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Sphere under Harmonic boundary condition 
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Abstract: In this study, an analytical modeling of two dimensional heat conduction in a hollow sphere, subjected to 
time dependent periodic boundary condition at the inner and the outer surfaces, is performed. The thermo physical 
properties of the material are assumed to be isotropic and homogenous. Also, the effects of the temperature 
oscillations frequency on the boundaries, the thickness variation of the hollow sphere and thermo physical properties 
of the ambient and the sphere involved in some dimensionless numbers are studied. The results show that the 
obtained temperature distribution contains two characteristics, the dimensionless amplitude and the dimensionless 
phase difference. Comparison between the present results and the findings of the previous study as related to a two-
dimensional solution of the hollow sphere subjected to the simple harmonic condition shows a good agreement. 
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INTRODUCTION 
 

The heat conduction analysis in spherical solids is 
important, because these geometries have some special 
features such as symmetry and minimum surface 
energy. Also, the transient periodic heat conduction is 
encountered in these shapes in very different forms 
such as heat-treatment of metals, air conditioning and 
food processing (Dincer, 1995a; Stela et al., 2005).  

Heat transfer problems in transient form are very 
common in engineering applications, e.g., hydro 
cooling of spherical food products (Dincer, 1995b) or 
fast transient heat conduction in sphere subjected to the 
sudden and violent thermal effects on its surface used in 
many engineering fields such as aeronautics, 
electronics, metallurgy (Baïri and Laraqi, 2003; Dincer, 
1995c). Transient heat conduction is studied in sphere 
by using Laplace transforms (Youming et al., 2003; 
Ostrogorsky, 2008) or in polar coordinates with 
multiple layers in radial direction (Suneet et al., 2008). 
These samples are some of useful examples in 
investigating transient heat conduction. The heat 
conduction problems with periodic boundary conditions 
have some applications in engineering, like periodic 
heat conduction through composite spheres consisting 
of shells (Lit, 1987), periodic radial heat conduction 
through a sphere (Sengupta et al., 1993) and in a solid 
homogeneous finite cylinder (Cossali, 2009). Moreover, 
the influence of combined periodic heat flux and 
convective boundary condition through semi-infinite 
and finite media is analytically studied (Khaled, 2008). 
Some experimental methods are considered for 

specifying the heat transfer coefficient and thermal 
diffusivity of material and the temperature field (Zudin 
1995;  Verein  Deutscher  Ingenieure,  2002;  Khedari 
et al., 1995, 1996). 

Analytical methods have been considered 
significant in solving the heat conduction problems. 
According to the differential equations characteristics 
such as the linearity which is govern on the heat 
conduction problems; these problems have been solved 
by means of analytical methods. For instance, analytical 
method to solve transient heat conduction in spherical 
coordinates with time-dependent boundary conditions 
(Prashant et al., 2010), the problem of evaluating the 
dynamic heat storage capacity of a solid sphere 
(Cossali, 2007) and the analytic solution of the periodic 
heat conduction  in a homogeneous cylinder are some 
of the solutions in term of Fourier transform which are 
solved by researchers (Atefi et al., 2009). The heat 
conduction with time dependent in a hollow sphere with 
inner adiabatic boundary condition was investigated by 
Atefi and Moghimi (2006). The adiabatic boundary 
condition is a restriction which can reduce the applicant 
domain of the solution.  

The main purpose of this study is to derive a 
general analytical solution for two-dimensional heat 
conduction in a hollow sphere subjected to a periodic 
boundary condition at the inner and the outer surfaces. 
It is also aimed to compare the obtained temperature 
distributions in a hollow sphere with some literature 
data taken from Atefi and Moghimi (2006) for model 
validation purposes. The convective heat transfer is 
imposed on the inner boundary to remove the restriction 
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of the previous study. In addition, the effects of the 
inner boundary conditions on temperature distribution 
are discussed. 

