
Research Journal of Applied Sciences, Engineering and Technology 7(19): 4143-4149, 2014 

DOI:10.19026/rjaset.7.779 

ISSN: 2040-7459; e-ISSN: 2040-7467 

© 2014 Maxwell Scientific Publication Corp. 

Submitted: December 21, 2013 Accepted: January 16, 2014 Published: May 15, 2014 

 

Corresponding Author: Walid Arouri, National School of Engineers of Tunis, University of Tunis El Manar, Tunisia 
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

4143 

 

Research Article  
Switched Control for the Walking of a Compass Gait Biped Robot 

 
1
Walid Arouri, 

2
Elyes Maherzi, 

2
Mongi Besbes and 

1
Safya Belghith

 

1
National School of Engineers of Tunis, University of Tunis El Manar, Tunisia 

2
Signals and Mechatronic Systems, High School of Technology and Computer Science,  

University of Carthage, Tunisia 
 

Abstract: This study presents a new approach for modeling and controlling of a compass gait biped robot based on 
the use of the switched systems. The linearization of the equations stemming from the formalism of Lagrange allows 
the construction of a set of local models used to describe the behavior of this non linear system. The selection of 
each model depends on its activation function depending on the system states. The synthesis of the stability of the 
walking robot is based on the use of second method of Lyapunov. The synthesis approach leads to a set of bilinear 
matrices inequalities non resolvable by actual numerical solvers. To come over these difficulties, some relaxations 
are brought to get useful and exploitable numerical solutions. 
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INTRODUCTION 

 
Biped Robots establish an interesting class of 

mobile robots, thanks to their capacity to move walking 
on different terrains (slippery, rocky and steep). The 
design of a regulator is very difficult. The description of 
the walking motion of a biped robot raises specific 
problems at the level of the mechanical architecture and 
of the optimization of the structure concerning the 
dorad degree of freedom desired unrestrained (Escobar 
et al., 2012). The problems of conception are also 
electric because the performance of the system is not 
linear. Certain researchers opted for the linearization 
about several operating points (Ahmed, 1992; Micheau 
et al., 2003; Terumasa et al., 2007; Fauteux et al., 
2005). 

Raibert (1986) proposed a simple yet strong 
command law of the running of its monopod, following 
the style of a kangaroo. It is mainly based on the 
regulation of the positioning of the leg during the flight 
phase. Thus, he stabilizes the horizontal speed of the 
monopod. Raibert suggests then to control multiple 
legged robotic systems through simple decoupling of 
the movements, by using the Principe of symmetric 
movement. 

Charles (1996) proved the existence of passive 
cycles of walking on a monopod moving on a 
horizontal ground. Natural periodic systems were 
obtained from an approximation of the complete model 
of the robot. 

The Theoretical analysis of the control structure 
stabilizing the obtained cycles shows that the phases of 

flight and support, taken separately, were not 
controllable. His command is based on an impulsive 
excitation of the monopod. It would be enough to carry 
out two impulses on the hip during the phase of flight 
and an impulse on the leg during the phase of support to 
stabilize the running of the monopod around the cycles. 

Other researchers (Koditschek and Buhler, 1991; 
Ahmadi and Buhler, 1995) were interested in the 
theoretical analysis of the stability of Raibert monopod, 
using of the tools of dynamic systems analysis. 
Koditschek and Buhler (1991) proposed an analytical 
study of the compass robot provided with its command. 
They proved that the closed-loop system had overall 
convergence properties towards a stable system. For 
this reason, they have numerically build the sections of 
Poincaré (Vakakis and Burdick, 1990). 

Many approaches have been also proposed to study 
modeling aspects and biped robots command and 
stability (Golliday and Hemami, 1977; Hemami and 
Wyman, 1979). We shall approach these questions from 
the perspective of passive walking through the most 
significant works in this sense. 

In this study we propose a new approach for the 
synthesis of motion controllers for a walking compass 
robot. This approach is based on modeling robot like 
switched systems. The calculation of state feedback 
gains of the controller is based on the use of 
polyquadratic Lyapunov functions. 

