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Abstract: The present paper studies the heat transfer flow of a third grade fluid between two heated parallel plates 
for the two models: constant viscosity model and Reynold's model. In each case the nonlinear momentum equation 
and the energy equation have been solved using HPM and PEM. Graphs for the velocity and temperature profiles are 
presented and discussed for the various values of parameters entering the problem. The dominant effect is governed 
by whether or not the fluid is non-Newtonian, the temperature effects being relegated to a less dominant role. 
 
Keywords: Constant viscosity model, homotopy perturbation mathod, momentum equation, PEM, Reynold's model, 

third grade fluid 
 

INTRODUCTION 
 

In general, the flowing mixtures consist of solid 
particles in a fluid such as coal based slurries exhibit 
non-Newtonian characteristics. These mixtures are 
important in a variety of industrial applications and heat 
transfer plays an important role in handling and 
processing of these mixtures.There are properties of 
fluid behavior which cannot be explained on the basis 
of the classical, linearly viscous models. Several 
constitutive equations have been suggested to 
characterize such non-Newtonian behavior. Amongst 
these are fluid of the different type of grade n 
(Truesdell and Noll, 1965), the incompressible and 
homogeneous fluid of grade 1 being the linearly viscous 
Newtonian fluid. For example, it has been shown that 
the substantial performance benefits can be obtained if 
coal-water mixture is pre-heated (Massoudi and 
Christie, 1995; Tsai et al., 1988). 

In this study, we consider the model described by 
Szeri and Rajagopal (1985) for heat transfer flow of a 
third grade fluid between two parallel plates maintained 
at different temperature located in the y = 0 and y = h 
planes, respectively, of an orthogonal cartesian 
coordinate system. Szeri and Rajagopal (1985) 
examined this model for the two cases via a similarity 
transformation and concluded that the temperature 
dependence was not important for third grade fluid for 
the considered parameters and the variable viscosity 
solutions were not too distinct from that of constant 
velocity. With a slight modification, we consider this 

model and compare our results produced by PEM and 
HPM with those produced by Szeri and Rajagopal 
(1985). In each case the nonlinear momentum equation 
and the energy equation have been solved using HPM 
and PEM. Graphs for the velocity and temperature 
profiles are presented and discussed for the various 
values of parameters entering the problem.  

There have been several studies involving heat and 
transfer in the non-Newtonian fluids, but most of them 
seem to lack a systematic and rational treatment of the 
thermodynamics of the problem: while the stress 
constitutive equation is altered to account for non-
Newtonian behavior, the constitutive equation for the 
specific Helmholtz free energy or the heat flux vector 
are left unchanged. Although this might be correct for a 
particular fluid, it does not seem proper to assume the 
same a priori.  

In this study, we attempt a thermodynamically 
consistent study of the heat transfer problem under 
consideration. We consider two models in our 
approach: constant viscosity model and Reynolds 
model (Szeri and Rajagopal, 1985). The governing 
differential equations for the velocity and temperature 
are non-linear whose exact solutions are not available. 
Therefore, asymptotic methods prove a powerful tool to 
obtain approximate solution of these equations. An 
excellent review of some of these methods is given in 
(Siddiqui et al., 2008). 

Of various asymptotic methods, the one is the 
homotopy perturbation method provided by He (1998a,  
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1999, 2000, 2003) which is coupling of the traditional 
perturbation method and the homotopy concept used in 
the topology. In a series of papers by Abbasbandi 
(2006) and He (2004a, b, 2005a, 1998b, 2005b) and 
several others have not only applied this method 
successfully to obtain the solution of currently 
important problems in science and technology, but have 
also  shown  its  effectiveness and reliability. Siddiqui 
et al. (2006a, b, 2007, 2008) have applied this method 
to analyze flow problems of non-Newtonian fluid 
mechanics. In this study we have used HPM and PEM 
to solve the problem. We have also given a comparison 
of different perturbation techniques with illustrative 
examples of Shakil et al. (2013) and Wahab et al. 
(2013a, b, c). 
 

