
Research Journal of Applied Sciences, Engineering and Technology 7(21): 4415-4422, 2014

DOI:10.19026/rjaset.7.818

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2014 Maxwell Scientific Publication Corp.

Submitted: August 16, 2013 Accepted: September 02, 2013 Published: June 05, 2014

Corresponding Author: Halil Snopce, SEEU, CST Faculty, Ilindenska 335, Tetovo, Macedonia
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

4415

Research Article

Comparison among Performance Measures for Parallel Matrix Multiplication Algorithms

Halil Snopce and Azir Aliu
SEEU, CST Faculty, Ilindenska 335, Tetovo, Macedonia

Abstract: In this study we analyze how to make a proper selection for the given matrix-matrix multiplication

operation and to decide which is the best suitable algorithm that generates a high throughput with a minimum time, a

comparison analysis and a performance evaluation for some algorithms is carried out using the identical

performance parameters.

Keywords: Algorithms for parallel matrix multiplication, linear transformation and nonlinear transformation,

performance parameter measures, Processor Elements (PEs), systolic array

INTRODUCTION

Most of the parallel algorithms for matrix

multiplication use matrix decomposition that is based
on the number of processors available. This includes
the systolic algorithm (Choi et al., 1992), Cannon’s
algorithm (Alpatov et al., 1997), Fox’s and Otto’s
Algorithm (Agarwal et al., 1995), PUMMA (Parallel
Universal Matrix Multiplication) (Choi et al., 1994),
SUMMA (Scalable Universal Matrix Multiplication)
(Cannon, 1969) and DIMMA (Distribution Independent
Matrix Multiplication) (Chtchelkanova et al., 1995).
The standard method for n×n matrix multiplication uses
O (n

3
) operations (multiplications). Most of the parallel

algorithms are parallelization of this method. For
instance, matrix multiplication can be performed in O
(n) time on a mesh with wraparound connections and
n×n processors (Cannon, 1969); in O (log n) time on a
three dimensional mesh of trees with n

3
 processors

(Leighton, 1992); in O (log n) time on a hypercube or
shuffle exchange network with n

3
processors (Dekel

et al., 1983). On the other hand, all implementations
have a cost, i.e., time processor product of at least O
(n

3
). Therefore, the aim is to develop highly parallel

algorithms that have the cost less than O (n
3
).

Extensive work has been done for constructing
algorithms that require O (n

β
) operations, such that β<3.

The research world was stunned with O (n
2.81

)
algorithm for matrix multiplication (Strassen, 1969). A
recursive application gives an algorithm that runs in
time (Strassen, 1969). Following Strassen’s work, a
series of studies published among the years 1970

s
 and

80s Achieved better upper bounds on the exponent.
Currently, the best matrix multiplication algorithm
takes O (n

β
) operations, where β<2.375477

(Coppersmith and Winograd, 1990). However, these
algorithms are highly sophisticated even for sequential

execution; parallelization of these methods are only of
theoretical interest and far from practical (Leighton,
1992; Robinson, 2005; Coppersmith and Winograd,
1990). Therefore, from practical point of view,
parallelization of standard matrix multiplication
algorithm with O (n

3
) multiplications is more

appropriate. The objective of this study is to investigate
which parallel method is more appropriate and how to
optimize the existing methods in order to obtain more
efficient parallelization.

METHODOLOGY

Parallel computing paradigms: Parallel computing

process depends on how the processors are connected to

the memory. There are two different ways how this can

be done: shared memory system and distributed

memory.

In a shared memory system, a single address space

exists; within it, to every memory location is given a

unique address and the data stored in the memory are

accessible to each processor. In such a system the

processor Pi reads the data written by the processor P

and it is necessary to use synchronization.

In a distributed memory system, each processor

can only access to its own memory (local memory). The

connection between processors is done by the so called

“high-speed communication network” and they

exchange information using send and receive

operations.

MPI (Message Passing Interface) is useful for a

distributed memory systems since it provides a widely

used standard of message passing program. In MPI,

data is distributed among processors, where no data is

shared and data is communicated by message passing.

Res. J. Appl. Sci. Eng. Technol., 7(21): 4415-4422, 2014

4416

Matrix multiplication algorithms as a nested loop

algorithms are suitable for such kind of systems.

