stochastic tsunami waveforms under the 

effect of the noise intensity. It was observed that near 

the source, the wave has large amplitude as the wave 

builds up progressively as t increases and the focusing 

and the amplification of tsunami amplitudes occur 

above the spreading edge of the stochastic source 

model, while as the tsunami further departed away from 

the source the amplitude decreased due to dispersion. 

Moreover, the maximum dispersion (variance) was 

found to occur at the corresponding maximum or 

minimum amplitude of mean generated wave. Also, 

when increasing the normalized noise intensity, the 

oscillations of the free surface elevation increase. In 

addition to an increase in the difference in the peak 

amplitudes of the waveforms, especially the leading 

wave, while in the propagation process, it was observed 

that the increase in the noise intensity show more 

dispersion and oscillation in the propagated free surface 

elevation. 
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