
Research Journal of Applied Sciences, Engineering and Technology 7(19): 4072-4078, 2014

DOI:10.19026/rjaset.7.769

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2014 Maxwell Scientific Publication Corp.

Submitted: December 04, 2013 Accepted: December 17, 2013 Published: May 15, 2014

Corresponding Author: A. Chitra, Department of Computer Applications, PSG College of Technology, Coimbatore,

Tamilnadu, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

4072

Research Article
QoS Aware Adaptive Service Composition

1
A. Chitra and

2
M. Nageswara Guptha

1
Department of Computer Applications,

2
Department of Computer Science and Engineering, PSG College of Technology, Coimbatore,

Tamilnadu, India

Abstract: In current business scenario the business processes of enterprises are service oriented. The services of
various applications are advertised in service registry using Web Service Description Language description for
service selection and composition. Service composition process integrates services based on Business Process
Execution Language description of composite service and executed by the orchestration coordinator. As all
compliant services description are included in the description, the service selection and execution consumes more
time users need select the service form set of complaint services. This study proposes an adaptive service
composition methodology over extended web service Quality Aware Service Integration architecture (QASI). The
proposed service composition methodology reads the composite service description and constructs a composition
tree. In each service node of composition tree a service is replaced by one that satisfies functional and QoS
requirement. During execution of composite service or binding of service, the parameters like server maximum
capacity, current load on server and expected time for completing current load for service at each level of
composition tree are analyzed. An alternative service will be allocated at particular level to improve the overall
response time of composite service. The QASI architecture provides a repository to store composition tree as
symbolic notations to ensure repeatability. Experimental results indicates selection of best service and better
response time by proposed methodology using QASI architecture compared to contemporary web service
composition methodology using static BPEL description.

Keywords: Distributed application development, QoS aware service integration, service composition, service

integration, service oriented computing

INTRODUCTION

Service Oriented Computing (SOC) is inevitable in

business processes with ever changing requirements.
Basic building block of SOC is services which are
accessed through internet. The services are discovered
and invoked using open XML standards like WSDL
(Web Service Description Language), SOAP (Simple
Object Access Protocol) and UDDI [Universal
Description Discovery and Integration] (Thomas,
2007).

Services from various service providers are
described in service registry using WSDL. Most of the
services do not meet the requirement of business
applications. To accomplish business process
requirements, it is required to combine various
individual services and their sequence of execution
defined.

Service composition: Number of reusable elementary
services are combined together to form a composite
service. A composite service contains n tasks in

sequence (i
th
 level task [li] will be executed after i-1

th

level task [li-1]) or in parallel (all same level tasks will
be executed simultaneously) or in switch (either i

th
or j

th

node of same level task will be executed) or loop (the i
th

level task will be executed n times) depending on
execution flow.

Service composition can be realized using two
approaches:

• Orchestration

• Choreography

Orchestration defines entire process in top-down
mode. The BPEL description of the orchestration, the
orchestrated code, is used by controller to execute
various services. Unlike orchestration, in choreography
the interaction is peer-to-peer that is, one service will
initiate other service that are involved in business
process. The key difference between these two is that
the orchestration approach assumes a single central
point of control over the entire scope of the process
execution, while the choreography approach assumes

Res. J. Appl. Sci. Eng. Technol., 7(19): 4072-4078, 2014

4073

 (a) Composite service for a business process (b) Composition tree

Fig. 1: Composition tree

Table 1: QoS attributes

S. No QoS attribute name Description Unit

1. Response time Maximum or average time taken to send a request and receive a response ms
2. Availability Number of successful invocations/total invocations %

3. Throughput Total Number of invocations for a given period of time Invokes /sec

4 Successability Number of response/number of request messages %
5. Reliability Ratio of the number of error messages to total messages %

6. Latency Time taken for the server to process a given request ms

that execution control is shared, potentially across
multiple business processes (Thomas, 2007).

The six major issues of composition of services are
Coordination, transaction, context, conversation model,
Execution monitoring and infrastructure (Schahram and
Wolfgang, 2005).
Service composition can be classified as following:

• Static (or design time) and Dynamic (or run time)

service composition.

• Automated and Manual service composition.

The process of service composition requires an

effective method to facilitate quick and simple

composition of services and remains as a key challenge

to realize the full potential of services.