Systolic array for matrix multiplication: A systolic

array is a computing network possessing with the

features of synchrony (data are rhythmically computed

and passed through the network), modularity and

locality, special locality (a locally communicative

interconnection structure), pipeline ability, repeatability

(usually the repetition of one single type of cell and

interconnection occurs). By the systolic arrays it can be

achieve a high parallelism. Systolic arrays are very

suitable for nested-loop algorithms; such is the problem

of parallel solution of matrix-matrix multiplication

(Bekakos, 2001; Snopce and Elmazi, 2008a; Gusev and

Evans, 1994).

The simplest systolic arrays are the chain and the

ring, which in fact are one dimensional array. In the

m×n two dimensional systolic array the nodes are

defined by integer points in a rectangle {(i, j), 0≤i≤m,

0≤ j≤n}. A node (i, j) is connected with nodes (i±1, j)

and (i, j±1), if they are in the rectangle. If we add

diagonal edges ((i, j), (i±1, j+1)) to the two

dimensional array, then we get the so called hexagonal

systolic array. By adding the edges ((0, j), (m-1, j)) and

((i, 0), (i, n-1)) to an m×n array, we get a two

dimensional torus. There are given some models of

systolic arrays in Fig. 1.

The simplest case of systolic array which can be

used for parallel matrix multiplication is similar as the

array shown in the Fig. 1c. The systolic array is

quadratic 2-D such that the elements of a matrix A are

fed into the array by the rows and the elements of the

matrix B are fed into the array by the columns. The

array consists of n×n PEs. Each PE indexed by i and j,

in each step k, adds a partial product aik bkj

to the

accumulated sum for every cij. Hence, we have a

movement in two directions. The elements of the

a
b

c

d

e

Fig. 1: Typical models of systolic arrays, (a) linear systolic

array, (b) 1-D ring, (c) 2-D square array, (d) 2-D

hexagonal array, (e) 2-D torus

resulting matrix C are stationary. In Fig. 2 are shown

just the first two cycles of such quadratic systolic array.

The matrices A and B are taken to be quadratic of

order 3.

Why systolic array? The MPI technique needs two

kinds of time to complete the multiplication process, tc

and tf, where tc represents the time it takes to

communicate one data between processors and tf is the

time needed to multiply or add elements of two

matrices. It is assumed that matrices are of type n×n.

The other assumption is that the number of processors

is p. Each processor holds n
2
/p elements and it was

assumed that n
2
/p is set to a new variable m

2
. The

number of arithmetic operations units will be

()1

11c

11b

11a ()2

11c

21b

12a 11a

12b

()1

12c

11b

21a ()1

21c

1 cycle 2 cycle

Fig. 2: The first two cycles (7 in total) for the 2-D systolic computation of 3×3 matrix product

Res. J. Appl. Sci. Eng. Technol., 7(21): 4415-4422, 2014

4417

Table 1: Theoretical results

Algorithm ƒ

c q

S E

Systolic algorithm 55080000 1440000 38.250 3.8250 0.9560

Cannon’s algorithm 271800000 108720000 2.500 0.2500 0.0625
Fox’s algorithm with square decomposition 162360000 270720000 0.599 0.0599 0.0150

Fox’s algorithm with scattered decomposition 54360000 109440000 0.497 0.0497 0.0124

PUMMA 54360000 1620000 33.550 3.3550 0.8390
SUMMA 54360000 1800000 30.200 3.0200 0.7550

DIMMA 54360000 1800000 30.200 3.0200 0.7550

Table 2: Experimental results

p

Systolic Cannon’s Fox 1 Fox 2 PUMMA SUMMA DUMMA

1 251.690 530.33 390.20 506.490 271.120 149.540 165.970
4 65.500 408.12 236.32 267.244 79.583 45.241 49.390

Table 3: Values of S and E

Algorithm S E

Systolic algorithm 3.832 0.96

Cannon’s algorithm 1.299 0.32

Fox’s algorithm with square decomposition 1.651 0.41

Fox’s algorithm with scattered decomposition 1.895 0.47

PUMMA 3.407 0.85

SUMMA 3.305 0.83

DIMMA 3.360 0.84

denoted by f. The number of communication units will

be denoted by c. The quotient q = f/c will represent the

average number of flops per communication access.

The speedup is S = q. (tf /tc) (the definitions of some

special performance characteristics are given in the next

subchapter). In order to apply the analytical variables,

we need to make some assumptions. Firstly we assume

that the number of processors is p = 4. The dimension

of the matrix is n = 600. The last assumption is that

tf /tc

= 0.1. Also we need to use the Efficiency formula

E = S/p. In the Table 1 we record the results that we

obtain for all algorithms, under the assumptions that we

made (Alpatov et al., 1997; Agarwal et al., 1995; Choi

et al., 1994; Alqadi et al., 2008).