 
METHODOLOGY 

 
Analysis: The governing heat conduction equation for a 
hollow sphere, with no heat generation and with 
uniform properties is defined below: 

 �� ���� =  ����	� +  �	  ���	 +  �	� (
��� ���� +  ������)        (1) 

 
The outer and inner boundary conditions are: 
 

�����,�, �� +  �� ���	 |	�,Ψ,� = Θ�(Ψ, t)����,�, �� −  �� ���	 |	!,Ψ,� = Θ�(Ψ, t) "                  (2) 

 
where Θ� (Ψ, t), Θ� (Ψ, t) are considered to be periodic 
functions which are decomposed using Fourier series: 
 

Θ�(Ψ, t) = $� (t) ƒ�(Ψ) $� (t) = ∑ Θ�&∞&'� ()* +2-. �/0 

Θ�(Ψ, t) = ∑ Θ�&∞&'� ()* +2-. �/0 ƒ�(Ψ)          (3) 

 
Θ�(Ψ, t) = $� (t) ƒ�(Ψ) $� (t) = ∑ Θ1�&∞&'� ()* +2-. �/0 

Θ�(Ψ, t) = ∑ Θ1�&∞&'� ()* +2-. �/0 ƒ�(Ψ)            (4) 

 
The initial temperature for hollow sphere is 

considered to be zero. Determination of the temperature 
field by considering Eq. (1) is not possible, directly 
(Trostel, 1956). So, the equation should be solved with 
assumption that, the boundary condition is time-
independent. In this situation the boundary and initial 
conditions change as follow: 

 

�����,�, �� +  �� ���	 |	�,Ψ,� = ƒ�(Ψ)����,�, �� −  �� ���	 |	!,Ψ,� = ƒ�(Ψ) "                      (5) 

 
θ (r, �, 0) = 0                                                        (6) 
 

There are two ways to solve this problem; the first 
one is for steady state condition θ0 (r, Ψ) and the second 
one is for the transient state condition θ1 (r, Ψ, t): 

 
θ (r, �, �) = �3(�, �) +  ��(�, �, �)                     (7) 
 
The partial differential heat conduction equation in 

steady state condition is: 

���4�	� +  �	  ��5�	 +  �	� +
��� ��5�� +  ���4�� 0 = 0         (8) 

  
The boundary conditions are given by Eq. (5) and 

also the transient differential equation is: 
 �� ��6�� =  ���6�	� +  �	  ��6�	 +  �	� +
��� ��6�� +  ���6��� 0         (9) 

 
The following conditions must be satisfied for 

transient case: 
  

�����,�, �� +  �� ���	 |	�,Ψ,� = 0����,�, �� −  �� ���	 |	!,Ψ,� = 0 "                            (10) 

 �� (r, �, 0) = -�3 (r, Ψ)                                      (11) 
 
Steady-state case: By using separation of variables 
method to solve Eq. (8), two differential equations are 
obtained, an Euler type and a Legendre type. Therefore, 
by applying Eq. (5), the solution of steady state is: 
 �3(r, �) = ∑ �89(�)*9�(�) + 89(�):9�(�)�;9(ζ)∞9'3      (12) 
 
with assumption of: 

 :9�(�) = ��9(�)�9 + <9(�)�=(9>�)� :9�(�) = ��9(�)�9 + <9(�)�=(9>�)� 89(3)
 = 

�9>�� ? ƒ�(ζ);9�=� (ζ)@ζ 89(�)
 = 

�9>�� ? ƒ�(ζ);9�=� (ζ)@ζ                             (13) 

ζ = cos Ψ 
 
where, 
 

∆(9) =  +��9 +  * �� ��(9=�)0   +��=(9>�) + (* + 1) �� ��=(9>�)0  − +��9 +  * �� ��(9=�)0  +��=(9>�) + (* + 1) �� ��=(9>�)0                           (14) 

 F9(�)
 = 

�∆(H) +��=(9>�) + (* + 1) �� ��=(9>�)0 F9(�)
 = − �∆(H) +��=(9>�) − (* + 1) �� ��=(9>�)0 <9(�)
 = − �∆(H) +��9 − * �� ��(9=�)0 <9(�)
 =  

�∆(H) +��9 + * �� ��(9=�)0                              (15) 

