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Abstract: Time series analysis consists of approaches for analysing time series data so thatimportant information 
and other features can be isolated from the data. Time series forecasting is the use of a model to predict perspective 
values on the basis of previouly observed values by a model. Statisticians generally use R project or R language, a 
free and popular programming language and computer software environment for statistical computing and graphics, 
for developing statistical computer software and data analysis. Plenty of time series display cyclic variation 
significant as seasonality, periodic variation, or periodic fluctuations in statistics. This study introducesabundant 
functions in the R packages TSA, marls, depersonalize and season for analyzing seasonal processes of time series, 
are introduced in this study. Note that R packages marls, depersonalize and season are included in the 
comprehensive R archive network task view TimeSeries. 
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INTRODUCTION 

 
In statistics, signal processing, econometrics and 

mathematical finance, a time series is a sequence of 
data points, measured characteristically at sequential 
time instants spaced at regalia time intervals (Box et al., 
1976; Hamilton, 1994). Methods for analysing time 
series data are involved in the Time series so as to 
evacuate valuable statistics and other features from the 
data (Box et al., 1976; Hamilton, 1994). Time series 
forecasting uses a model to predict the prospect of 
values accordingto the past observed values. Time 
series are often drawn by line graphs (Box et al., 1976; 
Hamilton, 1994). R project or R language, which is an 
useful and free programming language and computer 
software surroundings for statistical computing and 
graphics, is widely applied to statisticians for inproving 
statistical computer software and data analysis (Ripley, 
2001; Gentleman et al., 2003). Base R ships, which 
have a lot of functionalities, are helpful for time series, 
especially in the stats package. Various packages on 
CRAN with rapidly summarized below follow this. 

In statistics, cyclic variation is shown in numerous 
time series significant as seasonality, periodic variation, 
or periodic fluctuations. When examing non-seasonal 
tendencies, seasonal adjustment is used to shedthe 
seasonal component of a time series. Seasonally 
adjusted data for unemployment rates always been 
reported to reveal the basic trends in labor markets 
(Wallis,   1974;   Hillmer   and   Tiao,   1982).  A cycle- 

stationary process, a signal having statistical properties 
that vary cyclically with time, can be regarded as 
multiple interspersed motionless processes (Gardner, 
1986; Gardner et al., 2006). Seasonal variation is a part 
of a time series which is described as the regular and 
predictable movement around the tendency line in no 
more than one year (Hylleberg, 1992; Barnett and 
Dobson, 2010). Organizations affected by seasonal 
variationneed to identify and measure this seasonality 
to help with planning for temporary increases or 
decreases in labor requirements, inventory, training, 
periodic maintenance and so on (Hylleberg, 1992; 
Barnett and Dobson, 2010). Besidesthese 
considerations, the organizations should know that if 
the variations they have experienced have been more or 
lessexpected given the regularcyclic variations 
(Hylleberg, 1992; Barnett and Dobson, 2010). The 
purpose of this study is to review R packages for 
seasonal analysis of time series. 

 

R PACKAGES FOR SEASONAL  

ANALYSIS OF TIME SERIES 

 

 Functions in the R packages TSA, marls, 

depersonalize and season for analyzing seasonal 

processes of time series, are introduced in this section. 

Note thatthe comprehensive R archive network task 

view TimeSeries encloses the R packages marls, 

depersonalize and season (Hyndman and Zeileis, 2012). 
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Seasonal analysis with the R package TSA: The 
function acf is modified from the acf function in the 
stats package (Chan, 2012). The function arima is 
identical to the arimax function which builds on and 
expands the capability of the arima function in R stats 
viapermitting the combination of transfer functions and 
innovative and additiveoutliers (Chan, 2012). Note in 
the computation of Akanke’s Information Criterion 
(AIC), the number of parameters excludes the noise 
variance (Cryer and Chan, 2008; Chan, 2012). This 
function is deeply builted on the arima function of the 
stats center of R (Chan, 2012). The R function 
seasonextract the season information from an equally 
spaced time series and makes vector of the season 
information (Chan, 2012).  
 
