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Abstract: In this study we analyze how to make a proper selection for the given matrix-matrix multiplication 

operation and to decide which is the best suitable algorithm that generates a high throughput with a minimum time, a 

comparison analysis and a performance evaluation for some algorithms is carried out using the identical 

performance parameters. 
 
Keywords: Algorithms for parallel matrix multiplication, linear transformation and nonlinear transformation, 

performance parameter measures, Processor Elements (PEs), systolic array 

 
INTRODUCTION 

 
Most of the parallel algorithms for matrix 

multiplication use matrix decomposition that is based 
on the number of processors available. This includes 
the systolic algorithm (Choi et al., 1992), Cannon’s 
algorithm (Alpatov et al., 1997), Fox’s and Otto’s 
Algorithm (Agarwal et al., 1995), PUMMA (Parallel 
Universal Matrix Multiplication) (Choi et al., 1994), 
SUMMA (Scalable Universal Matrix Multiplication) 
(Cannon, 1969) and DIMMA (Distribution Independent 
Matrix Multiplication) (Chtchelkanova et al., 1995). 
The standard method for n×n matrix multiplication uses 
O (n

3
) operations (multiplications). Most of the parallel 

algorithms are parallelization of this method. For 
instance, matrix multiplication can be performed in O 
(n) time on a mesh with wraparound connections and 
n×n processors (Cannon, 1969); in O (log n) time on a 
three dimensional mesh of trees with n

3
 processors 

(Leighton, 1992); in O (log n) time on a hypercube or 
shuffle  exchange  network  with n

3 
processors (Dekel 

et al., 1983). On the other hand, all implementations 
have a cost, i.e., time processor product of at least O 
(n

3
). Therefore, the aim is to develop highly parallel 

algorithms that have the cost less than O (n
3
). 

Extensive work has been done for constructing 
algorithms that require O (n

β
) operations, such that β<3. 

The research world was stunned with O (n
2.81

) 
algorithm for matrix multiplication (Strassen, 1969). A 
recursive application gives an algorithm that runs in 
time (Strassen, 1969). Following Strassen’s work, a 
series of studies published among the years 1970

s
 and 

80s Achieved better upper bounds on the exponent. 
Currently, the best matrix multiplication algorithm 
takes O (n

β
) operations, where β<2.375477 

(Coppersmith and Winograd, 1990). However, these 
algorithms are highly sophisticated even for sequential 

execution; parallelization of these methods are only of 
theoretical interest and far from practical (Leighton, 
1992; Robinson, 2005; Coppersmith and Winograd, 
1990). Therefore, from practical point of view, 
parallelization of standard matrix multiplication 
algorithm with O (n

3
) multiplications is more 

appropriate. The objective of this study is to investigate 
which parallel method is more appropriate and how to 
optimize the existing methods in order to obtain more 
efficient parallelization. 

 

METHODOLOGY 

 

Parallel computing paradigms: Parallel computing 

process depends on how the processors are connected to 

the memory. There are two different ways how this can 

be done: shared memory system and distributed 

memory. 

In a shared memory system, a single address space 

exists; within it, to every memory location is given a 

unique address and the data stored in the memory are 

accessible to each processor. In such a system the 

processor Pi reads the data written by the processor P 

and it is necessary to use synchronization. 

In a distributed memory system, each processor 

can only access to its own memory (local memory). The 

connection between processors is done by the so called 

“high-speed communication network” and they 

exchange information using send and receive 

operations.  

MPI (Message Passing Interface) is useful for a 

distributed memory systems since it provides a widely 

used standard of message passing program.  In MPI, 

data is distributed among processors, where no data is 

shared and data is communicated by message passing. 
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Matrix multiplication algorithms as a nested loop 

algorithms are suitable for such kind of systems.  

 

Systolic array for matrix multiplication: A systolic 

array is a computing network possessing with the 

features of synchrony (data are rhythmically computed 

and passed through the network), modularity and 

locality, special locality (a locally communicative 

interconnection structure), pipeline ability, repeatability 

(usually the repetition of one single type of cell and 

interconnection occurs). By the systolic arrays it can be 

achieve a high parallelism. Systolic arrays are very 

suitable for nested-loop algorithms; such is the problem 

of parallel solution of matrix-matrix multiplication 

(Bekakos, 2001; Snopce and Elmazi, 2008a; Gusev and 

Evans, 1994). 

