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Abstract: The Partial Transmit Sequence which reduces the PAPR (Peak-to-Average Power Ratio) in Multiple 

Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) system using a novel 

optimization algorithm is proposed in this study. This novel optimization algorithm is based on a hybrid of Bacterial 

Foraging Optimization (BFO) and Modified Cuckoo Search algorithm (MCS) and is thus called HBFOMCS. In 

HBFOMCS, reproduction of individuals in a new generation is created, not only by swim and tumble operation as in 

BFO, but also by MCS. The natural reproduction step of BFO is swapped by the concept of searching best solutions 

as in MCS which then increases the possibility of generating the elite individuals for next generation. These 

enhanced reproduction step constitute the ready-to-perform population for the new generation once the initial 

population is performed by swim and tumble operation. Afterwards, discover probability is applied to abandon the 

worst solution due to the nature of MCS. HBFOMCS is applied to optimize the best combination from a set of 

allowed phase factors in Partial Transmit Sequence (PTS) technique. The performance of HBFOMCS is compared 

with BFO, Cuckoo Search (CS) and Modified cuckoo search MCS in the PAPR reduction in MIMO-OFDM system, 

accordingly proving its proficiency. 
 
Keywords: Bacterial foraging algorithm, hybrid algorithm, MIMO-OFDM, modified cuckoo search algorithm, 

PAPR reduction, partial transmit sequence 

 
INTRODUCTION 

 
The advent evolutionary computation has inspired 

new resources for optimization problem solving, such 
as the optimal algorithms for phase factor optimization 
in Partial transmit sequence of MIMO-OFDM systems. 
In contrast to traditional computation systems which 
may be good at accurate and exact computation, but 
have brittle operations, evolutionary computation 
provides a more robust and efficient approach for 
solving complex real-world problems (Bäck and 
Schwefel, 1993; Fogel, 1995; Yao, 1999). Many 
evolutionary algorithms, such as Genetic Algorithm 
(GA) (Lain et al., 2011), Artificial Bee Colony 
algorithm (ABC) (Wang et al., 2010), Particle Swarm 
Optimization (PSO) (Wen et al., 2008; Mouhib et al., 
2011), Bacterial Foraging  Optimization  (BFO)  (Jing 
et al., 2008) and Modified Cuckoo Search (MCS) 
algorithm (Yang and Deb, 2010), have been proposed. 
Since they are heuristic and stochastic, they are less 
likely to get stuck in local minimum and they are based 
on populations made up of individuals with a specified 
behavior similar to biological phenomenon. These 

common characteristics led to the development of 
evolutionary computation as an increasing important 
field. Among existing evolutionary algorithms, the most 
well known branch is BFO. The Bacterial Foraging 
Optimization (BFO) algorithm is a biologically inspired 
computation technique which is based on mimicking 
the foraging behavior of E. coli bacteria. The 
information processing strategy of the algorithm is to 
allow cells to stochastically and collectively swarm 
toward optima. This is achieved through a series of 
three processes on a population of simulated cells: 

  

• 'Chemotaxis' where the cost of cells is derated by 

the proximity to other cells and cells move along 

the manipulated cost surface one at a time (the 

majority of the work of the algorithm.  

• 'Reproduction' where only those cells that 

performed well over their lifetime may contribute 

to the next generation. 

• 'Elimination-dispersal' where cells are discarded 

and new random samples are inserted with a low 

probability.  
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It is the most robust and efficient algorithm in 

comparison with other presently available algorithms 

for   global   optimization   of    multi-objective,   multi- 

parameter design problems. Recently, a new 

evolutionary computation technique, the Cuckoo Search 

optimization (CS), is proposed (Yang and Deb, 2010). 

Like BFO, CS is initialized with a population of 

random solutions. Its development was inspired by the 

obligate brood parasitism of some cuckoo species by 

laying their eggs in the nests of other host birds (of 

other species). CS is based on three idealized rules:  

 

• Each cuckoo lays one egg at a time and dumps its 

egg in a randomly chosen nest. 

• The best nests with high quality of eggs will carry 

over to the next generation. 

• The number of available hosts nests is fixed and 

the egg laid by a cuckoo is discovered by the host 

bird with a probability.  
 
Discovering operates on some set of worst nests and 
discovered solutions dumped from farther calculations. 
Given enough computation, the CS will always find the 
optimum (Whitley et al., 1994) but, as the search relies 
entirely on random walks, a fast convergence cannot be 
guaranteed. Three modifications to the CS method are 
made with the aim of increasing the convergence rate, 
thus making the Modified Cuckoo Search (MCS) 
method more practical for a wider range of applications 
but without losing the attractive features of the original 
method. Modified Cuckoo search algorithms provide 
more robust results than Particle swarm optimization 
and Artificial bee colony algorithm. An extensive 
detailed study of various structural optimization 
problems suggests that modified cuckoo search obtains 
better results than other algorithms. 