Composition tree: The composition process constructs

composition tree using Business Process Execution

Language (BPEL) description of composite service

(Big et al., 2009). The construction of composition tree

is illustrated in Fig. 1. The business process flow

contains activity nodes and nodes ‘A’ to ‘J’ represent

services in Fig. 1a. The tree representation of composite

service is shown Fig. 1b.

QoS of composite service: The service registry
contains a number of services with same functionality.
These services may differ in nonfunctional or QoS

attributes like response time, latency and cost. To
improve the efficiency of composite service, the
candidate services are ranked and the best service is
selected for each leaf node in composition tree
according to constraints specified by consumer. A
subset of QoS attributes for service composition is
shown in Table 1.

Existing QoS aware service composition
methodologies select the service from service registry
based on user functional and QoS requirement. The
selected services are allocated to respective leaf nodes
of composition tree. For service selection only, a subset
of QoS is considered. It is also noted that all structural
activities are not accounted while computing QoS of
composite service.

This study proposes an adaptive QoS aware service
composition methodology over extended web service
architecture QASIA to address the issues studied. The
proposed system scans the BPEL description of
composite service and converts into a composition tree.
To improve the quality of composite service a better
alternative is discovered from service registry using
QoS parameters and this replaces the existing service.
The resulting composition tree is converted into
symbols and stored in Service sequence registry.

During service binding, the benefit value of server
is calculated based on server maximum load, its current
load on server and execution time for completion of
current load. If benefit value exceeds the threshold, then
the service will be included in the composition else the

Res. J. Appl. Sci. Eng. Technol., 7(19): 4072-4078, 2014

4074

second best service is selected from service registry in
order to improve the execution time.

The proposed system is experimented with
benchmark web service dataset (http://www.uoguelph.
ca/~qmahmoud/qws/dataset/) for service discovery to
select best service based on QoS parameter using multi
utility ranking function and found that it automatically
discovers the best quality alternative from the
compliant services.

LITERATURE REVIEW

Many service composition systems that are

designed to solve well defined problems lack flexibility
for volatile user requirements. Layered framework for
service composition and aggregation (Sun et al., 2003;
Pires et al., 2003; Guptha et al., 2009) integrates
services based on user functional requirements and
generates static composition sequence for composite
service. However it does not provide infrastructure to
preserve and modify the composite service.

A mapping model to map the mathematical or
abstract model and the BPEL description using business
rules and composition rules is described (Orriens et al.,
2003a, b). This mapping model does not include
nonfunctional requirements of composite service.

Ran’s experiment concludes that in the
conventional service registry, 40% of UDDI entries are
unusable because of inaccurate information. Further
service discovery in registry is limited to functional
requirements (Ran, 2003).

Dynamic service composition was proposed
(Casati and Shan, 2001). An Integrated Development
Environment for semantic based dynamic service
composition designed to build composition plan
manually, creates a static business plan using BPEL
(Chatle et al., 2007; Aniss et al., 2008). It allows the
user to select the service to satisfy the business
requirement and to modify the plan. The signature
information of services is placed in service registry
along with basic and QoS information. The user has

to provide all parameters to access a service for
composition. A framework is designed to discover the
service based of behavior (Bensheng, 2010).

An optimized service composition was proposed
by Bing et al. (2009). This is applicable for sequence
flow of service composition while dynamic QoS
parameters like server capacity are not considered for
QoS computation (Bing et al., 2009). Heuristics and
genetic algorithms are used for QoS aware service
composition (Berner et al., 2006; Canfora et al., 2005).

The ontology based service composition uses the
description of services provided in service registry for
service composition (Ying, 2011; Aabhas et al., 2011).
This results in incompatible service composition if
output parameter type of a service does not match with
input parameter of its successor.

The existing composition methodologies use either
semantic information or message types for service
composition, which would combine incompatible
services. The service discovery process of these
systems may results in poor quality of composite
service. During service discovery, the request should
contain values for all attributes like name or ID of
service, input and output parameters with their types,
category of service and values for QoS parameter.
Based on the request the existing service discovery
process linearly searches all service entries available in
service registry to select and allocate service at each
level of composition sequence which makes discovery
and composition processes time-consuming.

PROPOSED SYSTEM

The proposed system constructs a composite tree

based on composite service description and discovers
better alternative service using adaptive service
composition methodology over QASI architecture.