METHODOLOGY 
 
Basic equations: The basic laws of the conservation of 
mass, conservation of momentum and the conservation 
of energy for an incompressible fluid are given by: 
  

. = 0, v                               (1) 

 

= ,
d

f div
dt

  
v

T                                            (2) 

 

= . ,
d

div r
dt

  T L q                             (3) 

 
where, 
v  = The velocity field  
݂ = The body force 

T = The stress tensor  
ρ = The constant density 
ε = The internal energy  
r  = The radiant energy 
 
The constitutive equation for a third grade fluid is: 
  

2
1 1 2 2 1= ( ) ( ) ( )p         T I A A A  

  2
1 3 2 1 2 2 1 3 1 1( ) ( ) ( )( ) .tr        A A A A A A A

  
(4) 

 
Here -pI denotes the indeterminate part of stress 

due to the constraint of incompressibility, μ (θ) is the 
coefficient of viscosity and α1 (θ), α2 (θ) are material 
moduli, usually referred as normal stress coefficients. 
The Rivlin-Ericksen tensor, An are defined as: 
A0 = l, the identity tensor and: 
  

1
1 1= ( ) ( ) . 1Tn

n n n

D
n

Dt


     
A

A A v A v
 
          (5) 

 
In our analysis, we assume that the fluid is 

thermodynamically compatible; hence the stress 
constitutive relation reduces to: 

 
 
Fig. 1: The x coordinate direction that is chosen parallel the 

external pressure gradient 
 

2 2
1 1 2 2 1 1 1= ( ) ( ) ( ) ( )( ) .p tr           T I A A A A A    

(6) 

  
Governing equations: With reference to the model by 
Szeri and Rajagopal (1985), consider Poiseuille flow of 
a thermodynamically compatible third grade fluid 
between parallel plates located at y = 0  and y = h, 
respectively (Fig. 1), such that we seek velocity field of 
the form: 
 

= [ ( ), 0, 0],v u y                              (7)  
 

In the absence of body forces, the balance of linear 
momentum: 
  

= .
d

div
dt

 
v

T b                 (8) 

 
Using velocity profile (7), Eq. (8) reduces to: 
  

3( ) 2 ( )( ) = ,
d du d du p

dy dy dy dy x
   
    

       
                 (9) 

 

2
1 2[2 ( ) ( )]( ) = ,

d du p

dy dy y
   

  
   

            (10) 

 

0 = .
p

z


                                                                

(11) 

 
Since the fluid is incompressible and is hence 

constrained to satisfy: 
  

= 0.divV                (12) 
 
The modified pressure P is defined through: 
  

2
1 2= [2 ( ) ( )]( ) .

du
P p

dy
                               (13) 

 
Equation (9) to (11) take the simpler form:  
 

3
3( ) 2 ( )( ) =

d du d du P

dy dy dy dy x
   
    

                    

(14) 

 
as = ( )P P x  only. 

The appropriate form of the energy equation 
produced as follows: 
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= . ,
d

div r
dt

  T L q              (15) 

 
where, ε denotes the internal energy and r is the radiant 
energy, both per unit mass and:  
 

2 2
1 1 1

1 1
. = ( ) | | ( ) | |

2 4

d
A A

dt
   T L  

3 41 2
1 3 1

( ) ( ) 1
( ) | | ,

2 2
tr A

     
 A             (16) 

 
Which after simplification gives: 
  

2 4
3. = ( )( ) 2 ( )( ) .

du du

dy dy
   T L

                          

(17) 

 
The heat flux vector q is given by Fourier's law: 
  

=q k grad                                          (18) 

 
where, k = k (θ) denotes the thermal conductivity, but 
specify that k is constant. We now consider the role of 
internal energy to the energy equation. Since the 
internal energy is related to the specific Helmholtz free 
energy through: 
  

= ,                               (19) 

 
 where η is the entropy, leads to: 
  

21
1

( )
= ( , 0) | | .

4
A

    


 
                      

(20) 

 
For the thermodynamically compatible fluid, the 

specific entropy is related to the specific Helmholtz free 
energy through:  

 
= ,                 (21) 

 
where, the suffix denotes differentiation with respect to 
that variable. It follows from (20) and (21) that: 
  

21
1

( )
= ( ,0) | | .