Hybridization of evolutionary algorithms with local 
search has been investigated in many studies (Merz and 
Freisleben, 1997; Jaszkiewicz, 2001; Krasnogor and 
Smith, 2000). Such a hybrid is often referred to as a 
memetic algorithm (Knowles and Corne, 2000; 
Ishibuchi et al., 2003; Zhou and Peng, 2005). In 
contrast to memetic algorithm, we will combine two 
global optimization algorithms, i.e., BFO and MCS, in 
this study. Since BFO and MCS both work with a 
population of solutions, combining the search 
capabilities of both the methods seems to be a good 
approach. Application of group foraging strategy of a 
swarm of E. coli bacteria in multi-optimal function 
optimization is the key idea of BFO algorithm. On the 
contrary, MCS has the ability to simultaneously refine a 
local search, while still searching globally is its key 
idea. In this study, we propose a new algorithm that 
combines the evolution ideas of both BFO and MCS. In 
the reproduction operation of BFOs, individuals are 
reproduced or selected using Lévy flight of MCS 
directly to the next generation without any 
enhancement. To integrate this phenomenon into BFO, 
MCS is adopted to enhance the individual bacterium to 

achieve the position of best food on each generation. 
After this enhanced reproduction process, discovery 
probability is applied to eliminate the bacteria from 
their position. The new positions produced by the 
enhanced reproduction phenomenon are expected to 
perform better than some of those in original population 
and the poor-performed individuals will be weeded out 
from generation to generation. To demonstrate the 
searching ability of HBFOMCS, the optimization of 
phase factors of the partial transmit sequence in MIMO-
OFDM system is considered. 
 

MIMO-OFDM SYSTEM MODEL 
 

In MIMO-OFDM system, a number of antennas 
are placed at the transmitting and receiving ends and 
their distances are separated far enough. The idea is to 
use realize spatial multiplexing and data pipes by 
developing space dimensions which are created by 
multi-transmitting and receiving antennas. The 
transmitted signal bandwidth is so narrow that its 
frequency response can be considered as being flat 
(Jones et al., 1994). Defining the channel matrix has 
Nr×Nt complex matrix, the elements of it are fading 
coefficients from the j

th 
transmit antenna to the i-

th
 

receive antenna. Assuming that a MIMO system with a 
transmit array of Nt antennas and a receive array of Nr 

antennas, the transmission can be expressed as: 
 

y = Hx + n                                                            (1) 
 
where,  
y  =  Nr×1 receiving vector  
x  =  Nt×1 transmitting vector  
n  = Additive white Gaussian noise with 

autocorrelation matrix: 
 
Rn = E {nn

H
} = N0 INT  

 
where, 
INT  =  An Nt×Nt identity matrix  
N0  =  Identical noise power of each receiving branch 

(M¨uller and Huber, 1997a; Jiang et al., 2007) 
 
PAPR of the MIMO-OFDM signal: In an OFDM 
system, a high-rate data stream is split into N low-rate 
streams that are transmitted simultaneously by 
subcarriers, where N is the number of subcarriers. Each 
of the subcarriers is independently modulated using 
Phase-Shift Keying (PSK) or Quadrature Amplitude 
Modulation (QAM). The Inverse Fast Fourier 
Transform (IFFT) generates the ready-to-transmit 
OFDM signal. For an input OFDM block X = [X0, X1,... 
XN-1]

T
, each symbol in X modulates one subcarrier of 

{f0,….., fN-1}.  The  N  subcarriers  are orthogonal, i.e., 
fn = n∆f, where ∆f = 1/NT and T is the symbol period. 
The complex envelope of the transmitted OFDM signal 
in one symbol period is given by: 
 

x�t� = �

√�
∑ X�e
�π���, 0 ≤ t < �����

���            (2) 
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Fig. 1: Block diagram of HBFOMCS-PTS model 

 

The PAPR of x (t) is defined as the ratio of the 

maximum instantaneous power to the average power, 

that is: 

 

PAPR =
�|!���|"#$%&'()

*+,

-.|!���|"/
                                              (3) 

 

E .|x�t�|�/ = 1/NT 5 |x �t�|�dt             �7
�             (4) 

 

However, most systems use discrete-time signals in 

which the OFDM signal is expressed as: 

  

x�k� = �

√�
∑ X�e
�π�9/:�, k = 0,1, … . LN − 1���

���        (5) 

 

where, L is the oversampled factor. It has been shown 

in (M¨uller and Huber, 1997b) that the oversampled 

factor L = 4 is enough to provide a sufficiently accurate 

estimate of the PAPR of OFDM signals. 

Complementary Cumulative Density Function 

(CCDF) is a commonly used performance criterion to 

show the PAPR reduction and it is described as: 

 

CCDF = Pr {PAPR (x) >PAPR0}                        (6) 

 

where PAPR0 is a certain level of PAPR. 