QoS Aware Service Integration Architecture
(QASIA): QASI architecture extends the conventional
web service infrastructure by providing repository to

Fig. 2: QoS Aware Service Integration Architecture [QASIA]

Res. J. Appl. Sci. Eng. Technol., 7(19): 4072-4078, 2014

4075

Table 2: Composition tree construction

BPEL description Composition for
business process of Fig. 1a Composition tree

< SEQUENCE>
<invoke>sA<\ invoke >
< invoke >sB<\ invoke >
 <PARALLEL>
 < SEQUENCE>
 < invoke >sC<\ invoke >
 < invoke >sE<\ invoke >
 <\SEQUENCE>
 < SEQUENCE>
 < invoke >sF<\ invoke >
 < SELECT>
 < invoke >sG<\ invoke >
 < invoke >sH<\ invoke >
 <\SELECT>
 < invoke >sK<\ invoke >
 <\SEQUENCE>
 < LOOP>
 < invoke >sI<\ invoke >
 < invoke >sJ<\ invoke >
 <\LOOP>
 <\PARALLEL>

< invoke >sL<\ invoke >
<\SEQUENCE>

Table 3: Contents of composition sequence registry

Composition sequence

rSE(l1sA:l1sB:l1PL(l2SE(l3sC:l3sE):l2SE(l3sF:l3SL(l4sG:l4sH)
:l3sK):l2LP(l3sI:l3sJ)):l1sL)

S: Service, r: Root level node, li: Level of node (Where i = 1….n), SE: Sequence activity node (all services is to be executed linearly), PL:
Parallel activity node (all services is to be executed simultaneously), SL: Select activity node (Subject to condition any one service is to be
executed), LP: Loop activity node (all services is to be executed repeatedly), :-To concatenate sibling nodes, (): Enclose siblings

store composition sequence (Fig. 2). It assumes that the

service vendors submit their service in a common

service registry. The service registry is classified into

number of classes based on end utility of service. Each

class has a collection of service providing same

functionalities and their QoS values.

Composite tree construction: The tree construction

process scans the composite BPEL description and

search for BPEL tags like sequence, flow, switch, while

and pick which depict the sequence of execution of

services. For such tags, activity nodes are created and

added to composition tree. Within these activity tags,

invoke tags are provided to call required services. For

each invoke tag a service node will be added as children

to respective activity node and a unique ID is assigned

for each service node and same is used to identify the

corresponding service Table 2.

The constructed composition tree is converted into

symbols and stored in composition sequence registry as

shown in Table 3.

Service selection process: The service nodes of

composition tree are analyzed and similar services are

extracted from service registry. The selected services

along with existing service are ranked via multi utility

ranking function.

Multi Utility Ranking (MUR): The compliant services

are ranked using the QoS values of the respective

service and replace the existing service of composition

tree. The utility value of QoS attributes is calculated

using Eq. (1):

�������	 = �

�
� × �������	� + ��� × �������	�	 (1)

where,

fre = Number of times the service is used in

particular duration (Eg. Per day)

P(Ai) = Quality rating value of attribute provided by

the service provider

R(Ai) = Average quality rating value of attribute

perceived by the previous service instances

measured using benchmark tools

wi = Weight of the QoS attribute given by current

service user

Fn = Any normalization function or distance vector

function

The QoS for a service is calculated using Eq. (2):

������ = ∑ �������� ���	 (2)

The QoS attributes like Average response time,

Latency are to be minimized and attributes like

Availability, Throughput are to be maximized. The

overall rating for service is calculated using multi utility

Eq. (3) and (4):

Res. J. Appl. Sci. Eng. Technol., 7(19): 4072-4078, 2014

4076

Table 4: QoS formula for activity nodes

QoS property Sequence Parallel Select Loop

Service cost
� sc�sl 	

�

���
 � sc�sl 	

�

���
 � sc�sl 	 x r�sl 	

�

���
 n x sc(sli)

Average response time
� rt�sl 	

�

���
 $%&���� rt�sl 	 $%&���� rt�sl 	 n x rt(sli)

Throughput
$'����� tpt�sl 	 � tpt�sl 	

�

���
 � tpt�sl 	

�

���
 tpt(sli)

Successability
) suc�sl 	

�

���
) suc�sl 	

�

���
 � suc�sl 	 x r�sl 	

�

���
 suc(sli)

