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Predictive PID Control Based on GPC Control of Inverted Pendulum 
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Abstract: Having regard to the large application of the inverted pendulum in robotic system, this study is interested 
in controlling this process with two strategies of controls. The first proposed control is the state feedback with an 
observer based on the Generalized Predictive Control (GPC) algorithm. In the second proposed control we used the 
characteristic of predictive control GPC to improve the performance of the classical PID controller. The obtained 
results have been discussed and compared; the simulation results obtained by the predictive PID control are 
mentioned. 
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INTRODUCTION 
 

In this study, we have attempted to design a new 
methodology of synthesis of a PID Controller using 
Generalized Predictive Control (GPC), this proposed 
PID control is based on the calculation of an equivalent 
set of PID parameters based on a control law GPC 
obtained by using a general process model (Uren and 
Schoor, 2011; Johnson and Moradi, 2005). However, 
the implementation of GPC on real time processing 
need a long execution time that is why the new 
developed PID approach tends to be easy in real-time 
implementation to control the industrial system. 

The PID control (Proportional-Integral-Derivative 
control) is a very popular control strategy in the 
industry hanks to its simple structure and easy 
adjustment. PID control can usually obtain satisfactory 
control performance and have been proved to be 
practical in many industrial processes (Uren and 
Schoor, 2011; Johnson and Moradi, 2005). GPC 
belongs to the class of technical Model Predictive 
Control (MPC). This control strategy is among the most 
popular and powerful tool to solve many problems. 
GPC uses a model that includes the prediction of future 
outputs over a certain horizon and that can provide a 
variations in the signal measuring and controlling 
actions based on this prediction (Uren and Schoor, 
2011; Johnson and Moradi, 2005; Mrabet and Gu, 
2009; Pacheco et al., 2011; Clarke et al., 1987). 

The control of the inverted pendulum proposes a 
classical important problem in the control theory, this 

model offer a rich research environment to implement a 
variety of control algorithms (PID controllers, neural 
networks, fuzzy control, genetic algorithms, etc.) 
(Parada Renato et al., 2011; Johnson and Moradi, 
2005). Today, the linear inverted pendulum model is 
widely used in robotics application, especially in the 
task of trajectory generation, it is a major problem in 
research of biped robot (Kajita et al., 2005, 2001; 
Morimoto et al., 2006; Sakka et al., 2010). In this study 
we are interested to the control of an inverted pendulum 
with two ways. The first methodology is the predictive 
state feedback with an observer; the second is the 
predictive PID control. The proposed strategies of 
controls are both based on GPC control law. 

The first part of this study presents the algorithm of 
the Generalized Predictive Control (GPC). The second 
part present the state feedback control with an observer 
based on GPC law. In the third part we are proposed the 
predictive PID control based on GPC control and in the 
fourth part we introduce the mathematical model of 
inverted pendulum and the state space representation. 

Finally, we present a comparison between control 
signal obtained from state feedback with an observer 
using model predictive control and the proposed 
predictive PID, both methods are applied to control of 
an inverted pendulum model. The principal advantage 
of the proposed method is that the input constraints and 
future trajectories can easily be incorporated into the 
control design. The simulation results are presented to 
demonstrate the performance of the proposed predictive 
PID control. 
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GPC ALGORITHM 
 

We begin this study by considering the discrete-
time  state  space  representation  of  a  single-input  and 
single-output system, described by the following 
system: 

 
( 1) ( ) ( )d p d px k A x k B u k  

                     (1) 
 

( ) ( )
p

d p dy k C x k
                                       (2) 

 
where, xd (k) is the variable state, yd (k) is the output 
variable and u (k) is the input variable. The predictive 
controller designed for this model should be put in the 
form of an augmented model with an integrator. The 
simply description of the GPC algorithm is giving step 
by step as follows (Uren and Schoor, 2011; Johnson 
and Moradi, 2005; Pacheco et al., 2011): 

 
Step 1: In the first step we take the difference between 

xd (k + 1) and xd (k) on both sides of (1), we 
obtained the following equation: 