CCDF denotes the probability that the PAPR of the 

data symbol exceeds the given threshold and is given 

by: 

 

Pr {PAPR (x) >PAPR0} = 1- (1-e
-PAPR

0)
N
        (7) 

 

Consequently the PAPR of MIMO-OFDM signals 

at each transmit antenna is written as (Sharma et al., 

2011): 

 

PAPR?@?A�ABC? = PAPRD              �EFE�&
GH!            (8) 

where, PAPRi denotes the PAPR of i
th

 transmit antenna. 
Nt represents the number of transmitting antennas. This 
can be further derived as: 
     
Pr {PAPRMIMO-OFDM>PAPR0} = 1- (1-e

-PAPR
0)

N
t
N
  (9)  

 
From Eq. (9) CCDF of MIMO-OFDM is much less 

than in Eq. (7). 

 
Partial transmit sequence for PAPR reduction: The 
block diagram of the PTS method is shown in Fig. 1. In 
the MIMO-OFDM PTS, the input data vector X is 
encoded with space time encoder into two vectors X 

and Y. Each of the data vector X and Y are considered 
as an individual OFDM transmission and the PTS 
method is applied individually for each of them. Three 
partitioning methods have been proposed in the 
literature and we choose the random partitioning 
method, which provides the best PAPR reduction 
performance. The PTS operation is explained for the 
space time encoded data X and is similar to the other 
data Y. The input data block X is partitioned into M 
disjoint sub-blocks (Jing et al., 2009; Khan et al., 2010; 
Cimini and Sollenberger, 2000), Xm, m = 1, 2 … M 
such that: 

  

X = ∑ XG                      ?��
G��                                      (10) 

 
Sub-blocks are combined to minimize the PAPR in 

the time domain. L times oversampled time domain 
signal of Xm is denoted as xm, m = 1, 2 … M, which are 
obtained by taking an IFFT of length NL on Xm 
concatenated with (L-1) N zeros. Each xm is multiplied 
by a phase weighting factor bm = e

jφm
, where φm ∈ (0, 

2π� for m = 1, 2 … M. The goal of the PTS approach 
(M¨uller and Huber, 1997a; Han and Lee, 2004) is to 
find an optimal phase weighted combination to 
minimize the PAPR value. The transmitted signal in the 
time domain after combination can be expressed as: 
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x′�b� = ∑ bD
?
D�� xD                                                      (11) 

  

where x′�b� = [x�
′�b�, x�

′�b�, … … … . . , x�:
′�b�] 

In general, the selection of the phase factor is 

limited to a set with finite number of elements to reduce 

the search complexity. The set of allowed phase factors 

is: 

 

P = {e
j2пl/W

, l = 1, 1, ……, W-1}             (12) 

 

where, W is the number of allowed phase factors. We 

can fix a phase factor without any performance loss. 

There are only M-1 free variables to be optimized and 

hence W
M-1

 different phase vectors are searched to find 

the global optimal phase factor. The search complexity 

increases exponentially with M, the number of sub-

blocks. The aim in the PTS is to find the optimal phase 

factors (Whitley et al., 1994). In the phase optimization, 

because the phase factor of the first sub-block is taken 

as b0 = 1, there are W
M

 - 1 alternative b combinations, 

where b = [b1, b2,..., bM-1] and W is the number of the 

phase factors. In sequence b, bM values are as follows: 
 

bM = {±1} if W = 2 

= {±1, ±j} if W = 4  

= {±1, ±j, +0.707±0.707j, -0.707±0.707j} 

if W = 8 

 

Therefore, the Side Information (SI) consists of b 

and the length of the SI is R = (M-1) log2 (W) bits 

(Jiang et al., 2007; Zhang et al., 2009). 

 

MINIMIZE PAPR USING A HYBRID OF BFO 

AND MCS (HBFOMCS) ALGORITHM 

 

In order to get the OFDM signals with the 

minimum PAPR, a suboptimal combination method 

based on the hybrid of Bacterial Foraging (BFO) and 

Modified Cuckoo Search (MCS) algorithm is proposed 

to solve the optimization problem of PTS. The hybrid 

algorithm with lower complexity can get better PAPR 

performance. The minimum PAPR for PTS method is 

relative to the problem: Minimize: 
 

f�b� = GH! .|!′�N�|"/

-.|!′�N�|"/
                                              (13) 

 

subject to b∈ {e
jφm

}
M                                                                

(14)  

 

where φm∈ �π9

O
, k = 0, 1,…..W-1   

           
The proposed HBFOMCS combines BFO with 

MCS to form a hybrid BFOMCS. This hybrid of BFO 
with MCS algorithms can always produce a better 
algorithm than either the BFO or the MCS algorithms 
alone (Jing et al., 2008; Yang and Deb, 2010). In this 
section, basic concepts of BFO and MCS are 

introduced, followed by a detailed introduction of 
HBFOMCS in the next section. 