From Table 1, after analyzing the theoretical

results, one can conclude that the systolic algorithm

will give the best performance (i.e., efficiency). The

efficiency increases as the parameter S approaches the

number of processors.

The experimental results (Alqadi and Amjad, 2005)

for the execution time using 1 processor and using 4

processors are shown in the Table 2. The table is

obtained by implementing each algorithm 100 times

and then, ten fastest five ones are taken and averaged.

On the other hand, taking into the consideration that S =

T (1) /T (p) (which means that speedup is equal to the

time using 1 processor dividing with the time using p

processors), we give the Table 3 with the values of S

and E.

The analysis explained above has shown that the

systolic algorithm may be considered as the best

algorithm that produces a high efficiency. The

theoretical analysis matches with the experimental

results performed in Alqadi et al. (2008). This analysis

is useful for making a conclusion and giving a

recommendation for selecting the best algorithm among

others which is more effective for parallel solving of

some linear algebra problems, including the problem of

matrix-matrix multiplication.

MATHEMATICAL TOOLS

Definition 1: The array size (Ω) is the number of PEs
in the array.

Definition 2: The computation Time (T) is the sum of
the time for the date input in the array-Tin, the time for
the algorithm executing-Texe and the time necessary for
dates leaving the array-Tout, i.e.:

outexein TTTT ++= (1)

Definition 3: The execution time, Texe, is defined as:

ind
ind Pyxt

out
Pyxt

exe ttT
∈∈

−+=
),,(),,(

minmax1 (2)

Theorem 1: Zhang et al. (1994): The execution time is
given by the relation:

()∑
=

⋅−+=
3

1

min11
j t

ijjexe tNT

(3)

Definition 4:

The Pipelining period (α): The time interval between

two successive computations in a PE. If λ is a

scheduling vector and u is a projection direction, then

the pipelining period is given by the relation:

uTλα = (4)

In some places (for the three nested loops

algorithms), for the pipeline period it is used the

formula:

()
()131211 ,,gcd

det

TTT

T
=α (5)

where, T is a transformation matrix and Tli, i = 1, 2, 3 is

(1, i) co-factor (minor) of matrix T and gcd (T11, T12,

T13) is the greatest common divisor of T11, T12 and T13.

Res. J. Appl. Sci. Eng. Technol., 7(21): 4415-4422, 2014

4418

Definition 5: The geometric area (ga)
of a two-

dimensional systolic array is the area of the smallest
convex polygon which bounds the PEs in the (x, y) -
plane. The geometric area is given by the formula:

()() ()()
()() 1132

12311321

11

1111

TNN

TNNTNNga

−−+

−−+−−=
 (6)

Definition 6: The Speedup (S) of a systolic array is the
ratio of the processing time in the SA to the processing
time in a single processor (T1), i.e.:

T

T
S 1= (7)

Definition 7: The Efficiency (E) is defined as the ratio
of the speedup to the number of PEs in the array i.e.:

Ω
=

Ω
=

Tx

TS
E 1 (8)

Theorem 2: Bekakos (2001) and Zhang et al. (1994):

The number of processors on SHSA array is (the array

where we have no using the linear transformation):

133 2 +−=Ω NN (9)

Theorem 3 (Snopce and Elmazi, 2008b): The number

of processing elements in 2-dimensional systolic array

for the algorithm of matrix-matrix multiplication for

which is used the projection direction u = [1 1 1]
T
, could

be reduced and given with Ω = N
2
.

Theorem 4 (Gusev and Evans, 1994): The number of

PEs for the systolic array which is constructed by using

the nonlinear transformation the number of PEs is given

by the relation:






 −
⋅=Ω

2

13N
N (10)

Let Pind = {(i, j, k) /1≤ i, j, k≤N}

be the index space

of the used and computed data for matrix multiplication.

The purpose is to implement the mapping

() ()yxtkji T ,,,, → , using an appropriate form for the

matrix T. There are different options of such matrix T

(Bekakos, 2001).