 
( 1) ( ) ( ( ) ( 1))

( ( ) ( 1)).
d d P d d

p

x k x k A x k x k

B u k u k

    

  
             (3) 

 
The following equations represent the difference of 

the state variables and control variables given by: 
 

( 1) ( 1) ( )d d dx k x k x k    
                        (4) 

 
( ) ( ) ( 1)d d dx k x k x k   

                         (5) 
 

( ) ( ) ( 1)u k u k u k   
                               (6) 

 
With the Eq. (4), (5) and (6), the difference of the 

state-space equation is: 
 

( 1) ( ) ( )d p d px k A x k B u k     
                 (7) 

 
Step 2: In this step we connect ∆xd (k) to the output yd 

(k) to obtain the integration effect and we chose 
the new augmented state vector X (k): 

 
( ) [ ]T T

d dX k x y                               (8) 
 

The output equation can then be written as: 
 

( 1) ( ) ( ( 1) ( ))

( ) ( )

d d p d d

p p d p p

y k y k C x k x k

C A x k C B u k

    

   
        (9) 

Putting together (8) with (9): 
 

 
                                                                                   (10) 
 
The new state model given by system (10) is: 

 
( 1) . ( ) ( )

( ) ( )

X k A X k B u k

y k CX k

   
                            (11)  

 
with,  

 

0

1

0 1

T
pp p

p Pp p

p

BA
A B

C AC A

C

    
           

      
 

This augmented model will be used in the design of 
predictive control in the rest of the paper.  

 
Step 3: The prediction of the plant output with the 

future control variable is the important step in 
the predictive control design. Let the sampling 
instant k; with k>0.  

 
The future control trajectory given information 

about X (k) is denoted by: 
 

( ), ( 1), , ( 1)u k u k u k nc                  (12) 
 

The future vector of control movement is denoted by: 
 

[ ( ), ( 1), , ( 1)]TU u k u k u k nc             (13) 
 

where, nc is called the control horizon.  
The future state variables X (k) are predicted for np 

number of samples instant, where np is called the 
prediction horizon. The future state variables X (k) are 
denoted by: 

 

  
                                                                                   (14) 
 

Based on the state-space of augmented model (A, 
B, C), the future state variables are calculated 
sequentially using the set of future control parameters 
(Uren and Schoor, 2011). Using system (11) we can 
write the relations recursively for np-step ahead 
prediction: 
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2

1 2

( 1 | ) ( ) ( )

( 2 | ) ( ) ( ) ( 1)

( | ) ( ) ( ) ( 1)

( 1)

np np np
p

np nc

X k k AX k B u k

X k k A X k AB u k B u k

X k n k A X k A B u k A B u k

A B u k nc

 



   

      

      

    



  
 
The predicted output variables are, by substitution: 
 

2

1 2

( 1 | ) ( ) ( )

( 2 | ) ( ) ( ) ( 1)

( | ) ( ) ( ) ( 1)

( 1)

np np np
p

np nc

y k k CAX k CB u k

y k k CA X k CAB u k CB u k

y k n k CA X k CA B u k CA B u k

CA B u k nc

 



   

      

      

    



  
 
The matrices forms are:

 

 



2

1 2

( 1| )

( 2 | )
( )

( | )

0 0 ( )

0 ( 1)

( 1)

np

HXp

np np np nc

U

x k k A

x k k A
X k

x k np k A

B u k

AB B u k

A B A B A B u k np


  



   
      
   
   

   

   
       
   
   

     

 







 




 

   (15) 

 

      (16) 
 
where, X and Y are, respectively the predicted input 
and output vectors: 
 

( 1 | )

( 2 | )

( | )

X k k

X k k
Xp

X k np k

 
  
 
 

 




;

( 1| )

( 2 | )

( | )

y k k

y k k
Y

y k np k

 
  
 
 

 



 
 
The equation above can now be ordered in 

augmented state space from as: 
 

( )pX HX k U                              (17) 