 

Basic concepts of BFO: In recent years E. coli 

introduced the Bacterial Foraging Optimization 

algorithm (BFO) for numerical optimization problems 

(Yang and Deb, 2010). In BFO, a bacterium keeps 

foraging on food population by two basic steps, tumble 

and swim. The main goal of a bacterium is to optimize 

the best food position within the pre-defined iterations. 

Chemo-taxis is the initial step for a bacterium in which 

Ns numbers of swim steps are to be followed. When a 

bacterium completes each swim it calculates the fitness 

of current food position and compares it with the 

previous position. Once the fitness of the current food 

decreases, then the previous position of the bacterium 

gets changed in the moving direction which is known as 

tumble. Tumble is a unit walk in any random direction 

on food sources. In case a bacterium optimizes best 

fitness in the next swim steps, it keeps moving in the 

same direction up to Ns swim steps. Alternation 

between the swim and tumble steps involves in one 

chemo-taxis iteration. 
After completion of Nc chemo-taxis steps, a 

bacterium finds M best food positions, therefore N 
number of bacteria optimize S = Nc*N number of food 
positions. Reproduction and elimination dispersal are 
the augment steps in BFO. In the reproduction step, 
bacteria in the S food positions are arranged in 
descending order and are splitted into two i.e., Sr = S/2. 
The bottom half of S bacteria are removed as their 
fitness are low. The bottom half are replaced by the 
healthiest bacteria of the top position and are placed in 
the same food position for the next iteration. After the 
completion of Nr reproduction steps the elimination-
dispersal step is performed based on the elimination 
probability Epr. In elimination-dispersal few bacteria are 
removed from the food position randomly based on Epr. 
The removed bacteria are then replaced by new bacteria 
selected randomly from the available bacterial 
population. The entire process is repeated again and it 
continues up to the defined value of elimination 
dispersal. The optimum combination is obtained once 
the elimination dispersal is over. 

N* Nc* Ns is the measure of computation 
complexity or the number of searches for the proposed 
BFO-PTS algorithm, where N is the number of bacteria, 
Nc is the number of chemo-taxis and Ns is the number 
of swim steps initialized for optimization. 

 
Basic concepts of MCS: 
Cuckoo Search (CS): Is an optimization algorithm 
developed by Yang and Deb (2009). It was inspired by 
the obligate brood parasitism of some cuckoo species 
by laying their eggs in the nests of other host birds (of 
other species). Some host birds can engage direct 
conflict with the intruding cuckoos. For example, if a 
host bird discovers the eggs are not their own, it will 
either throw these alien eggs away or simply abandon 
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its nest and build a new nest elsewhere. Cuckoo Search 
(CS) uses the following representations. 

Each egg in a nest represents a solution and a 

cuckoo egg represents a new solution. The aim is to use 

the new and potentially better solutions (cuckoos) to 

replace a not-so-good solution in the nests. In the 

simplest form, each nest has one egg. The algorithm 

can be extended to more complicated cases in which 

each nest has multiple eggs representing a set of 

solutions. 

CS is based on three idealized rules: 

 

• Each cuckoo lays one egg at a time and dumps its 

egg in a randomly chosen nest.  

• The best nests with high quality of eggs will carry 

over to the next generation. 

• The number of available host’s nests is fixed and 

the egg laid by a cuckoo is discovered by the host 

bird with a probability Pd Discovering operate on 

some set of worst nests and discovered solutions 

dumped from farther calculations. Given enough 

computation, the CS will always find the optimum 

(Jing et al., 2008; Whitley et al., 1994; Yang and 

Deb, 2009) but, as the search relies entirely on 

random walks, a fast convergence cannot be 

guaranteed. 

 

Modified Cuckoo Search (MCS): Three modifications 

to the cuckoo search are made with the aim of 

increasing the convergence rate, thus making the 

method more practical for a wider range of applications 

but without losing the attractive features of the original 

method (Yang and Deb, 2009). The three modifications 

are: 

 

• In the CS, α is constant whereas in MCS, the value 

of α decrease as the number of generations Gn 

increases. This is done to encourage more localized 

searching as the individuals, or the eggs, get closer 

to the solution.  

• In the CS, there is no information exchange 

between individual nests and, fundamentally, the 

searches are performed independently. Therefore, 

adding up information exchange between the eggs 

tries to formulate convergence to minimum. 

• In the CS, there is no restriction to the nests which 

have worst solutions. So, adding restriction in MCS 

for the nest which participated in a generation with 

worst solutions or eggs. In MCS, reduction of 

worst nest is applied to begin the next generation 

and search complexity gets decreased when 

compared with the CS. 

 

(N*Gn) /2 is the measure of computation 

complexity or the number of searches for the proposed 

MCS-PTS algorithm, where N is the initial number of 

nests considered for optimization and Gn = N-1 is the 

number of generations considered for computation. 