The simplest systolic arrays are the chain and the 

ring, which in fact are one dimensional array. In the 

m×n two dimensional systolic array the nodes are 

defined by integer points in a rectangle {(i, j), 0≤i≤m, 

0≤ j≤n}. A node (i, j) is connected with nodes (i±1, j) 

and (i, j±1), if they are in the rectangle. If we add 

diagonal edges ((i, j), (i±1, j+1)) to the two 

dimensional array, then we get the so called hexagonal 

systolic array. By adding the edges ((0, j), (m-1, j)) and 

((i, 0), (i, n-1)) to an m×n array, we get a two 

dimensional torus. There are given some models of 

systolic arrays in Fig. 1. 

The simplest case of systolic array which can be 

used for parallel matrix multiplication is similar as the 

array shown in the Fig. 1c. The systolic array is 

quadratic 2-D such that the elements of a matrix A are 

fed into the array by the rows and the elements of the 

matrix B are fed into the array by the columns. The 

array consists of n×n PEs. Each PE indexed by i and j,  

in each step k, adds a partial product aik bkj
 

to the 

accumulated sum for every cij. Hence, we have a 

movement in   two    directions.   The   elements  of  the 

a
b

c

d

e

 
 

Fig. 1: Typical models of systolic arrays, (a) linear systolic 

array, (b) 1-D ring, (c) 2-D square array, (d) 2-D 

hexagonal array, (e) 2-D torus 

 

resulting matrix C are stationary. In Fig. 2 are shown 

just the first two cycles of such quadratic systolic array. 

The matrices A  and B are taken to be quadratic of 

order 3. 

 

Why systolic array? The MPI technique needs two 

kinds of time to complete the multiplication process, tc 

and tf, where tc represents the time it takes to 

communicate one data between processors and tf is the 

time needed to multiply or add elements of two 

matrices. It is assumed that matrices are of type n×n. 

The other assumption is that the number of processors 

is p. Each processor holds n
2
/p elements and it was 

assumed that n
2
/p is set to a new variable m

2
. The 

number of arithmetic operations units will be

 

( )1

11c

11b

11a ( )2

11c

21b

12a 11a

12b

( )1

12c

11b

21a ( )1

21c

1 cycle 2 cycle
 

 

Fig. 2: The first two cycles (7 in total) for the 2-D systolic computation of 3×3 matrix product 
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Table 1: Theoretical results 

Algorithm ƒ
 

c q
 

S E 

Systolic algorithm 55080000 1440000 38.250 3.8250 0.9560 

Cannon’s algorithm 271800000 108720000 2.500 0.2500 0.0625 
Fox’s algorithm with square decomposition 162360000 270720000 0.599 0.0599 0.0150 

Fox’s algorithm with scattered decomposition 54360000 109440000 0.497 0.0497 0.0124 

PUMMA 54360000 1620000 33.550 3.3550 0.8390 
SUMMA 54360000 1800000 30.200 3.0200 0.7550 

DIMMA 54360000 1800000 30.200 3.0200 0.7550 

 
Table 2: Experimental results 

p
 

Systolic Cannon’s Fox 1 Fox 2 PUMMA SUMMA DUMMA

1 251.690 530.33 390.20 506.490 271.120 149.540 165.970 
4 65.500 408.12 236.32 267.244 79.583 45.241 49.390 

 
Table 3: Values of S and E 

Algorithm S E 

Systolic algorithm 3.832 0.96 

Cannon’s algorithm 1.299 0.32 

Fox’s algorithm with square decomposition 1.651 0.41 

Fox’s algorithm with scattered decomposition 1.895 0.47 

PUMMA 3.407 0.85 

SUMMA 3.305 0.83 

DIMMA 3.360 0.84 

 

denoted by f. The number of communication units will 

be denoted by c. The quotient q = f/c will represent the 

average number of flops per communication access. 

The speedup is S = q. (tf /tc) (the definitions of some 

special performance characteristics are given in the next 

subchapter). In order to apply the analytical variables, 

we need to make some assumptions. Firstly we assume 

that the number of processors is p = 4. The dimension 

of  the  matrix  is  n = 600.  The last assumption is that 

tf /tc
 
= 0.1. Also  we need to use the Efficiency formula 

E = S/p. In the Table 1 we record the results that we 

obtain for all algorithms, under the assumptions that we 

made (Alpatov et al., 1997; Agarwal et al., 1995; Choi 

et al., 1994; Alqadi et al., 2008). 