 
Transient heat transfer case: Applying the separation 
of  variables  method  to  Eq. (9)  and using boundary 
Eq. (10) the eigen values I�9, are obtained. Therefore, 
the final solution for this state is:   
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��(r,�, �)=− ∑ ∑ �JKH Φ(�I�9)∞�'3∞9'3 ;9(ζ) 

MN�OK��PQ ? �� +89(�):9�(�) + 89(�):9�(�)0	�	! Φ9(�I�9)@�  

                                                                                   (16) 

where, R�9 is:  
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Finally, the temperature distribution under the 
constant boundary condition is the summation of the 
steady and transient states: 

 �(�, Ψ, �) = ∑ S;9(ζ)("T9'3 89(�):9�(�) +89(�):9�((�) −  ∑ �JKH∞� ' 3 M=+OKHQ 0�UΦ9(�I�9)  

? ��;9(ζ) +89(�):9�(�) + 89(�):9�(�)0	�	!   Φ9(�I�9) @�}                                                    (18) 
 
where, 
 

W9(I�9�) =  
�√	 YZ[=(9>�/�)(I�9��) + ]2ℎ��2I]*��[−*+1/2′I]*��−[−*+1/2I]*��[*+12I]*�−[*+1/2I]*��+ ]2ℎ��2I]*��[*+1/2′I]*��−[*+1/2I]*�� [−*+1/2(I]*�)                 (19) 

 

TEMPERATURE DISTRIBUTION UNDER  

TIME VARYING BOUNDARY CONDITION 

 

Here, Eq. (18) can be expressed as: 
 �(r,�, �)=    

∑ _:9�(�) − ∑ �JKH∞�'3 M=+OKHQ 0�UΦ9(�I�9)
? ��:9�(�)	�	!  Φ9(�I�9)@� `∞9'3  

89(�);9(ζ) + 

∑ _:9�(�) − ∑ �JKH∞�'3 M=+OKHQ 0�UΦ9(�I�9)
? ��:9�(�)	�	! Φ9(�I�9)@� `∞9'3       

89(�);9(ζ)                                                            (20) 
 
Which is obtained from time-independent 

boundary conditions? In order to derive the time-
dependent temperature distribution, the following are 
written: 

 @89(�)
 = 

abH(�)
ac @d 

@89(�)
 = 

abH(!)
ac @d                                                   (21) 

 
Based on the Duhamel’s theorem, it can be 

considered that the change which happens at time τ is 
constant. Thus, the temperature distribution after time t-
τ, can be expressed as (Özisik, 1993): 

 � (r, �, �) 

=∑ _:9�(�) ∑ �JKH∞�'3 M=+OKHQ 0�U  Φ9(�I�9)
? ��:9�(�)	�	!  Φ9(�I�9)@� `∞9'3  

abH(!)
ac @d;9(ζ)+ 

∑ _:9�(�) − ∑ �JKH∞�'3 M=+OKHQ 0�U  Φ9(�I�9)
? ��:9�(�)	�	! W9(�I�9)@� `∞9'3   

abH(�)
ac @d;9(ζ)                                                      (22) 

 
Thus, the temperature field is obtained by the 

summation of @89(�) and @89(�)
during @d and the 

influence of 89(�)(0) and 89(�)(0), respectively. The 
following equation is proven by the method of 
integration by parts:  
 89(�)

 (0) M=+OKHQ 0�U   + ? M=+OKHQ 0�(�=c) abH(�)
ac�3 @d =

89(�)
 (t) – +eKHf 0�

 ? 89(�)�3 (d)M=+OKHQ 0�(�=c)dd 

89(�)
 (0) M=+OKHQ 0�U   + ? M=+OKHQ 0�(�=c) abH(!)

ac�3 @d =
 89(�)

 (t) – +eKHf 0�
 ? 89(�)�3 (d)M=+OKHQ 0�(�=c)dd      (23) 