 

Hybrid of BFO and MCS (HBFOMCS): The Hybrid 

optimization algorithm, HBFOMCS consists of three 

major operators:  

 

• Population or initialization 

• Swim and tumble  

• Reproduction with Lévy flight 

 

This hybrid optimization algorithm utilizes the 

capable properties of MCS in BFO algorithm to achieve 

the better search ability with less computational 

complexity. The reproduction and elimination dispersal 

operation of BFO is replaced with the searching ability 

of MCS using Lévy flight. The Hybrid optimization 

algorithm, HBFOMCS consists of three major 

operators. 

 
Initialization: In HBFOMCS, MCS work with the 

same population. Initially, N individuals constituting 

the population should be randomly generated as in 

MCS. These individuals may be regarded as nests in 

terms of MCS, or as positions of bacterium in terms of 

BFO. In addition, the optimization parameters, such as 

maximum tumble, maximum swim, discover 

probability and maximum Lévy step size should be 

initialized. After initialization, new nests on the next 

generation are created by swim, tumble and 

reproduction operations. 

 

Swim and tumble: In each generation, after the fitness 

values of all the nests in the same population are 

calculated, then the fitness values of N nests are 

calculated to bring out the individuals (position or nest) 

with best solutions (food or egg). In case, if maximum 

swim does not generate best individuals then tumble 

procedure is performed to change the direction of 

bacteria or cuckoo. These individuals are regarded as 

elites. Instead of performing unlimited tumble steps as 

in BFO, HBFOMCS confines the maximum number of 

tumble steps as initialized. This enhancement procedure 

tries to imitate the maturing phenomenon in nature, 

where individuals will become more appropriate to the 

environment after attaining data from the society. 

Furthermore, by using this enhanced procedure in 

tumble step, the never-ending situation can be avoided 

while an ultimate individual has been generated in 

swim step. 

 

Reproduction with Lévy flight: To produce well 

performing individuals, in the reproduction operation 

nests are reproduced by enhanced reproduction. To 

reproduce the nest, the Lévy flight of MCS is used and 

the discover probability is applied to select the 
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individuals. Thus, the top nests are reproduced after 

their fitness values are compared with the new 

individuals produced by Lévy flight. 
The adopted reproduction may be regarded as a 

kind of elite reproduction and is used to increase the 
searching ability. As in nature, individuals selected 
have guaranteed ability to search new individuals will 
achieve better fitness than those by usual reproduction 
as in BFO. After top nests are reproduced, bottom nests 
or individuals are replaced by Lévy flight without 
comparing the fitness function. From the perspective of 
BFO, where bottom individuals are replaced by 
applying elimination dispersal probability (discover 
probability). 

(N*Gn) is the measure of computation complexity 
or the number of searches for the proposed HBFOMCS-
PTS algorithm, where N is the initial number of nests 
considered for optimization and Gn = N-1 is the number 
of generations considered for computation. 

The mathematical model of hybrid algorithm is 
explained as follows: 
 
HBFOMCS algorithm: 
A ← Max Lévy Step Size 
MaxTumble ← Allowed tumble steps 
MaxSwim ← Allowed swim steps 
Pd ← Discover Probability 
Ps = 1 - Pd ← Select Probability 
S ← Split Position 
Initialize a population of n nests: 
 
 xi (i = 1, 2,..., n) 
for all xi do 
  Calculate fitness Fi = f (xi) 
end for 
Generation number G←1 
while G≤Gmax do 
    G←G + 1 
    for all xi do  
 Ftemp = Fi 

p = i+1 
tumble = 0 
while tumble ≤ MaxTumble 
 swim = 0 
while swim < MaxSwim 
 p = p + swim 
if  Fp≤Ftemp  
Ftemp = Fp   
 swim + = 1 
else 
break; 
end if 

end while 
p = random position among nest 
tumble + = 1 
end while 
    Fi = Ftemp    

    xi = xtemp 
    end for 
    Sort nests by order of f (xi) 

    S = Ps * n 
    for i = S + 1 : n  do 
  Current position xi 
  Calculate Max Lévy Step Size A  
  Perform Lévy flight from xi to generate new egg xk 
       xi ← xk 
       Fi ← f (xi) 
   end for 
   for i = 1: S do 
       Current position xi 
Pick another nest from the top nests at random xj 
  Calculate Max Lévy Step Size A         
  Perform Lévy flight from xi to generate new egg xk 
        Fk = f (xk) 
 Choose a random nest l from all nests 
       if (Fk>Fl) do 
        xl ← xk 
        Fl ← Fk 
          end if 
      end for 
end while 

 
SIMULATION RESULTS 

 
Hybrid BFOMCS algorithm is applied to search the 

better combination of phase factor for PTS. In the 
study,  we  select  the  phase  factor  b  =  {-1,  1}

M 
 or  

b  =  {-1,  1,  j,  -j}
M   

or   b = {±1,  ±j,  +0.707±0.707j,  
-0.707±0.707j}

M
. In the proposed HBFOMCS-PTS 

technique we optimize the best phase factor from W
M-1 

combinations where M is number of sub-blocks and W 
is the allowed phase factor. To evaluate and compare 
the performance of the HBFOMCS-PTS algorithm for 
MIMO-OFDM PAPR reduction, numerous simulations 
have been conducted. In order to get CCDF, 1000 
random symbols are generated. The transmitted signal 
is oversampled by a factor of L= 4 for accurate PAPR. 
In our simulation, 16-QAM modulation with N = 256 
sub-carriers is used and the phase factor W = 2 is 
chosen. When larger phase factor, for example, W = 4, 
8, 16 and 32 are chosen, the similar simulation results 
can be obtained, while the performance will be better.  