From Table 1, after analyzing the theoretical 

results, one can conclude that the systolic algorithm 

will give the best performance (i.e., efficiency). The 

efficiency increases as the parameter S approaches the 

number of processors. 

The experimental results (Alqadi and Amjad, 2005) 

for the execution time using 1 processor and using 4 

processors are shown in the Table 2. The table is 

obtained by implementing each algorithm 100 times 

and then, ten fastest five ones are taken and averaged. 

On the other hand, taking into the consideration that S = 

T (1) /T (p) (which means that speedup is equal to the 

time using 1 processor dividing with the time using p 

processors), we give the Table 3 with the values of S 

and E. 

The analysis explained above has shown that the 

systolic algorithm may be considered as the best 

algorithm that produces a high efficiency. The 

theoretical analysis matches with the experimental 

results performed in Alqadi et al. (2008). This analysis 

is useful for making a conclusion and giving a 

recommendation for selecting the best algorithm among 

others which is more effective for parallel solving of 

some linear algebra problems, including the problem of 

matrix-matrix multiplication. 
 

MATHEMATICAL TOOLS 
 

Definition 1: The array size (Ω) is the number of PEs 
in the array. 
 
Definition 2: The computation Time (T) is the sum of 
the time for the date input in the array-Tin, the time for 
the algorithm executing-Texe and the time necessary for 
dates leaving the array-Tout, i.e.: 
 

outexein TTTT ++=                              (1) 

 
Definition 3: The execution time, Texe, is defined as: 
 

ind
ind Pyxt

out
Pyxt

exe ttT
∈∈

−+=
),,(),,(

minmax1                             (2) 

 
Theorem 1: Zhang et al. (1994): The execution time is 
given by the relation: 
 

( )∑
=

⋅−+=
3

1

min11
j t

ijjexe tNT

                                   

(3) 

 

Definition 4:  

The Pipelining period (α): The time interval between 

two successive computations in a PE. If λ is a 

scheduling vector and u is a projection direction, then 

the pipelining period is given by the relation: 

 

uTλα =                                (4) 

 

In some places (for the three nested loops 

algorithms), for the pipeline period it is used the 

formula: 
 

( )
( )131211 ,,gcd

det

TTT

T
=α                               (5) 

 

where, T is a transformation matrix and Tli, i = 1, 2, 3 is 

(1, i) co-factor (minor) of matrix T and gcd (T11, T12, 

T13) is the greatest common divisor of T11, T12 and T13.  
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Definition 5: The geometric area (ga) 
of a two-

dimensional systolic array is the area of the smallest 
convex polygon which bounds the PEs in the (x, y) -
plane. The geometric area is given by the formula:  
 

( )( ) ( )( )
( )( ) 1132

12311321

11

1111

TNN

TNNTNNga

−−+

−−+−−=
         (6) 

 
Definition 6: The Speedup (S) of a systolic array is the 
ratio of the processing time in the SA to the processing 
time in a single processor (T1), i.e.: 
 

T

T
S 1=                                (7) 

 
Definition 7: The Efficiency (E) is defined as the ratio 
of the speedup to the number of PEs in the array i.e.:  
 

Ω
=

Ω
=

Tx

TS
E 1                 (8) 

 

Theorem 2: Bekakos (2001) and Zhang et al. (1994): 

The number of processors on SHSA array is (the array 

where we have no using the linear transformation): 

 

133 2 +−=Ω NN                               (9) 

 

Theorem 3 (Snopce and Elmazi, 2008b): The number 

of processing elements in 2-dimensional systolic array 

for the algorithm of matrix-matrix multiplication for 

which is used the projection direction u = [1 1 1]
T
, could 

be reduced and given with Ω = N
2
. 

 

Theorem 4 (Gusev and Evans, 1994): The number of 

PEs for the systolic array which is constructed by using 

the nonlinear transformation the number of PEs is given 

by the relation: 

 






 −
⋅=Ω

2

13N
N                             (10) 

 

Let Pind = {(i, j, k) /1≤ i, j, k≤N}
 
be the index space 

of the used and computed data for matrix multiplication. 

The purpose is to implement the mapping

( ) ( )yxtkji T ,,,, → , using an appropriate form for the 

matrix T. There are different options of such matrix T 

(Bekakos, 2001). 