4
A 

    


                            (22) 

 
The material properties of the fluid are allowed to 

be temperature dependent, but require the temperature 
to satisfy the constraint: 

 
= ( ),y                              (23) 

 
Then by the virtue of (22) and (23): 

 = 0.
d

dt

                             (24) 

 
Substituting (19) and (21) into (15), in the absence 

of radial heating, the balance of energy implies that: 
  

2
2 4

3 2
( )( ) 2 ( ) = 0.

du du d
k

dy dy dy

    
             

(25) 

 
The following variables and parameters introduced 

to non-dimensionalize (14) and (25):  
 

=
y

y
h

, =
u

u
V

,  

1

2 1

=T
 
 



 
*

=



,  

2
*

2
*

=
V

A
h




, 
2

*

2 1

=
( )

V

k


 




 

 
where, 

* *= ( )   ; 
* 3 *= ( )    and the characteristic 

velocity is given by ܸ ൌ 	െ
௛మ

ଶఓ

ௗ௣

ௗ௫
, but with *  replacing 

μ, 
1 = (0)   and 

2 = ( )h   are the wall temperature at 

the lower and the upper plate, respectively.  
The non-dimensional form of Eq. (14) and (25) are: 
  

' ' 21 6 ( ) = 2u A u                               (26) 

 
' ' 2 ' 2( ) 2 ( ) = 0.T u A u                              

(27) 

 
Equation (26) and (27) can be solved subjected to 

the boundary conditions:  
 

(0) = 0, (1) = 0.u u                            (28) 

 
(0) = 0, (1) = 1.T T               (29) 

 
The viscosity is temperature dependent in (26) and 

(27) and the precise form of the equation of motion 
depends on the viscosity model chosen to represent the 
fluid. We refer here two viscosity models and the 
corresponding form of the non-dimensional equation of 
motion: 

 
Constant viscosity model: 

  
( ) = 1T                                                        (30) 

 
' ' 21 6 ( ) = 2u A u                               (31) 

 
Subjected to the boundary conditions:  
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(0) = 0, (1) = 0.u u               (32) 
 
Reynolds's model:  

  

0( ) = exp( )m                               (33) 

 
so that: 
  

( ) = exp( )T MT                                           (34) 
 

' 2
' '( ) 2

1 6 =
u

u A MTu
 

  
   

                              

(35) 

 
where, 

2 1= ( )M m    

Subjected to the boundary conditions:  
 

(0) = 0, (1) = 0.u u               (36) 
 

Our aim here is to compare the results of this 
model (Szeri and Rajagopal, 1985) with the results 
produced by HPM and PEM. 
 
Constant viscosity model by HPM: In this case, we 
have two non-linear equations:  
 

' ' 2 ' 2( ) 2 ( ) = 0,T u A u                                (37) 

 
' ' 21 6 ( ) = 2,u A u                  (38) 

 
Subjected to the boundary conditions: 
  

(0) = 0, (1) = 1T T                            (39) 
 

(0) = 0, (1) = 0.u u                            (40) 
 

We have to solve these two equations 
simultaneously. By applying the basic definition of 
HPM and expanding T  and u  as: 
  

2
0 1 2= ....T T pT p T                             (41) 

 
2

0 1 2= .....u u pu p u                (42) 

 
We will get system of linear equations for 

temperature distribution as: 
 

0p  
0' = 0,T                              (43) 

 
Subjected to the boundary conditions:  
 

0 0(0) = 0, (1) = 1.T T                            (44) 

 
1p  2 4

1 0 0' ' 2 ' = 0,T u A u                               (45) 

Subjected to the boundary conditions:  
 

1 1(0) = 0, (1) = 0.T T                                          (46) 

 
2p  3

2 1 0 1 0' 2 ' ' 8 ' ' = 0,T u u A u u                 (47) 

 
Subjected to the boundary conditions:  
 

2 2(0) = 0, (1) = 0.T T                            (48) 

 
And the system of linear equations for velocity profile: 
  