Seasonal analysis of health data: The Rpackage 
season is for seasonal analysis of health data, 
containing regression models, time-stratified case-
crossover, plotting functions and residual checks 
(Barnett et al., 2012). The R package season aims to fill 
up a sizable gap in the R software by offering 
numeroustools  for  analyzing  seasonal  data (Barnett 
et al., 2012). The package season includes graphical 
methods for showing seasonal data and reversion 
models for checkting and appraisting seasonal patterns 
(Barnett et al., 2012). The regression models can be 
used to normal, Poisson or binomial dependent data 
distributions (Barnett et al., 2012). Tools can be applied 
to not only time series data (equally spaced intime) but 
alsosurvey   data  (unequally  spaced in time) (Barnett 
et al., 2012). Sinusoidal (parametric) seasonal patterns 
are available incosinor, nscosinor, as well as models for 
monthly data in monthglm and the case-crossover 
method to management for seasonality in the R 
function nonlintestcasecross (Barnett et al., 2012). The 
R function aaftmakes random linear surrogate data of a 
time series with the same second-order properties 
(Barnett et al., 2012). The AAFT uses phase-
scrambling to create a surrogate of the time series, 
having a similar spectrum and thenparallel second-
order statistics (Barnett et al., 2012). The AAFT is 
valuable for checking for non-linearity in a time series 
and can be used by nonlintest. (Kugiumtzis, 2000; 
Barnett et al., 2012). The R function case cross suits a 
time-stratified case-crossover to regularly spaced time 
series data but not suitable for irregularly spaced 
discrete data (Barnett et al., 2012). The case-crossover 
method compares “case” days when events occurred 
(e.g., deaths) with control days to look for differences 
in exposure that might explain differences in the 
number of cases (Barnett et al., 2012). Control days are 
chosen to be closed to case days, meaning that only 
recent variations in the independent variables are 
related (Barnett et al., 2012). Any long-term or 
seasonal variation in the dependent and independent 
variables can be eliminated by simply comparing recent 
values, (Barnett et al., 2012). The definition of nearby 

and the seasonal and long-term models in the 
independent variables determine this elimination 
(Barnett et al., 2012). Control and case days can be 
contrastedonly when they are in the same stratum 
(Barnett et al., 2012). The strata length, the default 
value is 28 days, rules the stratum,hence that cases and 
controls  are  compared in four week sections (Barnett 
et al., 2012). Smaller stratum lengths provide a closer 
control for season, but then decrease the functional 
number of controls (Barnett et al., 2012). Control 
days,closing to the case day, may have comparable 
levels of the independent variables (Barnett et al., 
2012). It is likelytoput an exclusion around the casesto 
reduce this correlation (Barnett et al., 2012). It is 
possible to additionally match by day of the week 
(matchdow) to delete any confounding by day of the 
week, regardless of the fact that this often reduces the 
number of available controls (Barnett et al., 2012). This 
matching is in exclusive of the strata matching (Barnett 
et al., 2012). To eliminate its effect, it is probable to 
additionally match case and control days by an 
influential on-founder (matchconf) (Barnett et al., 
2012). The method utilizes conditional logistic 
regression (see coxph and so the parameter estimates 
are odds ratios (Barnett et al., 2012). The code 
presumes that the data frame includes a date variable  
(in  Date  format) called date (Janes et al., 2005; 
Barnett and Dobson, 2010; Barnett et al., 2012). The 
function ciPhase computes the mean and confidence 
interval for the phase based on aseries of MCMC 
samples (Barnett et al., 2012). The evaluation of the 
phase are rotated to have a centre of n, the point on the 
circumference of a unitradius circle that is furthest from 
zero (Barnett et al., 2012). The mean and confidence 
interval are computed on the rotated values and then the 
estimates are rotated backward. Fisher (1996), Barnett 
and Dobson (2010) and Barnett et al. (2012). The 
function nonlintest realizes a bootstrap test of non-
linearity in a time series, which uses the third-order 
moment (Barnett et al., 2012). The aaft is used to make 
linear surrogates with the same second-order properties, 
but no (third-order)  non-linearity (Barnett et al., 2012). 
The third-order moments (third) of these linear 
surrogates and the actual series are then comparedfrom 
lags 0 up to n.lag (excluding the skew at the co-
ordinates (0, 0)) (Barnett et al., 2012). The bootstrap 
test applies on the whole area outside the limits and 
provides an indication of the overall non-linearity 
(Barnett et al., 2012). The plot using region reveals 
those co-ordinates of the third order moment that 
beyonded the null hypothesis limits and can be a 
valuable clue for guessing the type of non-linearity 
(Barnett et al., 2012). A non-stationary seasonal pattern 
changes over time; so this model offers potentially 
extremly elastic seasonal assessments (Barnett et al., 
2012). The cycle controlles thefrequency of the 
seasonal estimates and ought to be specified in units of 
time  (Barnett  et  al.,  2012).  The  estimates  are  made 
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using a forward and backward sweep of the Kalman 
filter (Barnett et al., 2012). Repeated estimates are 
made using Markov Chain Monte Carlo (MCMC) 
(Barnett et al., 2012). For this reason the model can 
take a long time to run (we will perfect this in the next 
version) (Barnett et al., 2012). A reasonably long-
termmodel should be applied (niters) and the probably 
inadequate initial estimates should be abandoned (burn 
in) to give stable estimates. (Barnett and Dobson, 2004, 
2010; Barnett et al., 2012). The function phasecalc 
computes the phase given the estimated sine and cosine 
values from a cosinor model (Barnett et al., 2012) and 
returns the phase in radians, in the range (0, 2) (Barnett 
et al., 2012). The phase is at the top of the sinusoid 
(Fisher, 1996; Barnett et al., 2012). The function plot 
Circular applies a circular plot helpful for visualising 
monthly or weekly data (Barnett et al., 2012). The 
length of the variable area 1 is determined by the 
number of segments (Barnett et al., 2012). The plots 
are also called rose diagrams, with the segments  then  
called  ‘petals’ (Fisher, 1996;  Barnett et al., 2012). The 
function plot Month plots results by month (Barnett and 
Dobson, 2010; Barnett et al., 2012). For modelling 
seasonal data, sinusoidal curves are highly prized 
(Barnett et al., 2012). The function sinusoid plots a  
sinusoid from 0 to 2 (Barnett et al., 2012). West for a 
seasonal pattern in Binomial data, a test of whether 
monthly data has a sinusoidal seasonal pattern, has little 
influence compared with the cosinor test. Walter and 
Elwood (1975), Barnett and Dobson (2010) and Barnett 
et al. (2012). The function nscosinor will be made 
faster and the plots are to be improved in the next 
version, (Barnett et al., 2012). 
 