 

Definition 8: The linear transformation matrix T is the 

matrix: 

 

















=







=

333231

232221

131211

1

ttt

ttt

ttt

S

T
T

 

where, T1 = [t11, t12, t13] is the scheduling vector (time 
schedule of the computations; in the case of matrix 
multiplication this is always [1 1 1]) and: 
 









=








=

333231

232221

3

2

ttt

ttt

T

T
S  

 
is a transformation which maps Pind 

into a 2-dimensional 
systolic array. 
 
Definition 9: A matrix T is associated to the projection 
direction u = [u1 u2 u3]

T 
(there are some possible 

allowable projection vectors, Bekakos (2001), so that 
the following conditions must be satisfied:  
 

• detT ≠ 0  

• T2u = 0; T3u = 0  

• The entries have to be from the set {-1, 0, 1} 
 
Definition 10: The transformation matrix T maps the 
index point (i, j, k) ∈ Pind into the point (t, x, y) ∈ T. Pind, 
where, Pind 

is the set of index points such that:
 

 

[ ] [ ]

[ ] [ ]
























==

++=
















==

k

j

i

ttt

ttt
kjiSyx

kji

k

j

i

kjiTt

TT

T

333231

232221

1 111

             

(11) 

 
In this case t is the time where calculations are 

performed and (x, y) are the coordinates of processor’s 
elements on the 2-dimensional systolic array. 
 
Definition 11: For the algorithm of matrix-matrix 
multiplication the transformation which is used for 
obtaining the new index space is defined with H = T○L1 

where, 
 
















=

101

011

001

1L
 

 
If one uses definition 9 and 11, the linear 

transformation matrix is transformed to a new matrix of 
the form: 

 















 ++

=

3332

2322

1312131211

0

0

tt

tt

ttttt

H

 
 
This happens because from the case 2) of definition 

9, it is easy to conclude that t21+ t22 + t23 = 0 and t31 + t32 

+ t33 = 0.
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RESULTS AND DISCUSSION
 

 

The advantage of using the linear transformation in 

designing the systolic array for matrix 

multiplication: If one uses theorem 2, then it is 

possible to find the number of PEs in the corresponding 

systolic  array.  For  example,  if N = 4 then Ω = 37 

(Fig. 3). In the case of the systolic array constructed 

using the properties of theorem 3, the number of 

processors (Fig. 4) is Ω = 4
2
 = 16. In Fig. 3 and 4 these 

two arrays are represented. The second array has less 

number of PEs and it is one of the advantages of using 

the linear transformation in constructing the systolic 

arrays. So, we can conclude how the number of 

processors on the array can be reduced using the linear 

transformation. For N = 4 is 16 vis-à-vis 37 without 

using the transformation. On the Table 4 we give the 

comparison for number of PE for different values of N. 

This information is taken from Bekakos (2001). 

For the pipeline period, in the case of the array in 

Fig. 3, using relation (4) we get: 

 

[ ] 3

1

1

1

111 =
















== uTλα                            (12) 

Table 4: Comparison for number of PEs  

N Without using L By using L 

5 61 25 

10 271 100 
50 7351 2500 

100 29701 10000 

 

This means that every computation in each 
processor is performed after the time interval of three 
units (after every third step). 

If one uses the relation (5), then the same result 
will be obtained. To confirm this, we give the 
transformation matrix used in this case: 
 

















−

−=

110

101

111

T
                            (13) 

 

For this matrix we have the following results: det 

(T) = 3, T11 = 1, T12 = -1, T13 = 1. Thus, using the 

relation (5), the same result as in (12) will be obtained. 

If this formula is used for the systolic array which is 

constructed by using the linear transformation matrix 

(the array in Fig. 4), we get: 

 

( )
( )

1
,,gcd

det

11

11

131211

===
H

H

HHH

H
α
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Fig. 3: The SHSA array for N = 4 (without using the linear mapping) 
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Fig. 4: Systolic array for N = 4 using the mapping L 

 
This is due to the fact that for the matrix H the 

cofactor H12 = 0 and H13 = 0. 
This means (the  result  α = 1) that in the case of 

Fig. 4 the PEs perform in every step. 
If k is an index point, then of course, max k = (N1, 

N2, N3) and min k = (1, 1, 1). Using the relation (11) we 
have that: 