 
( )Y FX k U                 (18) 

PREDICTIVE STATE FEEDBACK  
WITH AN OBSERVER 

 
This section present the application of control law 

presented in the previous section on a linearized 
system. We integrate the GPC algorithm with a state 
feedback control with an observer. The aim is to design 
a controller that returns the output response of the 
system follow a given reference signal (Prakash and 
Senthil, 2007; Xiaohua and Yuanhua, 2008; Roset and 
Nitmeijer, 2004; Kokate and Waghmare, 2010). 
Then the control equation using estimated state is: 
 

ˆ( ) ( )du k Kx k   
 
The construction of the observer is based on the 

model of the plant, described in Eq. (1). After some 
transient time, the state estimate variable can be 
calculated and denoted by: 
 

ˆ ˆ( 1) ( ) ( )d P d px k A x k B u k  
                           (19) 

 
Then ݔොd (k) is the estimated state. A current 

estimator ݔොd (k) based on the most recent measurements 
of yd (k). The error between the output state variable and 
the estimated output variable denoted by:  

 
ˆ( ) ( ) ( )d dk y k y k    

 
The construction of the observer consists of two 

terms, the first term is the model plant and the second 
term is the correction term between the measured 
outputs used the predictive estimate ݕොd (k) and the 
output prediction. The described equation denoted by: 

 
ˆ ˆ ˆ( 1) ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( )
d P d p ob d p d

d d d

x k A x k B u k L y k C x k

y k C x k

    
 
                                           (20) 

 
where, Lob is the observer gain matrix. 

Note that in the implementation of predictive state 
control using an observer, the control signal ∆ݑ	ሺ݇ሻ and 
the matrices (A, B, C) come from the augmented model 
are used for the predictive control design (Xiaohua and 
Yuanhua, 2008; Roset and Nitmeijer, 2004).  
 
where,  
෠ܻ  (k) = The augmented output estimator  
෠ܺ  (k) = The augmented state estimator 
 

With the information of ෠ܺ  (k) replacing X (k), the 
predictive control law is then modified to find ΔU by 
minimizing of the cost function Job where: 
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nc ncR r I                  (21) 

 
R is the same for all the paper, with r≥0 is a 

constant used for ameliorate the desired closed-loop 
performance. The value of r  is r = 0.9: 
  

ˆ ˆ( ) ( )T T
ob r rJ y Y y Y U R U                  (22)  

 
The necessary condition of the minimum Job is 

obtained as: 
  

0obJ

U




  
 

From which we find the optimal solution for the 
control signal as: 
 

1 ˆ( ) ( ( ))T T
rU R y FX k                  (23) 

 
Then the optimal solution of ∆u (k) at time k: 
 

ˆ( ) ( ) ( )r r GPCu k K y k K X k                             (24)  

 
where, 
 

1( )T T
GPCK R F      

 
1( )T T

xK R       
 

The observer gain Lob is calculated from the poles 
of the system Ps, the Observer poles Pob must be faster 
Ps. In our case we impose the observer poles ten times 
faster than the poles of system. 

Equation (24) represents a standard state feedback 
control with estimated ෠ܺ (k). The structure of closed-
loop state feedback is illustrated in Eq. (25) as: 
 

ˆ( 1) ( ) ( ) ( )r r GPCX k AX k BK y k BK X k         (25) 

 
Note that the closed-loop observer error ෨ܺ (k + 1) 

equation is: 
 

( 1) ( ) ( )obX k A L C X k                              (26) 

 
where, 
 

ˆ( ) ( ) ( )X k X k X k                              (27) 

 
The Eq. (25) is rewritten as: 
 

( 1) ( ) ( ) ( ) ( )GPC GPC R rX k A BK X k BK X k BK y k       

                                                                                (28) 

Combination of (26) with (28) leads to: 
 

0( 1) ( )

( 1) ( )

0
( )

ob

GPC GPC

r
r

A L CX k X k

BK A BKX k X k

y k
BK

    
          

 
 
 

 

          (29) 

 
PREDICTIVE PID APPROACH 

 
In this part of paper, the generalized predictive 

control law is used for synthesis of a predictive PID. 
This methodology of control introduces the predictive 
output of process and the optimal control parameters for 
calculate the error, between output signal and the set-
point, at simple instant k. This obtained error can be put 
in the conventional form of PID controller (Uren and 
Schoor, 2011).  
 