Reliability
) +,-�sl 	

�

���
) +,-�sl 	

�

���
 � rbt�sl 	 x r�sl 	

�

���
 rbt(sli)

Latency
� lat�sl 	

�

���
 $%&���� 0%-�sl 	 � lat�sl 	 x r�sl 	

�

���
 n x lat(sli)

sli: Service at level i, sc(sli): Service cost of level i service, rt(sli): Averageresponse time of level i service, tpt(sli): Throughput of level i service,

rbt(sli): Reliabilityof level i service, suc(sli): Successabilityof level i service, lat(sli): Latencyof level i service, n: Number of leaf nodes of activity
node, r(sli): Rate at which the level i service is selected

 1�����234� = ∑ �������� ���234	 (3)

1�����256� = ∑ �������� ���256	 (4)

The service ranked first is allocated to respective

leaf node. The runner service is stored temporarily for

replacement of the allocated service during execution if

server load of binding server is high.

QoS computing for activity node of composition

tree: The activity node of composition tree is classified

into four namely Sequence, Parallel, Select and Loop.

Table 4 describes the QoS for each type of activity.

The overall QoS of composite service is computed

by summing of QoS values of all activity nodes

involved in composition tree.

Dynamic service selection: The services that are

selected for composition are executed in respective

server where its definition is available. The service

binding is decided by benefit function of server if

greater than threshold and if less than the time taken to

replace the current service. The Benefit function Bfn is

shown in Eq. (5):

7�� = 8234�9	: 8;<==�9	

8234�9	 (5)

where,

Cmax(S) = Maximum load on server (Mostly 100)

Ccurr(S) = Current load on server (in PHP

sys_getloadavg ())

EXPERIMENTAL RESULTS

The proposed system has been experimented by

implementing service shown Table 5 Experimental data
is taken from Quality of Web Services [QWS] Dataset
with 2500 services (Mohammad and Thomass, 2009),
(“http://www.uoguelph.ca/~qmahmoud/qws/ dataset”).

The services of QWS dataset are grouped under
classes-Vehicle class, Travel class, Math class,
Enterprise class, which are further classified into sub
classes. For instance vehicle class has subclasses like
Vehicle sales, Vehicle purchase and Vehicle repair
service (Fig. 3).

An initial composition plan with 15 services
involving all activities like sequence, select, loop and
parallel is described using BPEL and composition tree
is constructed. The constructed composition tree
contains 15 service nodes and four activity nodes. A
web service for composition tree construction is
implemented which transforms the composite service
description into a composition tree. The QoS attribute
values of service in created composition tree are
extracted and pooled with respective compliant service
values in a multi dimensional matrix. Ranking service
selects the best and second best service for each service
node of composition tree. The created composition tree
is converted in symbolic notation and stored along with
service IDs along with respective binding URL in a
relational database. Snapshot for service discovery for
News service is shown in Fig. 4. The system computes
the mean for selected QoS attributes and considers this
mean as threshold if it is not provided by the user.
Similarly the user can provide weight for each QoS
attribute as shown in Fig. 5.

Table 5: Services implemented for experimentation

Name of service Description

Composition Tree construction service Constructs composition tree using BPEL description
Service selection and allocation service To discover compliant services from service registry

Control service Controls sequence of execution of all mutually exclusive services available in orchestrated code.

Ranking service (QoS computing) Ranks the selected services using Multi-utility ranking

Res. J. Appl. Sci. Eng. Technol., 7(19): 4072-4078, 2014

4077

Fig. 3: Classification of services

Fig. 4: Searching for news service with QoS attributes

Fig. 5: Searching for news service with QoS attributes and weight

The system receives a new request from user and

verifies the composition sequence repository. The

matching composition sequence is extracted and

appropriate services are called using orchestration

coordinator rather creating new composition description

using BPEL. It is also easy to replicate the composition

sequence in various geographical locations to increase

availability. The space consumed by the composition

sequence is relatively less than the BPEL description of

composite service.

The proposed service composition methodology for

adaptive QoS aware service composition selects

Res. J. Appl. Sci. Eng. Technol., 7(19): 4072-4078, 2014

4078

relatively best service using QoS parameters than the

conventional methodology that uses static BPEL

description.