In Fig. 2 and 3, some results of the CCDF of the 
PAPR are simulated for the MIMO-OFDM system with 
256 subcarriers, in which M = 4 and 16 sub-block 
employing random partition and the phase weight factor 
W = 32 and 2, uniformly distributed random variables 
are used for PTS. As we can see that the CCDF of the 
PAPR is gradually promoted upon increasing the 
numbers of generations due to the limited phase 
weighting factor. As the numbers of generation are 
increased, the CCDF of the PAPR has been improved. 
For a generation Gn = 30 and 20, we can see that the 
HBFOMCS based PTS technique is capable of attaining 
a near OPTS technique performance, when Pr 
(PAPR>PAPR0) = 10

-2
. 

In Fig. 2 and 3, we compare the PAPR 
performance of different numbers of generations Gn. 
Basically, the PAPR performance is improved with the 
increase in the number of generations Gn. However,  
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Fig. 2: CCDF of HBFOMCS technique for different Gen (Gn) 

when M = 4 W = 16 

 

 
 

Fig. 3: CCDF of HBFOMCS technique for different Gen (Gn) 

when M = 4 and W = 32 

 

 
 

Fig. 4: CCDF of the PAPR with the PTS technique searched 

by HBFOMCS technique when N = 256, M = 2, 4, 8 

and 16 

 

the degree of improvement is limited when Gn is above 

30. On the other hand, the computational complexity is 

increased   with   Gn.   Only   a   slight  improvement  is 

 
 

Fig. 5: Comparisons of HBFOMCS-PTS technique under 

different phase weight factors and M = 4 sub-block 

 

 
 

Fig. 6: Comparisons of HBFOMCS-PTS technique under 
different phase weight factor and M = 8 sub-block 

 

 
 
Fig. 7: Comparisons of HBFOMCS-PTS technique for W = 2 

and M = 16 sub-block 

 

attained for increasing Gn = 20 to 30. The 

computational complexity of Gn = 20 is double of that 

of Gn = 10. 
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Hence, based on the trade-off between the PAPR 
reduction and computational complexity, Gn = 20 is a 
suitable choice for our proposed HBFOMCS based PTS 
technique. 

Figure 4 shows the simulated results of the 
HBFOMCS assisted PTS technique, in comparison 
against normal MIMO-OFDM for various sub-blocks 
M.M is chosen as 8 and16. In particular, the PAPR of 
an MIMO-OFDM signal exceeds 9.8 dB for 10

-2
 of the 

possible transmitted MIMO-OFDM blocks. However, 
by introducing PTS approach with M = 16 clusters 
partition with phase factor W = 2, at 10

-2
 PAPR reduces 

to 5.6 dB. In short, new approach can achieve a 
reduction of PAPR by approximately 4.2 dB at the10

-2
 

PAPR compared with the original MIMO OFDM. 
Thus, the performance of the techniques is better for 
larger M since larger numbers of vectors are searched 
for larger M in every update of the phase weighting 
factors. 

Moreover, it can be observed that probability of 
very high peak power has been increased significantly 
if PTS techniques are not used. As the number of sub-
blocks and the set of phase weighting factor are 
increased, the performance of the PAPR reduction 
becomes better. However, the processing time gets 
longer because of much iteration. From Fig. 4, as 
expected, the improvement increases as number of 
clusters increases. Thus, using the HBFOMCS 
technique, we can obtain better results than presented 
previously. 

In Fig. 5 to 7, for a fixed number of clusters, the 
phase weighting factor can be chosen from a larger set 
of {2, 4, 8, 16 and 32}. It is shown that the added 
degree of freedom in choosing the combining phase 
weighting factors provides an additional reduction. 
When the number of phase weighting factor W = 16 
and 32 and number of sub-blocks M = 4, PAPR can be 
reduced about 3.5 dB at 10

-2
 from  9.8 to 6.3 dB.  When 

W= 2 and 4 and M = 8, at 10
-2

 PAPR can be reduced 
about 3.2 dB from 9.8 to 6.5 dB and about 4.4 db from 
9.8 to 5.6 db. When W = 2 and M = 16, at 10

-2
 PAPR 

can be reduced about 4.2 dB from 9.8 to 5.6 dB. As the 
number of sub-blocks and the set of phase weighting 
factor are increased, the performance of the PAPR 
reduction becomes better. However, the processing time 
gets longer because of much iteration. 