 
Using Eq. (23), we obtain the simplified 

temperature distribution as: 
 �(r, �, �) = ∑ ∑ g�9 Φ9(I�9 , �);9(ζ)h�9(�)∞i'3∞9'3  
ζ = cos Ψ                                                            (24) 
 

where,  
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Fig. 1: Comparison between the results of the amplitude of 

two-dimensional temperature field of a hollow sphere 
at the outer surface presented in (Atefi and Moghimi, 
2006) and obtained results under harmonic boundary 
condition 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2: Comparison between the results of the phase 

difference of two-dimensional temperature field of a 
hollow sphere at the outer surface presented in Atefi 
and Moghimi (2006) and obtained results under 
harmonic boundary condition 

 g�9 =  eKH�
f�JKH h�9  

= ? ? �� +89(�)(d):9�(�) +	4	!
�38*�d:*��Φ*I]*�M−I]*�2�−d@�@d   (25) 

 
The stored thermal energy in hollow sphere is then 

defined as: 
 

Q = − ? ? ? j
�	�	!
k3�k3 (�, �, �)��dr  

sin �d �@l                                                        (26) 
 

Therefore, the stored thermal energy becomes: 

Q = -2.mc ∑ ∑ g�9 ? ? ;9 (ζ)��Φ9(I�9�)�=�	�	!∞�'3∞9'3   h�9(�)@�@ς                                                         (27) 
 

In order to plot the obtained results, some 
dimensionless numbers are defined as follows: 
 

   ,    
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r t
r t

r p
= = , i
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r
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2 2
   ,  o

o

hr p
Bi Fo

k a r
= =                                        (28) 

 
where, �̅, �̅, x, o) , Fo are dimensionless radius, 
dimensionless time, dimensionless thickness, Biot and 
Fourier numbers, respectively. Moreover, functions 
ƒ�(�) and ƒ�(�) must be determined. These functions 
are arbitrary functions. In order to compare the obtained 
results with literature one (Atefi and Moghimi, 2006), it 
is possible to expose the boundary conditions which are 
assumed in Atefi and Moghimi (2006). In this 
reference, the function  ƒ�(�) = 1+()*�� and ƒ�(�) is 
zero. Moreover, g�(�) is zero and g�(�) is defined by 
sin (2.�̅) in harmonic state: 
 

qrr
s
rrt�(1, Ψ, �̅) + 1o) "u�u�̅v�,Ψ,�̅ =  Θ�(Ψ, �̅) =  $�  (�)w�(Ψ)

 $�(�) = sin(2.�̅) "u�u�̅vz,Ψ,�̅ = 0            
" 

    (29) 
 

The results of this comparison are shown in Fig. 1 
and 2. As it is explained before, in this study the inner 
surface of sphere is not insulated and consequently, the 
functions ƒ�(�) and g�(�) is not zero. In order to plot 
the results in this case, it is necessary to assume 
functions for ƒ�(�) and ƒ�(�): 

 
ƒ�(Ψ) = ƒ�(Ψ) = 2cos (Ψ)                                   (30) 

 
In this case, γ�9� and γ�9� 

are:  
 |�9� = ? ��=�z η9�(�̅)Φ(I�9�̅) d�̅           |�9� = ? ��=�z η9�(�̅)Φ(I�9�̅) d�̅                       (31) 

 
From Eq. (27), h�9(�̅) becomes: 
 h�9(�̅) = (

�9>�� )? (2ζ)�=� ;9 ζ dζ 

}
~? |�9��̅3 ∑ Θ1�&()*∞&'� (2-.�̅)M=eKH���(�̅=c)@d +

? |�9�Φ9(I�9�̅)�̅3 ∑ Θ1�&()*∞&'�(2-.�̅)M=eKH���(�̅=c)@d �
�       (32) 
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when (�̅ → ∞) the steady state result is obtained as: 
 

h�9(�̅) = 
(�H�6� )��eKH� ? (2ζ)�=� ;9(ζ) 

dζ 
��
��∑ (�KH�Θ1��>�KH!Θ1!�)

��>Z����OKH� �� ()*(2-.�̅ + l�9)∞&'� ��
��      (33) 

 
where the dimensionless parameters M and ��9 are: 
 