The Other works in this field, to our knowledge, 

are based on the use of predictive control or optimal 

control leading to the calculation of a single gain from 

the Ricatti equation for a single model. The generated 
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stabilization conditions are usually too conservative and 

difficult to apply in practice. 
We propose in this study, a new methodology of 

controller synthesis by considering the compass robot 
as a switched system described by a set of LTI models 
and not a single model. The use of the polyquadratic 
approach could mitigate the conservatism of others 
methods like the quadratic approach. 
 

MODELING OF THE COMPASS GAIT  
BIPED ROBOT 

 
Description: We have considered as a walker 
simplified model a bi pendulum formed of point 
masses, containing only a single articulation in the hip, 
which is capable of reproducing the running. It is called 
compass gait robot. The figure below presents this 
geometrical conception of the compass robot (Fig. 1). 
 
The compass gait model: The equations of the 
compass during the phase of simple support are 
obtained by using the following Equations of Euler-
Lagrange: 
 

( , ) ( , )
( ) ( )

d L L
F

dt

θ θ θ θ
θ θ

∂ ∂
− =

∂ ∂

& &

&

                                 (1) 

 

With: ( , ) : the Lagrangian of the system :L θ θ&  
 

( , ) ( , ) ( , )c pL E Eθ θ θ θ θ θ= −& & &                                     (2) 

 
F: External forces applied to the system. 

The correspondent relations between the actuator 
pairs and the robot degrees of freedom are represented 
as follows: 

u
i

P
Torc

θ
∂
=

∂ &
                                                      (3) 

 

The virtual Power Pu is given by the following relation: 
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The equations of Euler-Lagrange are written by: 
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Fig. 1: Compass robot 

θs: Absolute angle of the leg in touch with the ground, (indication 's' is for support leg); θns: Absolute angle of the leg 

during flight, (indication 'ns' is for non swing leg); α: The half inter leg angle; φ: The slope angle; hns, hs: Height 

separating both legs with regard to the point of biped contacting the ground; hh: Height between hip and the point 

contacting the sole of compass; m, mh: Mass of the pendulums which represents the leg and the hip 
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The torc is applied to the hip and the ankle. 
The Lagrange Eq. (7) can, thus, be written in the 

following form: 
 

2
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The state vector: 
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The linear representation of the compass model by the 

jacobian method is thus written as: 

With, 
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The linear representation of the compass model is 

written as follows: 
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According to the linear representation of the 

compass model (15), the system corresponds to a 
switching system having three possible transitions; The 
transition is generated by a switching of the command 
varying the state equation which represents the system, 
moving thus from one mode to another according to the 
selection matrix J. Therefore, the torc applied by 
actuators commute, between the hip, the ankle and the 
pair ankle hip at the same time. 

 

Command of the hip: In this case where only the hip 

is commanded the selection matrix J is then: 

1 0

1 0
J

− 
=  
                                                           (16)  

  
The model of compass is: 
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The ankle is commanded: The selection matrix is: 

� = �0 0
0 1�. The model command matrix B becomes: 
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c
B

 
 
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 
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The ankle and the hip are commanded: The selection 

matrix in this case becomes: 
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The state vector of the system after the impact can 

be expressed in terms of the previous state vector of the 

robot by the following relation: 
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The non support leg, located by the indications, in 

��  is the one which ends its flight phase, while the non 
supporting leg, located by ns in �	 is the one which 
will to leave the ground. The non support leg of in �� 
and in �	are thus switched around: 
 

( 1) ( 1)
0 1

( ) ( )* ( );
1 0

H Q Q jα α α+ − − −  
= =  

 
              (21) 

 

With, 

 

1 2

3 4

0 1 0 0

1 0 0 0

0 0

0 0

ns ns

s s

ns ns

s s

q
H H

H H

θ θ

θ θ

θ θ

θ θ

+ −

+ −
+

+ −

+ −

    
    
    = =    
    
       

& &

& &

             (22) 

 

;ns s s nsθ θ θ θ+ − + −= =                                           (23) 



 

 

Res. J. App. Sci. Eng. Technol., 7(19): 4143-4149, 2014 

 

4146 

1 2 3 4;ns ns s s ns sH H H Hθ θ θ θ θ θ+ − − + − −= + = +& & & & & &                     (24) 

 
During the phase of double-support, the 

orientations of both legs confirm that: 
 

2ns s s nsθ θ θ θ α− − + +− = − =                                       (25) 

 
With α is the between leg angle of the Compass. 