The iteration number of proposed technique is 

shown in Table 1. For M = 16 and W = 2 the OPTS 

technique requires 32,768 iterations per OFDM frame, 

while HBFOMCS-PTS technique requires 812 

iterations only. The complexity of HBFOMCS- PTS is 

only 0.024% (812/32768) of that of the optimal PTS 

technique. For M = 4 and W = 32 the OPTS technique 

requires 32,768 iterations per OFDM frame, while 

HBFOMCS-PTS technique requires 1122 iterations 

only. The complexity of HBFOMCS-PTS is only 

0.034% (1122/32768) of that of the optimal PTS 

technique. The iteration number of the proposed 

technique for other combination of phase weight factors 

and number of sub-blocks are also shown in Table 1. 

Figure 8 shows the simulated results of the 
HBFOMCS assisted PTS technique; in comparison 
against normal MIMO-OFDM for various values of 
discover probability. In particular, the PAPR of an 
MIMO-OFDM signal, at 10

-2
 PAPR reduces to 5.8 dB 

when the discover probability is set as 0.1. But as the 
value of discover probability is increased the PAPR 
values approaches the optimum value.  

In Fig. 9 and 10, we compare the PAPR 

performances of hybrid BFOMCS algorithm with 

individual  BFO  and  MCS algorithms for W = 2 and 

M = 8 and W = 2 and M = 16 combination. The PAPR 

performance is improved greatly by employing hybrid 

BFOMCS algorithm when compared with BFO and 

MCS algorithms applied individually. 

 
Table 1: The computational complexity comparisons of HBFOMCS-PTS technique and OPTS under different phase factors (W) and sub-blocks 

(M) 

Combinations 

OPTS 
------------------------------------------------------------------ 

HBFOMCS-PTS 
---------------------------------------------------------- 

Search complexity (WM-1) PAPR (dB) Search complexity (N*Gn) PAPR (db) 

W = 2 M = 8 128 6.5 5*11 = 55 6.5 
W = 2 M = 16 32,768 5.5 29*28 = 812 5.7 
W = 4 M = 8 16,384 5.6 17*35 = 595 5.8 
W = 16 M = 4 4096 6.2 20*20 = 400 6.3 
W = 32 M = 4 32768 6.3 33*34 = 1122 6.4 

 

Table 2: The computational complexity comparisons of HBFOMCS-PTS, MCS-PTS, BFO-PTS and OPTS under different phase factors (W) and 
sub-blocks (M) 

Methods Computational complexity 

PAPR (dB) 
---------------------------------------------------------- 
W = 2 M = 8 W = 2 M = 16 

OPTS WM-1 = 128 6.5 - 
 WM-1 = 32768 - 5.30 
BFO-PTS N* Nc* Ns = (5*4*3) = 60 6.9 - 
 N* Nc* Ns = (5*4*3) = 900 - 5.75 
MCS-PTS N (N+1) /2 = (10*11) /2 = 55 6.7 - 
 N (N+1) /2 = (40*41) /2 = 820 - 5.70 
HBFOMCS-PTS N*Gn = 8*7 = 56 6.5 - 
 N*Gn = 29*28 = 812 - 5.50 
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Fig. 8: CCDF of HBFOMCS technique for various values of 

discover probability Pd for M = 16, W = 2 

 

 
 

Fig. 9: Comparison of CCDF of HBFOMCS, MCS and BFO 

for M = 8 and W = 2 

 

 
 

Fig. 10: Comparison of CCDF of HBFOMCS, MCS and BFO 

for M = 16 and W = 2 

 

The computational complexity comparisons of 

HBFOMCS-PTS technique with MCS, BFO and OPTS 

under different phase weight factors and number of sub-

blocks are shown in Table 2. 

For both the phase factor combinations shown in 

the table HBFOMCS algorithm outperforms BFO and 

MCS in terms of PAPR reduction and computation 

complexity. For M = 16 and W = 2 the OPTS technique 

requires 32,768 iterations per OFDM frame to obtain a 

PAPR value of 5.3 dB, while HBFOMCS-PTS 

technique requires 812 iterations only to obtain a PAPR 

value of 5.5 dB which is 0.2 dB greater than the optimal 

PAPR value and 0.2 db less than MCS-PTS (820 

searches) and 0.3 dB less than BFO-PTS (900 

searches). For M = 8 and W = 2 the OPTS technique 

requires 128 iterations per OFDM frame to obtain a 

PAPR value of 6.5 dB, while HBFOMCS-PTS 

technique requires 55 iterations only to obtain the same 

PAPR value of 6.5 dB which 0.2 db less than MCS-

PTS (55 searches) and 0.4 dB less than BFO-PTS (60 

searches). 