Definition 8: The linear transformation matrix T is the

matrix:

















=







=

333231

232221

131211

1

ttt

ttt

ttt

S

T
T

where, T1 = [t11, t12, t13] is the scheduling vector (time
schedule of the computations; in the case of matrix
multiplication this is always [1 1 1]) and:









=








=

333231

232221

3

2

ttt

ttt

T

T
S

is a transformation which maps Pind

into a 2-dimensional
systolic array.

Definition 9: A matrix T is associated to the projection
direction u = [u1 u2 u3]

T
(there are some possible

allowable projection vectors, Bekakos (2001), so that
the following conditions must be satisfied:

• detT ≠ 0

• T2u = 0; T3u = 0

• The entries have to be from the set {-1, 0, 1}

Definition 10: The transformation matrix T maps the
index point (i, j, k) ∈ Pind into the point (t, x, y) ∈ T. Pind,
where, Pind

is the set of index points such that:

[] []

[] []
























==

++=
















==

k

j

i

ttt

ttt
kjiSyx

kji

k

j

i

kjiTt

TT

T

333231

232221

1 111

(11)

In this case t is the time where calculations are

performed and (x, y) are the coordinates of processor’s
elements on the 2-dimensional systolic array.

Definition 11: For the algorithm of matrix-matrix
multiplication the transformation which is used for
obtaining the new index space is defined with H = T○L1

where,
















=

101

011

001

1L

If one uses definition 9 and 11, the linear

transformation matrix is transformed to a new matrix of
the form:















 ++

=

3332

2322

1312131211

0

0

tt

tt

ttttt

H

This happens because from the case 2) of definition

9, it is easy to conclude that t21+ t22 + t23 = 0 and t31 + t32

+ t33 = 0.

Res. J. Appl. Sci. Eng. Technol., 7(21): 4415-4422, 2014

4419

RESULTS AND DISCUSSION

The advantage of using the linear transformation in

designing the systolic array for matrix

multiplication: If one uses theorem 2, then it is

possible to find the number of PEs in the corresponding

systolic array. For example, if N = 4 then Ω = 37

(Fig. 3). In the case of the systolic array constructed

using the properties of theorem 3, the number of

processors (Fig. 4) is Ω = 4
2
 = 16. In Fig. 3 and 4 these

two arrays are represented. The second array has less

number of PEs and it is one of the advantages of using

the linear transformation in constructing the systolic

arrays. So, we can conclude how the number of

processors on the array can be reduced using the linear

transformation. For N = 4 is 16 vis-à-vis 37 without

using the transformation. On the Table 4 we give the

comparison for number of PE for different values of N.

This information is taken from Bekakos (2001).

For the pipeline period, in the case of the array in

Fig. 3, using relation (4) we get:

[] 3

1

1

1

111 =
















== uTλα (12)

Table 4: Comparison for number of PEs

N Without using L By using L

5 61 25

10 271 100
50 7351 2500

100 29701 10000

This means that every computation in each
processor is performed after the time interval of three
units (after every third step).

If one uses the relation (5), then the same result
will be obtained. To confirm this, we give the
transformation matrix used in this case:

















−

−=

110

101

111

T
 (13)

For this matrix we have the following results: det

(T) = 3, T11 = 1, T12 = -1, T13 = 1. Thus, using the

relation (5), the same result as in (12) will be obtained.

If this formula is used for the systolic array which is

constructed by using the linear transformation matrix

(the array in Fig. 4), we get:

()
()

1
,,gcd

det

11

11

131211

===
H

H

HHH

H
α

0

0

00

0

12b

41c

12a

43c

31c

11a

31a

42c

34b

21b

11b

21a 11c

21c

44b

43b

12c

13a

23a

42b

32a

33a

41b

22c

14a

14c

24c

34c

44a

34a

33c
32c

31b
24b

14b

41a

13b

44c

23c

22b
23b

13c

43a

24a

22a

32b
33b

42a

0

0

00

0 0

00

0

0

0

0

0

0

000

0

0

0

0

0

0

0

0

00

0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

Fig. 3: The SHSA array for N = 4 (without using the linear mapping)