 
Stability of the switching system: Let’s consider the 
following switching system: 
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1 1
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where, the parameters µi (k) replace the commutative 

law such as ∑ �� = 1

���  the feedback control is written 

in the following form: 
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The closed loop system is given by the following 

equation: 
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The polyquadratical stability of the switching 

systems was proposed by Daafouz et al. (2002). It is 
possible to write the system (28) under the same 
following expression: 
 

If the model is described by the matrix A
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We can thus write the system according to the 

following form: 
 

1

( 1)
N

i
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i
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The system (30) is polyquadratically stable only if 

there are N symmetric matrices defined positively S1... 
SN and N matrices G1... GN of appropriate dimensions 
confirming: 
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The Lyapunov function used is written as: 
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With: �� =  ��
��. 

Replacing A by (Ai + BiKi) and linearizing the 

matrix disparity by the change of variable R = GK. We 

reach the following condition expressed in LMI terms: 

 

0; ...... 1,.....
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The closed loop system is asymptotically 
stabilizable by state feedback if there are symmetric 
matrices Sij≻0, Matrices RiGi of appropriate dimensions 
such as the gain of return of state is given by: 
 

1

i i iK RG −=                                                         (34) 

 
The search for solutions to the matrix disparity (35) 

with the equality constraints is a non convex problem. 
An imposed solution K exists only if the following 
conditions are confirmed (Halabi, 2005): 
 

1
( ) ( )i i irank K rank K G

−=                                    (35)  

 
Some relaxations are introduced, allowing for the 

elimination of the non-convexity of the problem. 
The calculation program starts by calculating Ki, 

stabilizing the pairs (Ai, Bi), for 1 … n, respecting the 
constraint of rank (35). 

 
Stability of the compass model: We are interested in 
this part in the robot control, in other terms when the 
robot is in the swaying phase. We have more 
particularly studied the stability of the linear system 
when the pair applied by actuators, commutes between 
the hip, the ankle, or the pair of ankles and the hip at 
the same time. This switch is described by the matrix of 
selection J. The system is poly quadratically stable the 
following are set LMI condition: 
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• Hip is commanded: 
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• (hip and ankle) are commanded: 
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SIMULATION AND RESULTS 

 

The  compass  robot  described  the  owing  

discrete time system, respecting Shannon Theory
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By applying the approach of the switching system 

to find the command matrix Ki in a way that the closed 

loop system is stable, by using MATLAB © to resolve 

the disparities LMI, the results are the following: 

 

• Ankle command: 

 

3 0 0 0 0
1

0.0040 0.0134 0.0141 9.999
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• Hip command: 
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• (hip and ankle) Command: 
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1
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chK e
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=  
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Fig. 2: Various modes of switching      
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Fig. 3: Angle of the leg θs, θns 

 

The simulation under MATLAB © of the system 

during the swing phase in the various modes of 

switching gives the following signals (Fig. 2 and 3). 

According to the curves of signals θS, θns, the 

system remains stable and the gains by state feedback 

Ki 
Calculated by the method of the switching system 

stabilize the closed loop system in the three cases of 

command. This method of calculation offers thus a 

domain of important stability as it confirms in real time, 

the conditions of the stability of the compass before the 

flight: θS + θns = -2φ and θS + θns = 2α and the condition 

after one step of shifting 2ns s s nsθ θ θ θ α− − + +− = − = .
 

 

CONCLUSION 

 

In this study we presented a new approach to 

synthesis of controllers for a biped robot. The used 

models for the synthesis of controllers are derived from 

the Lagrange formalism. The approach is based on the 

progress in research on switched systems. We have 

demonstrated that it is possible to stabilize robustly the 

walking robot by using three switched controllers 

which act alternately. 

The approach of synthesis is also based on the use 

of linear matrix inequalities LMI type for the design of 

robust controllers. In some cases the generated matrix 

inequalities are BMI types. We proposed in this study, 

some techniques of relaxation to transform these BMI 

into simple LMI easy to be solved by existing numerical 

solvers. 
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