M = � k�� 

l�9 = Arc tan (-
�&��

eKH� )                                       (34) 

 
so, the temperature distribution of hollow sphere 
becomes: 
 �(r̅, �, �̅) = 

 ∑ ∑ +�9>�� 0 ? 2ζ>�=� ;9 ζ dζ ∞�'3∞9'3 +Φ(	̅eKH)�H(ζ)JKH 0 

��
��∑ (�KH�Θ1��>�KH!Θ1!�)

��>Z����OKH� �� ()*(2-.�̅ + l�9)∞&'� ��
��    (35) 

 
Substituting the eigenvalues into Eq. (35), the 

temperature distribution at the outer surface of the 
hollow sphere becomes: 

 � (1, �, �) =  ∑ ∑ ∑ ��9&()*(2-.�̅ + l�9)∞&'�∞�'3∞9'3                                 
                                                                                   (36) 
where, Aknm is: 
 

Ai�� =  �2* + 12 � � 2ζ>�
=� ;9(ζ)@ζ ZΦ(I�9);9(ζ)R�9 � 

(�KH�Θ1��>�KH!Θ1!�)
��>Z����OKH� ��                                             (37) 

 ��9& 
is the ratio of the oscillation amplitude of 

temperature distribution field in the hollow sphere to 
the ambient temperature with the same frequency and l�9 is the phase difference.  

The assumed functions g�(�̅), g�(�̅) in harmonic 
state are: 
 g�(�̅) = sin(2.�̅)           g�(�̅) = −sin(2.�̅)                                            (38) 

RESULTS AND DISCUSSION 

 

The dimensionless amplitude A and the 
dimensionless phase difference φ are shown with 
respect to dimensionless numbers M and Bi/M. M is 
proportional to the square root of oscillations frequency 
of ambient temperature and inverse square root of 
Fourier number (Fo). Also Bi/M takes effect from 
environmental condition, period of oscillation and 
thermo physical properties of the hollow sphere. g�(�̅),  g�(�̅) are harmonic functions. For special case, 
the dimensionless amplitude and dimensionless phase 
difference for harmonic state are plotted and compared 
with Atefi and Moghimi (2006). In this comparison the 
hollow sphere thickness increases to the possible limit 
(x = 0.2) in order to reduce the effect of the inner 
boundary condition. Comparison between our result 
and Atefi and Moghimi (2006) shows a good agreement 
as shown in Fig. 1 and 2. In order to provide the 
comparison between obtained results and the previous 
study (Atefi and Moghimi, 2006) the function ƒ�(�) 

assumes to be zero and the function ƒ�(�) = 

1+()*�(�). Also, the time-dependent function is 
assumed in harmonic state Eq. (38). Moreover, 
according to the Eq. (29), at small Bi number the 
assumed boundary condition becomes closer to the 
adiabatic one and results in the better comparison. In 
constant Bi/M and the low frequency region Bi number 
is small, so in this region the influence of the inner 
boundary condition on the temperature distribution at 
the outer surface is obvious. Effects of inner boundary 
condition play a crucial role in the temperature 
distribution variation trend.   

The dimensionless amplitude and the phase 
difference are plotted versus M. It is possible to assume 
dimensionless number (M). The time dependent part of 
the inner boundary condition ( ( ), ( )o ig t g t ) is as same as 

the outer boundary condition but there is a phase 
difference between them which equals to 180°. In this 
case the maximum available temperature difference is 
imposed on the hollow sphere. For these two types of 
boundary conditions dimensionless amplitude and 
phase difference versus dimensionless number M are 
shown in Fig. 3 to 6. In this problem, by increasing the 
Bi number, the amount of stored energy in hollow 
sphere increases. Since, the thermal systems usually 
have slow responses; in low frequency region this effect 
is more obvious. In this region, the hollow sphere acts 
as low frequency storage. Also, in constant Bi/M, while 
the Bi number decreases, the value of dimensionless 
number   (M)   decreases   which  result  in  the  gradual 
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Fig. 3: Dimensionless amplitude, A when x = 0.4, Ψ = 

k� in 

harmonic state 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Fig. 4: Dimensionless  phase  difference,   l  when  x = 0.4, 