0p  
0' = 2,u                 (49) 

 
Subjected to the boundary conditions:  
 

0 0(0) = 0, (1) = 0.u u                            (50) 

 
1p  2

1 0 0' 6 ' ' = 0,u Au u                                           (51) 

 
Subjected to the boundary conditions: 
  

1 1(0) = 0, (1) = 0.u u                            (52) 

 
2p  2

2 1 0 0 1 0' 12 ' ' ' 6 ' ' = 0,u A u u u Au u                 
(53) 

 
Subjected to the boundary conditions:  
 

2 2(0) = 0, (1) = 0.u u               (54) 

 
Solving these systems of linear equations we get 

the temperature distribution and velocity profile: 
 

4 3 2 6 5 3 2
42 8 8 4

= ( ) 2 ( 2 ).
3 3 2 6 15 5 3 2 10

y y y y y y y y y
T y A y          

                                           (55) 
 

2 3 4 2= (8 4 6 2 ).u y y A y y y y                       (56) 
 

Constant viscosity model by PEM: In this case, we 
have two non-linear equations: 
  

' ' 2 ' 2( ) 2 ( ) = 0,T u A u                                (57) 

 
' ' 21 6 ( ) = 2,u A u                                (58) 

 
Subjected to the boundary conditions: 
  

(0) = 0, (1) = 1T T               (59) 
 

(0) = 0, (1) = 0.u u               (60) 
 

We have to solve these two equations 
simultaneously. Here we have to expand the parameters 
as: 
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 2
0 1 2= ....T T pT p T                             (61) 

 
2

0 1 2= ....u u pu p u                (62) 

 
2

1 2= ...p p                                (63) 

 
2

1 2= ...A pA p A                             (64) 

 
Using these expanded parameters in above 

equations, we will get system of linear Equations for 
temperature distribution as: 
 

0p  
0' = 0,T                              (65) 

 
Subjected to the boundary conditions:  
 

0 0(0) = 0, (1) = 1.T T                            (66) 

 
1p  2

1 1 0' ' = 0,T u                              (67) 

 
Subjected to the boundary conditions: 
  

1 1(0) = 0, (1) = 0.T T               (68) 

 
2p  2 4

2 1 1 0 2 0 1 1 0' 2 ' ' ' 2 ' = 0,T u u u A u            
(69) 

 
Subjected to the boundary conditions:  
 

2 2(0) = 0, (1) = 0.T T                            (70) 

 
And the system of linear equations for velocity profile: 
  

0p  0' = 2,u                 (71) 

 
Subjected to the boundary conditions: 
  

0 0(0) = 0, (1) = 0.u u                            (72) 

 
1p  2

1 1 0 0' 6 ' ' = 0,u A u u               (73) 

 
Subjected to the boundary conditions:  
 

1 1(0) = 0, (1) = 0.u u                            (74) 

 
2p 2 2

2 1 1 0 0 1 1 0 2 0 0' 12 ' ' ' 6 ' ' 6 ' ' = 0,u Au u u Au u A u u       
(75) 

 
Subjected to the boundary conditions:  
 

2 2(0) = 0, (1) = 0.u u                            (76) 

Solving these system of linear equations we get the 
temperature distribution and velocity profile: 

 

  

 

                                         (77) 
 

2 3 4 2= ( 8 4 6 2 ).u y y A y y y y                   (78) 

 
Reynolds's model by HPM: In this case, we have two 
non-linear equations: 
  

' ' 2 ' 4( ) exp( ) 2 ( ) = 0,T u MT A u                  
(79) 

 
' ' 2 '6 ( ) exp( ) = 2exp( )u A u MT MTu MT          (80) 

 
where, 

2 1= ( )M m    

Subjected to the boundary conditions: 
  

(0) = 0, (1) = 1T T               (81) 

 
(0) = 0, (1) = 0.u u               (82) 

 
We have to solve these two equations 

simultaneously. By applying the same procedure as for 
constant viscosity model, we will get system of linear 
equations for the temperature distribution as: 
 

0p  
0' = 0,T                              (83) 

 
Subjected to the boundary conditions:  
 