Conventional PID structure: The discrete form of 
PID controller given by the following equation: 
 

1
( ) [ . ( ) ( ) ( ( ) ( 1)]

k

p i di
u k k e k k e k k e k e k


         

(30) 

 
PID controllers could be written as (Johnson and 

Moradi, 2005): 
 

1 2
0 1 2

1
( ) ( )

1

z z
u k e k

z

   



 


  
                         (31) 

 
where, 0 p i dk k k    , 1 2p dk k     and 2 dk    

and e (k) represents the error at sample k. 
The velocity form of PID controller can be 

obtained with the control input increment at instant k: 
 

0 1 2( ) ( ) ( 1) ( ) ( 1) ( 1)u k u k u k e k e k e k                (32) 

 
where, the three gain of the conventional PID controller 
are kp, ki and kd are the proportional, integral and 
derivative gains, respectively.  
The Eq. (32) can be written in matrix form as: 
 

( ) ( ) [ ( ) ( )]pid pid ru k K E k K y k Y k              (33) 

 
With,  
 

  [ ( ) ( 1) ( 2)]E k e k e k e k    
 
where,  
 

0 1 2[ ]pidK   
            

  (34) 

 
Proposed predictive PID control: Consider the 
following    quadratic    cost    function    presented    by 
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Eq. (35), where the first principal part minimize the 
errors between the reference signal and the output 
signal, the second part minimize the control effort. 
Propose yr (k) the set-point signal at sample time k: 
 

( ) ( )T T
y r rJ y Y y Y U R U                          (35) 

 
The aim of the proposed predictive PID controller 

is to maintain the output signal provided as near as 
possible to the reference signal (Uren and Schoor, 
2011). 

The optimal parameter vector ΔU can be obtained 
by substituting of Eq. (18) into (35), Jy is expressed as: 

 

( ( )) ( ( ))

2 ( ( )) ( )

T
y r r

T T T T
r

J y FX k y FX k

U y FX k U R U

  

               

(36) 

 
The necessary condition of the minimum J is 

obtained as:  
 

0yJ

U




  
 
From the first derivative of the cost function Jy: 
 

2 ( ( )) 2( ) 0y T T
r

J
y FX k R U

U


       

  
    (37) 

From which we find the optimal control vector 
solution as:  
 

1( ) ( ( ))T T
rU R y FX k                      (38) 

 
with,  
 

( ) ( ( ))re k y FX k                             (39) 
 
and,  
 

1( )T T
GPCpidK R     

                                    
(40) 

 
With the obtained results given by (40), we can 

conclude the equality of two gains: 
 

Kpid = KGPCpid 

 
INVERTED PENDULUM MODEL 

 
The inverted pendulum presented in Fig. 1 can be 

found in a variety of machines that incorporate 
components with a similar dynamic. The inverted 
pendulum can be regarded as a simple model of a biped 
robot (Kajita et al., 2005, 2001; Jong and Kyoung, 
1998; Erbatur et al., 2009; Morimoto et al., 2006; 
Sakka et al., 2010; Zhu et al., 2004). 
 
Let us denote by: 
g : The acceleration of gravity 
θ : The angle between vertical and the pendulum 

 

 
 
Fig. 1: Inverted pendulum 
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m : The mass of the pendulum 
J : The moment of inerti 
l : The length of the inverted pendulum  
T : The torque at the base of the inverted pendulum 
M : The total momentum acting on the pendulum 
 

We use the following variation of Newton’s law, 
the equation of motion of the inverted pendulum is: 

 
 ( )M J t                                (41) 

 
 ( ) ( )M T t mgl t                (42) 

 
where, J = ml2 
We can now combine (41) and (42) to a single one: 
 

..
2 ( ) ( ) sin ( )ml t T t mgl t                              (43) 

 
..