Ψ = 
k�, in harmonic state 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Dimensionless amplitude, A when x = 0.7, Ψ = 
k�, in 

harmonic state 
 
penetration of the inner boundary effect. The more 
influences of the inner boundary lead to the more 
variations of dimensionless amplitude and phase 
difference in this region. At high frequencies region or 
high M numbers, the amount of energy which passes 
through the hollow sphere increases this is in inverse of 
what happens in low  frequency  region.  In  the  hollow 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 6: Dimensionless   phase  difference,  l  when  x = 0.7, 

Ψ = 
k� in harmonic state 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7: Q (�̅) /Q (P), when M = 2, Bi = 1 and Ψ = 
k�  in 

harmonic state  

 

sphere energy storing causes phase difference. 
Therefore, Bi/M ratio is a good criterion of the phase 
difference variations. Since Bi/M ratio increases, the 
phase difference decreases. In low frequency region, 
the phase difference tends to zero because system can 
follow the ambient temperature frequency variations 
easily. As it was mentioned before, dimensionless 
thickness (x) affects the resistance of the system and by 
increase in x value, the inner boundary effects penetrate 
more and more. 

Figure 3 and 4 are plotted for x = 0.4, Ψ = 
k� in 

harmonic  state.  Figure 5 and 6 are plotted for x = 0.7, 

Ψ = 
k� in harmonic state. Comparison between Fig. 3 to 

6 demonstrates the effect in x variation. In order to 
show the general trend of Figures which is independent 
of assumed functions g� (�̅),  g�  (�̅); Fig. 3 to 6 are 
plotted.  These  figures  are  plotted  for  same  angle  
(Ψ = 

��). Comparison between Fig. 3 and 5 shows the 

same trend in variation of A. 
The amount of stored energy inside the hollow 

sphere is plotted versus the dimensionless time (�̅) in 
Fig. 7. As it is shown in this figure increase in x number 
leads to increase in stored energy. Especially in lower 
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frequencies the amount of stored energy increases. 
Increase in the value of frequency (M), leads to 
decrease in the value of Q (t) /Q (P).  
 

CONCLUSION 

 

In this study, the solution of two-dimensional 
temperature field distribution under time periodic 
boundary condition in a hollow sphere has been 
presented. Varying the parameters (e.g., Bi, M, x ) 
results in a change in dimensionless amplitude and 
dimensionless phase difference. For instance, increase 
in Bi number leads to increase in the system resistance 
or increasing in dimensionless thickness (x) results in 
decreasing the dimensionless phase difference. 
 

NOMENCLATURE 

 �� =  Inverse of thermal diffusivity, s/m� 
A, An  =  Dimensionless amplitude of temperature 
B, Bn =  Dimensionless amplitude of heat flux 
Bi =  Biot number 
c =  Specific Heat, J/kg.K 
ƒ (ζ) =  Space function 
Fo =  Fourier number  
g (t) = Time function of boundary condition 
h    =  Convection heat transfer coefficient, 

W/m2.K 
k    =  Thermal conductivity, W/m.K 
M    =   Defined in Eq. (34) 
P     =  Time period 
Q     =   Stored heat 
r      =  Radius, m �̅    =  Dimensionless radius  
t    =   Time, sec �̅        =  Dimensionless time 
V    =  Volume, m3 
x   =   Dimensionless thickness 
 
Greek letters: 

 
θ      =  Temperature field I    =  Eigen value Φ, : =  Eigen function F9(�)F9(�)

 =  Defined by Eq. (15) <9(�)<9(�)
 =  Defined by Eq. (15) 89(�)89(�)
 = Defined by Eq. (13) 

∆(n)  =  Defined by Eq. (14) � =  Spherical Angle 
γkni  =  Defined by Eq. (31) 
δkn   =  Defined by Eq. (16) 

φkn =  Phase difference ρ =  Density, kg/ m3 
τ =  Time, sec 
 
Subscript:  

 

0 = Steady 
1 = Unsteady 
i  = Inner 
o = Outer 
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