Res. J. Appl. Sci. Eng. Technol., 7(21): 4415-4422, 2014

4420

14b

22c

12a

43c

23c

31c

11a31a

33c

32c

31b
21b

14b

21a

14b

11c

34c

22b

23b

12c

14a

43a

24a

34b

22b

32a

33a

13c24c

41c

42c

44c

21c 14c

42a

44a

41a

31a

13a

23a

22a34a

21a

23a43a

24a32a

12b

31b
41b

11b

13b

24b
43b

32b

11b

0

0

0

0

24b

41b

24b 23b

44b

32b

33b

42b

43b

44b
42b

34b 13b 32b

12b

41b 43b

21b

24b
34b

31b

31b33b 12b

22a

44a

33a

23b44b21b

0

42a 34a

4111ab

Fig. 4: Systolic array for N = 4 using the mapping L

This is due to the fact that for the matrix H the

cofactor H12 = 0 and H13 = 0.
This means (the result α = 1) that in the case of

Fig. 4 the PEs perform in every step.
If k is an index point, then of course, max k = (N1,

N2, N3) and min k = (1, 1, 1). Using the relation (11) we
have that:

3111min

max

),,(

321
),,(

=++=

++=

∈

∈

ind

ind

Pyxt

Pyxt

t

NNNt

 (14)

From the relations (2) and (14) the execution time

may be obtained:

2

31

321

321

−++=

=−+++=

NNN

NNNTexe (15)

If one uses the fact that if N1 = N2 = N3, then

Texe = 3N-2. On the other hand Tin = Tout = N-1, therefore
the computation time using (1) will be:

45 −= NT (16)

In the case of the array in Fig. 4 the execution time

will be ordered by using the theorem 1 which is

associated by the relation (3):

() () ()
1

1111011

32

321

−+=

⋅−+⋅−+⋅−+=

NN

NNNTexe

(17)

If N2 = N3
then Texe = 2N-1. In this case Tin = N-1

and Tout = 0, therefore the computational time is:

23 −= NT (18)

In the Fig. 5 the systolic array using nonlinear

transformation is presented (Gusev and Evans, 1994).
For this array (Fig. 5), we have that Texe = 3N-1, Tin = N-
1 and Tout = 0. Therefore the computation time is:

24 −= NT (19)

For the geometric area in the case of the array in

Fig. 3 we have:

()() ()() ()()
()() ()() ()

() 3)(211

1111111

111111

3213231213

2312111

3212311321

+++−++=⋅−

−+⋅−−+⋅−−=

−−+−−+−−=

NNNNNNNNNN

NNNNNT

NNTNNTNNga

(20)

If one takes N1 = N2 = N3 = N then:

2)1(−= Nga
 (21)

In the case of the array with nonlinear

transformation, one can calculate the geometric area in a
similar way as above:

()() ()()1111 3232 −−+−−= NNNNga

Similarly for N1 = N2 = N3 = N we have:

Res. J. Appl. Sci. Eng. Technol., 7(21): 4415-4422, 2014

4421

22c

12a

43c

23c

31c

11a

33c

32c

21a

14b

34c

22b

12c

14a

24a

32a

13c

24c

41c

42c

44c

21c

14c

13a

11b

33b

42b

42b

34b 13b

32b

41b

44b

43b

44a 22a 33a

34a

43a 23a

42a
31a

41a

11c

14b

12b24b31b

21b

23b 13b

33b 23b 12b

22b

43b 32b 24b 11b

34b 21b

44b 31b

41b

y

x

Fig. 5: Systolic array for N = 4 (with nonlinear mapping)

Table 5: Comparison of performance characteristics

Without using L

By using L

By nonlinear transf.
--

N = 4 N = 10 N = 100 N = 4 N = 10 N = 100 N = 4 N = 10 N = 100

Ω 37 271 29701 16 100 10000 20 140 14900
T 16 46.0 496 10 28 298 14 38 398
S 4 21.7 2016 6.4 35.7 3355 4.5 26.3 2512.6
E 10.8% 8% 6.8% 40% 35.7% 33.5% 23% 19% 16.9%
ga

27 243 29403 9 81 9801 18 162 19602

2

)1(2 −= Nga
 (22)

Since the duration of matrix multiplication on a

system with only one processor is T1 = N
3
, the speedup

and efficiency in the case of the array in Fig. 3, using

relations (7) and (8), will be respectively:

45

3

−
=

N

N
S (23)

()() 






 ==
+−−

=
→∞

%7.6
15

1
lim

13345 2

3

E
NNN

N
E

N

(24)

The same parameters in the case of using linear

transformation matrix are:

23

3

−
=

N

N
S (25)

() 






 ==
−

=
∞→

%3.33
3

1
lim

23
E

N

N
E

N

 (26)

And finally these parameters for the array where

nonlinear transformation has been used are:

24

3

−
=

N

N
S (27)

()







 ==






 −
⋅−

=
∞→

%7.16
6

1
lim

2

13
24

2

E
N

N

N
E

N

(28)

Res. J. Appl. Sci. Eng. Technol., 7(21): 4415-4422, 2014

4422

Using the results obtained by the relations (16-28),
as well as theorems 1, 2 and 3, one can construct the
corresponding table, where all the results can be
compared. In Table 5 it is given a comparison of
performance characteristics for some values of N.