( ) sin ( ) ( )
g

t t T t
l

                (44) 

 

For this equation, we set ߱଴ ൌ 	ට
௚

௟
ൌ  to ,ݏ/݀ܽݎ	2.5

obtain a linear equation we set sin ( ) ( )t t �  
The Eq. (44) will be written:  
 

..
2
0( ) ( ) ( )t t T t                  (45) 

 
We can put the Eq. (45) in the state space form. We 

choose the state variables x = (θ θ); the continuous state 
space representation is given by: 
 

.

.2..
0

0 1 0
( )

0 1
T t


 

                        

                            (46) 

 
We can be deduced the discrete state space system 

with Ts = 0.1 sec: 
 

        (47) 
 

COMPARISON OF SIMULATION RESULTS

 
 

The proposed methodologies of control based on 
GPC control are implemented using MATLAB, the 
simulation results, are presented and discussed in this 
section:  
 
Scenario 1: The first proposed scenario given by the 
Fig. 2:  The    pendulum    follow   a    linear   path,   the  

 
 
Fig. 2: Output system responses given by the predictive PID 

control and the predictive observer state feedback 
 
continuous line represents the desired trajectory of the 
center of mass. 

The implementation of the predictive state 
feedback algorithm with in observer on the inverted 
pendulum model gives the following result: 
 

[ -205.7602  -17.6418]'obL   

 
[-365.3934  -365.3934  22.6716]

22.6716
GPC

x

K

K


  

 
The implementation of the predictive PID 

controller based on GPC algorithm for a control of an 
inverted pendulum begins by creating an augmented 
model and then we choose best values of the control 
horizon and the prediction horizon. In this simulation 
the  control  horizon  nc = 3 and the prediction horizon 
np = 10. F and Φ are matrices and U present the 
optimal control parameters:  
 

  -0.6185    0.9689    1.0000

  -1.8170    1.9015    1.0000

  -3.5551    2.7933    1.0000

  -5.7907    3.6401    1.0000

  -8.4806    4.4385    1.0000

 -11.5805    5.1854    1.0000

  -15.0461    5.87

F 

84    1.0000

 -18.8324    6.5155    1.0000

 -22.8951    7.0954    1.0000

 -27.1900    7.6169    1.0000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

    0.0990         0         0

    0.1918    0.0990         0

    0.2782    0.1918    0.0990

    0.3578    0.2782    0.1918

    0.4304    0.3578    0.2782
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Fig. 3: The closed loop response with proposed PID control 

reference signal and state observer control 
 
The optimal Kpid gain is: 
 

KGPCpid = (-418.3310 149.7301 26.1517) 
 

The simulation result obtained by the application of 
the both proposed controls is shows in Fig. 2. 
 
Scenario 2: The following Fig. 3 shows the comparison 
of the closed loop responses of the inverted pendulum 
given by the predictive PID control and the predictive 
observer state feedback control. 

We can see that the closed-loop response of the 
output system with the proposed PID control given 
immediately response and follow the reference. As long 
as the predictive observer state feedback control acts 
after a noticeable time-delay and the shape of the 
response curve does not follow the control signal 
correctly. 
 

CONCLUSION 
 

The design of predictive controllers based on the 
generalized predictive control is investigated in this 
study. The GPC control algorithm can give a new 
methodology of synthesis of a predictive PID control. 
The proposed predictive controllers are applied to 
control an inverted pendulum system and the results 
obtain by the proposed predictive PID is compared with 
a predictive observer state feedback. The proposed 
predictive controllers are able to keep the centre of 
mass of the inverted pendulum track the desired 
trajectory. The predictive PID control has the potential 
of offering a good path tracking performance. 

So the new developed PID approach tends to be 
easily implemented in real-time processor to control the 
industrial system. 
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