0 0(0) = 0, (1) = 1.T T               (84) 

 

1p
2

2 2 2 2 4
1 0 0 0 0 0 0' ' ' ' 2 ' = 0,

2

M
T u Mu T u T A u     

  
(85) 

 
Subjected to the boundary conditions:  
 

1 1(0) = 0, (1) = 0.T T                                               
(86) 

 
And the system of the linear equations for velocity 

profile: 
  

0p  
0' = 0,u                                                         (87) 

 
Subjected to the boundary conditions:  
 

0 0(0) = 0, (1) = 0.u u                       
          (88) 
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1p  
2

2 2 2 2 2 2
1 0 0 0 0 0 0 0 0 0 0 0 0' 6 ' ' ' ' ' ' ' ' 2 2 = 0,

2

M
u A u u Mu u T u u T MT u MT M T

 
          

 
                                     (89) 

 
Subjected to the boundary conditions:  
 

1 1(0) = 0, (1) = 0.u u                                                                                                                             (90) 

 
Solving these system of linear equations we get the temperature distribution and velocity profile: 
  

4 1 3 9
2 8 20 1 3

= ( ) ( )
720 36 448 336 56 14

A M y A M y A M
T y M y M A

          
 

 

3
7 2 61 2 16 1 16

( ) ( ) ( ) (8 )
21 56 7 21 360 30 40 5 3

A M AM M A
My M A My A

M

               
   

 

2
5 1 1 16 2 1

( ) ( 2 ) ( )
30 4 5 4 5 3 10

M M
My A A A

M

 
        

 
 

2
4 3 1 1 1 1

( ) ( ) ( ) ( 1)
648 864 3 10 24 2 6 9 18 4

A M A M A M
My M A

 
          

 
 

2
3 1 1 10 4 5

( ) (2 )
3 72 27 9 2 3 3 18

M A M A
My A

M

 
       

 
 

3 2
2 1 2 1 3

( ) .
1296 54 6 36 3 6 2

AM AM M A
My A

M

 
        

 
                           (91) 

  
5 9 4 8 3 7 2 3 7 29 27 27

= ( ) ( )
96 56 14 6 2 14 6 2

A M y AM y AM y M AM y M
u M M


          

2 6 2 2 6 2 5 4 3
22 29 2 29 33

( 4 ) ( 4 ) ( 2 24)
5 3 2 5 3 2 5 48 4 2

AM y M AM y M AMy M M M
M M M            

3 2
4 4
( 7)

36 3 6 8

M M M M
AMy

M A
       

2
3 28 1 5 6 1 1
( ) ( 2)

12 2 3 12 6 2

M M M
AMy M AMy

M A A M MA A
            

5 4 3 2 23 17 19 3 22
( 2 1).

1120 504 105 5 24 15

AM AM AM AM M AM
y A                                                              (92) 

 
Reynolds's model by PEM: In this case, we have two non-linear equations: 
  

' ' 2 ' 4( ) exp( ) 2 ( ) = 0,T u MT A u                                                                                                                  
(93) 

 
' ' 2 '6 ( ) exp( ) = 2exp( )u A u MT MTu MT                                                                         (94) 

 
where 

2 1= ( )M m    

Subjected to the boundary conditions: 
  

(0) = 0, (1) = 1T T                                                                                                                (95) 

 
(0) = 0, (1) = 0.u u                                                                                                                             (96) 

 
Applying the same procedure as for the constant viscosity model, we will get system of linear equations for 

temperature distribution as: 
 

0p  
0' = 0,T                                                                                                                               (97) 
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Subjected to the boundary conditions:  
 

0 0(0) = 0, (1) = 1.T T                                                                                                                             (98) 

 
1p  2

1 1 0' ' = 0,T u                                                                                                                  (99) 

 
Subjected to the boundary conditions:  
 

1 1(0) = 0, (1) = 0.T T                                                                                                                           (100) 

 
2p  2 2 4

2 2 0 1 0 1 1 1 0 0 1 1 0' ' 2 ' ' ' 2 ' = 0,T u u u M u T A u                                               (101) 