The performance of the proposed methods can be 

compared with the existing optimization algorithms for 

OFDM such as PSO and ABC in terms of 

computational complexity and PAPR reduction. 

Table 3 shows the comparison of computational 

complexity among different methods for phase factor 

W = 2, M = 8 sub blocks. PSO optimization algorithm 

(Wen et al., 2008) can obtain a PAPR reduction of 0.4 

dB (8 dB) greater than the optimum value of 7.6 dB. 

Our proposed algorithms can obtain a better PAPR 

reduction i.e., BFO achieves the same PAPR reduction 

as PSO, 0.4 dB (6.9 dB) greater than the optimum value 

of 6.5 dB but MCS achieves a better PAPR reduction of 

0.2 dB (6.7 dB) greater than the optimum value of 6.5 

dB and HBFOMCS achieves superior PAPR reduction 

of obtaining exactly the same optimal value of 6.5 dB. 

The computational complexity reduction is much 

better for the proposed algorithms. PSO can achieve the 

above PAPR reduction in 88 searches which is 40 

searches less than the optimum computation of 128 

searches. BFO algorithm can achieve the same PAPR 

reduction in 60 searches which is 68 searches less than 

the optimum computation. Similarly MCS and 

HBFOMCS can achieve better PAPR reduction in 55 

searches which is 73 searches less than the optimum 

computation.  

Table 4 shows the comparison of computational 

complexity among different methods for phase factor 

W = 2, M = 16 sub blocks. ABC optimization algorithm 

(Yajun et al., 2010) can obtain a PAPR reduction of 

0.35 dB (6.8 dB) greater than the optimum value of 

6.45 dB and PSO algorithm can obtain a PAPR 

reduction 0.65 dB (7.1 dB) greater than the optimum 

value of 6.45 dB. In comparison BFO achieves 0.45 dB 

(5.75 dB) greater than the optimum value of 5.3 dB and 

MCS achieves a better PAPR reduction of 0.4 dB (5.7 

dB) greater than the optimum value of 5.3 dB and 

HBFOMCS achieves superior PAPR reduction of 0.2 

dB (5.5 dB) greater than the optimum value of 5.3 dB. 
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Table 3: Comparison of computational complexity among different methods for phase factor W = 2, M = 8 sub blocks 

Methods Computational complexity PAPR (dB) 

OFDM  OPTS WM-1 = 27 = 128 7.6 
  PSO (1 + Gn) ×O (W3) = (1+10) × (23) = 11×8 = 88 8.0 
MIMOOFDM  OPTS WM-1 = 27 = 128 6.5 
  BFO N* Nc* Ns = (5*4*3) = 60 6.9 
  MCS N (N + 1) /2 = (10*11) /2 = 55 6.7 
  Hybrid N*Gn = 8*7 = 56 6.5 

 
Table 4: Comparison of computational complexity among different methods for phase factor W = 2, M = 16 sub blocks 

Methods Computational complexity PAPR (dB) 

OFDM  OPTS WM-1 = 215 = 32,768 6.45 
  ABC S*K = 30*30 = 900 6.80 
  PSO S*G = 30*30 = 900 7.10 
MIMOOFDM  OPTS WM-1 = 215 = 32,768 5.30 
  BFO N* Nc* Ns = (5*4*3) = 900 5.75 
  MCS N (N + 1) /2 = (40*41) /2 = 820 5.70 
  Hybrid N*Gn = 29*28 = 812 5.50 

 

The computational complexity reduction is much 

better for the proposed algorithms. PSO and ABC 

algorithm can achieve the above PAPR reduction in 900 

searches which is 31868 searches less than the optimum 

computation. BFO algorithm can achieve the same 

PAPR reduction as ABC and better than PSO in same 

number of searches. But MCS and HBFOMCS can 

achieve better PAPR reduction in 820 and 812 searches 

respectively which is less than the computation required 

by ABC and PSO. From the simulation results it is 

observed that the Hybrid of BFO and MCS 

(HBFOMCS) algorithm can give a better PAPR 

reduction with a minimum computational complexity. 

 

CONCLUSION 
 

In this study, we formulate the phase weighting 

factors searching of PTS as a particular combination 

optimization problem and we apply the hybrid 

BFOMCS technique to search the optimal combination 

of phase weighting factors for PTS to obtain almost the 

same PAPR reduction near to that of optimal PTS while 

keeping low complexity. Simulations results show that 

hybrid BFOMCS-based PTS method is an effective 

method to compromise a better trade-off between 

PAPR reduction and computation complexity. By 

appropriate selection of phase weighting factors 

according to the required performance and tolerable 

complexity, the proposed hybrid BFOMCS-PTS can 

give better PAPR reduction with less complexity. 

Additionally, the performance of the proposed method 

was slightly degraded compared to that of optimum 

method, PTS. However, the computational complexity 

of the proposed hybrid BFOMCS method was 

remarkably lower than that of optimum method and the 

individual BFO and MCS method. 
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