CONCLUSION

In this study we make the comparison concerning

some performance measures for parallel matrix
multiplication. We emphasized the systolic approach as
most efficient. We can conclude that using the identical
performance parameters, for each parameter, the array
which is constructed using linear transformation matrix
has better performances. Especially for the efficiency
when N tends to the infinity we have that it is
approximately five times better than the array without
using the linear transformation. From the Table 5 we can
deduce the advantage of using the linear transformation.
The results from the Table 5 are done for N = 4, N = 10
and N = 100. The table can be enlarged for other values
of N as well. In all the cases, the results by using L are
better.

REFERENCES

Agarwal, R.C., S.M. Balle, F.G. Gustavson, M. Joshi

and P. Palkar, 1995. A 3-Dimensional approach to
parallel matrix multiplication. IBM J. Res. Dev.,
39(5): 1-8.

Alpatov, P., G. Baker, C. Edwards, J. Gunnels,
G. Morrow, J. Overfelt, Robert Van de GEijn and
J. Wu, 1997. Plapack: Parallel linear algebra
package. Proceeding of the SIAM Parallel
Processing Conference.

Alqadi, Z. and J. Amjad, 2005. Analysis of program
methods used for optimizing matrix multiplication.
J. Eng., 15(1): 73-78.

Alqadi, Z., J. Amjad and M. Ibrahiem, 2008.

Performance analysis and evaluation of parallel

matrix multiplication algorithms. World Appl. Sci.

J., 5(2): 211-214.

Bekakos, M.P., 2001. Highly Parallel Computations-

algorithms and Applications. Democritus

University of Thrace, Greece, pp: 139-209.

Cannon, L.E., 1969. A cellular computer to implement

the kalman filter algorithm. Ph.D. Thesis, Montana

State University.

Choi, J., J.J. Dongarra and D.W. Walker, 1992. Level 3

BLAS for distributed memory concurrent

computers. Proceeding of Environment and Tools

for Parallel Scientific Computing Workshop.

Choi, J., J.J. Dongarra and D.W. Walker, 1994.

PUMMA: Parallel Universal Matrix Multiplication

Algorithms on distributed memory concurrent

computers. Concurrency-Pract. Ex., 6(7): 543-570.

Chtchelkanova, A., J. Gunnels, G. Morrow, J. Overfelt

and R. van de Geijn, 1995. Parallel implementation

of BLAS: General techniques for level 3 BLAS,

TR-95-40. Department of Computer Sciences,

University of Texas, OCT.

Coppersmith, D. and S. Winograd, 1990. Matrix

multiplication via arithmetic progressions. J. Symb.

Comput., 9: 251-280.

Dekel, E., D. Nassimi and S. Sahni, 1983. Parallel

matrix and graph algorithms. SIAM J. Comput.,

10: 657-673.

Gusev, M. and D.J. Evans, 1994. A new matrix vector

product systolic array. J. Parallel Distr. Com., 22:

346-349.

Leighton, T., 1992. Introduction to Parallel Algorithms

and Architectures: Arrays-trees-Hypercubes.

Morgan Kaufmann, San Mateo, California.

Robinson, S., 2005. Toward an optimal algorithm for

matrix multiplication. SIAM News, 38(9).

Snopce, H. and L. Elmazi, 2008a. Reducing the number

of processors elements in systolic arrays for matrix

multiplication using linear transformation matrix.

Int. J. Comput. Commun. Control, 3: 486-490.

Snopce, H. and L. Elmazi, 2008b. The importance of

using linear transformation matrix in determining

the number of PEs in systolic arrays. Proceeding of

ITI 2008. Cavtat, Croatia, pp: 885-892.

Strassen, V., 1969. Gaussian elimination is not optimal.

Numer. Math., 13: 354-356.

Zhang, C.N., J.H. Weston and F.Y., Yan, 1994.

Determining object functions in systolic array

designs. IEEE T. VLSI Syst., 2(3): 357-360.