 
Subjected to the boundary conditions: 
  

2 2(0) = 0, (1) = 0.T T                                                                                                                           (102) 

 
And the system of linear equations for the velocity profile: 
  

0p  
0' = 2,u                                                                                                                (103) 

 
Subjected to the boundary conditions: 
  

0 0(0) = 0, (1) = 0.u u             
                                                                                                                         (104) 

 
1p  2

1 0 1 0 0 1 0' 6 ' 2 = 0,u u M T u M T                                                                                                                     
(105) 

 
Subjected to the boundary conditions:  
 

1 1(0) = 0, (1) = 0.u u                                                                                                                           (106) 

 
Solving these system of linear equations we get the temperature distribution and velocity profile:  
 

4 3 2 4 3 2 2 3 5 6
4

1 2 1

2 2 4 8 8
= 2 2

3 3 2 6 3 3 2 6 2 3 5 15 10

y y y y y y y y y y y y y
T y y

     
                     

       
 

7 6 5 4 3 2 3 4 5

1 1 1

11 7 3 163

84 360 60 12 10 20 2520 6 3 5 30

y y y y y y y y y y y
M M

   
             

     
 

2 3 5 6
4

1 1

4 8 8
2 2 .

2 3 5 15 10

y y y y y
A y

 
       

                                                                                             

(107) 

 
5 4 3

2 3 4 3
1

3
= 3 2 4 .

20 12 3 10

y y y y
u y y y y y y M

 
           

 
                                      (108) 

  
DISCUSSION OF RESULTS 

 
In both the cases: Constant viscosity model and Reynold's model, we obtained velocity profiles and temperature 

distributions for different values of M and A keeping the γ fixed. For dimensionless velocity and temperature 
distributions for Constant viscosity model and Reynolds's model by HPM keeping γ = 10, it is clear from the Fig. 2 
that  for  M = 0, 1  and  5,  departure  from  symmetry  is  slight. To  investigate  the  effects of M on the temperature 
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Fig. 2: Dimensionless velocity and temperature distributions for constant viscosity model and Reynolds's model by HPM 

keeping γ = 10 
 

 
 
Fig. 3: Dimensionless velocity and temperature distributions for constant viscosity model and Reynolds's model by PEM keeping 

γ1 = 0 and γ2 = 10 
 
distribution, we include viscous heating γ = 10. At this 
moderate rate of viscous heating, the temperature shows 
strong dependence on M for the Newtonian fluid only. 

For the non-Newtonian fluid, the temperature 
profiles obtained at different values of M coalesce 
almost  into  single  curve.  For  dimensionless  velocity 
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and temperature distributions for Constant viscosity 
model and Reynolds's model by PEM keeping γ1 = 0  
and γ2 = 10, Fig. 3 indicates that at this moderate rate of 
viscous heating the temperature shows strong 
dependence on M for the Newtonian fluid only. For the 
non-Newtonian fluid the temperature profiles obtained 
at different values of M coalesce almost into a single 
curve. 

It is clear from both the figures that the temperature 
and velocity distributions remain sensibly invariant 
with respect to the viscosity index M  in non-Newtonian 
fluids if the viscosity-temperature law for these fluids is 
given by Reynolds' formula. The Fig. 3 indicates that 
even slight departure from Newtonian behavior places 
the fluid in the regime where dependence on the 
velocity index is only slight. 
 

CONCLUSION 
 

Here we observed the flow of third grade fluid 
between heated parallel plates using HPM and PEM. It 
is clear from the figures that results obtained by HPM 
(Fig. 2) and PEM (Fig. 3) are very close to the 
numerical results obtained by Szeri and Rajagopal 
(1985). Thus, an important conclusion is that the 
dominant effect is governed by whether or not the fluid 
is non-Newtonian, the temperature effects being 
relegated to a less dominant role. We conclude that 
from point of view of velocity and temperature 
distribution in poiseuille flow, the temperature 
dependence is not important for the third grade fluid for 
the considered parameters and the variable viscosity 
solutions were not too distinct from that of constant 
velocity even if the fluid is slightly non-Newtonian.  
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