CONCLUSION

The proposed QoS aware Service Composition has

been designed and implemented over QASI

architecture. This architecture ensures Coordination

among participating services, Transaction control,

Execution monitoring, Reusability of quality services

and extends infrastructure for caching service

composition sequence. The services for composition

tree are selected from service registry using multi utility

ranking function and replaced if necessary. The system

dynamically selects an alternative service during

execution using server capacity of binding server. The

proposed QoS aware Service composition system is

experimentally found to provide relatively better quality

composite service than conventional methods using

static BPEL description in service discovery and

service composition.

REFERENCES

Aabhas, V.P., S. Basit, V. Jaideep, X. Hui and A. Nabil,

2011. Semantic-based automated service

discovery. IEEE T. Serv. Comput., 5(2): 260-275.

Aniss, A., M. Hafedh and O. Abdel, 2008. Signature-

based composition of web services. Proceeding of

the International MCETECH Conference on e-

Technologies, pp: 104-114.

Bensheng, Y., 2010. A new framework for web service

discovery based on behavior. Proceeding of the

IEEE Asia Pacific Services Computing

Conference, pp: 654-658.

Berner, R., M. Spahn, N. Repp, O. Heckmann and R.

Steinmetz, 2006. Heuristics for QoS-aware web

service composition. Proceeding of the IEEE

International Conference on Web Services (ICWS,

06).

Bing, L., S. Yuliang and W. Haiyang, 2009. QoS

oriented web service composition and optimization

in SOA. Proceeding of the Joint Conference on

Pervasive Computing, pp: 605-610.

Canfora, G., M.D. Penta, R. Esposito and M.L. Villani,

2005. An approach for QoS-aware service

composition based on genetic algorithms.

Proceeding of the Genetic and Evolutionary

Computation Conference (GECCO, 2005).

Washington, DC, USA.

Casati, F. and M.C. Shan, 2001. Dynamic and adaptive

composition of E-services. Proceeding of the 12th

International Conference on Advanced Information

System.

Chatle, G., G. Das, K. Dasgupta, A. Kumar and S.

Mittal, 2007. An integrated development

environment for web service composition.

Proceeding of the IEEE International Conference

on Web Services (ICWS, 2007). Salt Lake City,

UT, pp: 839-847.

Guptha, M. N., A. Chitra and P.T. Rajan, 2009. Three

tier architecture for service oriented business

intelligence. Int. J. Inform. Process., 3(4): 67-76.

Mohammad, A. and R. Thomass, 2009. Combining

global optimization with local selection for

efficient QoS-aware service composition.

Proceeding of the 18th International World Wide

Web Conference (WWW 2009). Madrid, Spain.

Orriens, B., J. Yang and M.P. Papazoglou, 2003a.

Model Driven Service Composition. In: Orlowska,

M.E. (Ed.), ICSOC, 2003. LNCS 2910, Springer-

Verlag, Berlin, Heidelberg, pp: 75-90.

Orriens, B., J. Yang and M.P. Papazoglou, 2003b. A

Framework for Business Rule Driven Web Service

Composition. In: Jeusfeld, M.A. and O. Pastor

(Eds.), ER 2003 Workshop. LNCS 2814, Springer-

Verlag, Berlin, Heidelberg, pp: 52-64.

Pires, P.F., M.R.F. Benedives and M. Mattoso, 2003.

Building Reliable Web Services Composition. In:

Chaudhri, A.B. et al. (Eds.), Web Databases and

Web Services, LNCS 2593, Springer-Verlag,

Berlin, Heidelberg, pp: 59-72.

Ran, S., 2003. A model for web service discovery with

QoS. ACM SIGecom Exch., 4(1): 1-10.

Schahram, D. and S. Wolfgang, 2005. A survey on web

service composition. Int. J. Web Grid Serv., 1(1).

Sun, H., X. Wang, B. Zhou and P. Zou, 2003. Research

and Implementation of Dynamic Web Services

Composition. In: Zhou, X. (Ed.), APPT 2003.

LNCS 2834, Springer-Verlag, Berlin, Heidelberg,

pp: 457-466.

Thomas, E., 2007. Service-oriented Architecture

Concepts, Technology and Design. Pearson

Education, Prentice Hall, pp: 760.

Ying, Z., 2011. Semantic-based data and service unified

discovery. Proceeding of the 4th International Joint

Conference on Computational Sciences and

Optimization, pp: 787-791.