Multiplicative AR (1) with seasonal processes: 
Multiplicative AR (1) (Yamamoto, 1982) with Seasonal 
processes, processes (Paramonov, 2012), is a stochastic 
process model built on top of AR (1) and can be 
abbreviated as MAR(1)S (Petruccelli and Woolford, 
1984; Chan et al., 1985; Chan and Wei, 1987; Baltagi 
and Wu, 1999). The R package mar1s (Paramonov, 
2012) picks up MAR(1)S or GARCH models (Drost 
and Nijman, 1993; Lamoureux and Lastrapes, 1990; 
Nelson and Cao, 1992; Karolyi, 1995; Baillie et al., 
1996; Tse, 2000; Garcia et al., 2005). The package 
mar1s offers the following procedures for MAR(1)S:  
 

• Fitting  

• Composition  

• Decomposition  

• Advanced simulation  

• Prediction (Paramonov, 2012)  
 
The function fit.mar1s fits MAR(1)S process model to 
time series (Paramonov, 2012). The function composes. 
Ar1 composes AR (1) process realization by given 
vectors of innovations (Paramonov, 2012). The function 
compose.mar1s composes MAR(1)S process realization 
by given vector of log-innovations (Paramonov, 2012). 

The function decomposes. Ar1 extracts AR (1) process 
residuals from time series (Paramonov, 2012). The 
function decompose. mar1s extracts MAR(1)S process 
components from time series (Paramonov, 2012). The 
function sim.mar1s simulates from MAR(1)S process 
(Paramonov, 2012). The function predict.mar1s is a 
wrapper around the functionsim.mar1s which estimates 
confidence intervals for the future values of the 
MAR(1)S process (Paramonov, 2012). The function 
seasonal.ave extracts seasonal component of time series 
by averaging observations on the same place in the 
cycle (Paramonov, 2012). The function seasonal. 
smooth extracts seasonal component of time series by 
fitting the data with a linear combination of smooth 
periodic functions (Paramonov, 2012). 
 
Optimal depersonalization for geophysical time 
series using AR fitting: A harmonic regression is fit to 
the data to estimate the seasonal means and standard 
deviations (Young et al., 1999; McLeod, 2012). The 
number of terms in the harmonic regression may be 
determined using the Bayesian Information Criterion 
(BIC) or generalized Akaike’s Information Criterion 
(generalized AIC) (Young et al., 1999; McLeod, 2012; 
Sakai, 1990; Haughton et al., 1990; Albert and 
Hansberger, 2005; Tominaga, 2010). The R package 
deseasonalize that is an optimal depersonalization for 
geophysical time series using AR fitting, depersonalize 
daily or monthly time series (McLeod, 2012; Hipel and 
McLeod, 1994; McLeod and Zhang, 2008). In R 
package depersonalizethe main function ds is a 
depersonalization process for monthly and annual 
(McLeod, 2012; Hipel and McLeod, 1994; McLeod and 
Zhang, 2008). Most users would employ the ds, but not 
the utility function getds in R package depersonalize 
(McLeod, 2012). The function print.depersonalizecan 
give a terse summary (McLeod, 2012). The function 
summary. Depersonalize provides summary for 
depersonalize objects (McLeod, 2012; Hipel and 
McLeod, 1994; McLeod and Zhang, 2008). 
 

CONCLUSION 

 

Time series analysis includes methods for 

analysing time series data so as to deracinate 

meaningful statistics and other characteristics from the 

data. Plenty of functions in the R packages TSA, 

mar1s, depersonalize and season for analyzing seasonal 

processes of time series, are introduced in this study.  
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