 

3111min

max

),,(

321
),,(

=++=

++=

∈

∈

ind

ind

Pyxt

Pyxt

t

NNNt

                                    (14)

 

 
From the relations (2) and (14) the execution time 

may be obtained: 
 

2

31

321

321

−++=

=−+++=

NNN

NNNTexe                            (15) 

 
If  one  uses  the  fact  that  if  N1 = N2 = N3,  then 

Texe = 3N-2. On the other hand Tin = Tout = N-1, therefore 
the computation time using (1) will be: 
 

45 −= NT                              (16) 

 
In the case of the array in Fig. 4 the execution time 

will be ordered by using the theorem 1 which is 

associated by the relation (3): 

 

( ) ( ) ( )
1

1111011

32

321

−+=

⋅−+⋅−+⋅−+=

NN

NNNTexe

         

(17) 

If N2 = N3 
then Texe = 2N-1. In this case Tin = N-1 

and Tout = 0, therefore the computational time is: 
 

23 −= NT                              (18) 

 
In the Fig. 5 the systolic array using nonlinear 

transformation is presented (Gusev and Evans, 1994). 
For this array (Fig. 5), we have that Texe = 3N-1, Tin = N-
1 and Tout = 0. Therefore the computation time is: 
 

24 −= NT                              (19) 

 
For the geometric area in the case of the array in 

Fig. 3 we have: 
 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )

( ) 3)(211

1111111

111111

3213231213

2312111

3212311321

+++−++=⋅−

−+⋅−−+⋅−−=

−−+−−+−−=

NNNNNNNNNN

NNNNNT

NNTNNTNNga

(20)

 

 
If one takes N1 = N2 = N3 = N then: 

 
2)1( −= Nga
                             (21) 

 
In the case of the array with nonlinear 

transformation, one can calculate the geometric area in a 
similar way as above: 
 

( )( ) ( )( )1111 3232 −−+−−= NNNNga
 

 
Similarly for N1 = N2 = N3 = N we have: 
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Fig. 5: Systolic array for N = 4 (with nonlinear mapping) 

 
Table 5: Comparison of performance characteristics  

 

Without using L 
----------------------------------------------------- 

By using L 
--------------------------------------------------- 

By nonlinear transf. 
---------------------------------------------- 

N = 4 N = 10 N  = 100 N = 4 N = 10 N = 100 N = 4 N = 10 N = 100 

Ω 37 271 29701 16 100 10000 20 140 14900 
T 16 46.0 496 10 28 298 14 38 398 
S 4 21.7 2016 6.4 35.7 3355 4.5 26.3 2512.6 
E 10.8% 8% 6.8% 40% 35.7% 33.5% 23% 19% 16.9% 
ga

 
27 243 29403 9 81 9801 18 162 19602 

 
2

)1(2 −= Nga
              (22) 

 

Since the duration of matrix multiplication on a 

system with only one processor is T1 = N
3
, the speedup 

and efficiency in the case of the array in Fig. 3, using 

relations (7) and (8), will be respectively: 

 

45

3

−
=

N

N
S                              (23) 

 

( )( ) 






 ==
+−−

=
→∞

%7.6
15

1
lim

13345 2

3

E
NNN

N
E

N

   

(24) 

 

The same parameters in the case of using linear 

transformation matrix are:

 

23

3

−
=

N

N
S                              (25) 

 

( ) 






 ==
−
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And finally these parameters for the array where 

nonlinear transformation has been used are: 
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Using the results obtained by the relations (16-28), 
as well as theorems 1, 2 and 3, one can construct the 
corresponding table, where all the results can be 
compared. In Table 5 it is given a comparison of 
performance characteristics for some values of N. 

 
CONCLUSION 

 
In this study we make the comparison concerning 

some performance measures for parallel matrix 
multiplication. We emphasized the systolic approach as 
most efficient. We can conclude that using the identical 
performance parameters, for each parameter, the array 
which is constructed using linear transformation matrix 
has better performances. Especially for the efficiency 
when N tends to the infinity we have that it is 
approximately five times better than the array without 
using the linear transformation. From the Table 5 we can 
deduce the advantage of using the linear transformation. 
The results from the Table 5 are done for N = 4, N = 10 
and N = 100. The table can be enlarged for other values 
of N as well. In all the cases, the results by using L are 
better. 
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