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Abstract: In this study the Fuzzy Robust Principal Component Analysis (FRPCA) method is used to monitor a 
biological nitrogen removal process, performances of this method are then compared with classical principal 
component analysis. The obtained results demonstrate the performances superiority of this robust extension 
compared with the conventional one. In this method fuzzy variant of PCA uses fuzzy membership and diminish the 
effect of outliers by assigning small membership values to outliers in order to make it robust. For the purpose of 
fault detection, the SPE index is used. Then the fault localization by contribution plots approach and SVI index are 
exploited. 
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INTRODUCTION 
 

During the last few decades, wastewater treatment 
plant has become essentially a large and complex 
industrial factory. Increasing requirements on modeling 
and process monitoring efficiency are becoming more 
important in order to increase the potential for 
improved performance and reliability. Several 
researches concerning the wastewater treatment 
modeling have been identified in the scientific literature 
as a useful engineering tool in design, operation and 
control, where the first technology that was model in 
this field is the activated sludge process, it has been 
proved to be a very stable process. Today the Activated 
Sludge Process (ASP) is the commonly used process for 
treating municipal as the industrial wastewaters, where 
the most successful model is the activated sludge 
process Model No. 1 (Henze et al., 1987). This model 
triggered the general acceptance of the biological 
modeling (Tomita et al., 2002) were default 
stoichiometric and kinetic parameters have been 
proposed and proved to give realistic results. The use of 
efficient models in controller design is important. 
However, a key element of the WWTP optimization 
best functioning is the efficient monitoring techniques. 
Large number of process monitoring including fault 
detection and diagnosis based on statistical process 
control has increased, almost exponentially over the last 
few  decades (Yoo et al., 2003; Lee et al., 2004a; Zhao 
et al., 2004; Lee et al., 2004b; Wang and Romagnoli, 
2005; Aguado and Rosen, 2008; Moon et al., 2009; 

Corona et al., 2013). Among them the PCA is the most 
popular method, it has been successfully applied for 
collected data analysis from systems in the course of 
operation in order to supervise their behavior. Several 
extensions of PCA have been investigated and extended 
in treatment plants. In Haimi et al. (2013), authors 
review the publications focusing on results of PCA 
application in the biological WWTPs over the last 15 
years. 

In this study, we investigate the effectiveness of the 
novel method (FRPCA) compared with the PCA one, 
for that these two methods will applied on biological 
process in order to monitor and achieve the earlier fault 
detection to execute corrective actions before a 
dangerous occurs in this process. A realistic collection 
of data is used to validate the technique and conclusions 
are drawn in the end. 
 

MATHEMATICAL FORMULATION 
 
Traditionnel PCA: Principal Component Analysis 
(PCA) is a projection-based technique that facilitates a 
reduction in data dimension through the construction of 
orthogonal principal components which are linear 
combinations of the original variables and generally 
demonstrate the data more feasible in much less 
dimension (Runger and Alt, 1996). These principal 
components are ordered so that the first Principal 
Component variable (PC) in the linear combination has 
the greatest variance, the second PC is the linear 
combination with the next greatest variance. The 
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remaining PCs are defined similarly. It is often the case 
that a small number of principal components is 
sufficient to account for most of the structure in the 
data. The transformation is defined by: 
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                                                   (1)  
 
where, pj is a m×1 component (loading vectors), they 
are defined here as being orthonormal and so they 
become the eigenvectors of the data covariance matrix 
XT X. tj 

is the n×1 score vector corresponding to jth 
variable. m is the number of principal components 
retained and E is the residual error. A new sample 
vector X can be decomposed into two parts: 
 

TX TP X                                                       (2) 
 
where, ෨ܺ ൌ 	 ෨ܶ ෨்ܲ is the residual matrix. For more 
information, the reader is referred to Jackson (1991), 
Jolliffe (1986) and Wold et al. (1987). 
 
Fuzzy robust principal component analysis: Fuzzy 
Robust Principal Component Analysis algorithms are 
designed to solve two majors problems faced by the 
PCA approach, first the problem of the real applications 
where the data come in the on line way, the second one 
is the sensitivity to outliers (Xu and Yuille, 1995). The 
robust rules developed in Xu and Yuille (1995) make 
FRPCA techniques essential when better accuracies are 
yielded when the algorithms are used. The FRPCA 
algorithms used here were introduced in Yang and 
Wang (1999), the derived nonlinear case was proposed 
in Luukka (2009). The algorithms proposed by Yang 
and Wang (1999) in their paper are based on Xu and 
Yuille algorithms (Xu and Yuille, 1995). The ability of 
these algorithms lay in the way they deal with outliers 
removal in a given data (Luukka, 2009). Yang and 
Wang (1999) defined a fuzzy objective function which 
includes Xu and Yuilles's as crisp special cases. We 
present a brief description of the theory by Xu and 
Yuille, also the modification proposed by Yang and 
Wang. Xu and Yuille (Yang and Wang, 1999) proposed 
an optimization function with an energy measure e (xi) 
subject to the membership set ui∈ {0, 1}

 
given as: 
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where, X = {x1, x2, …, xi}

 
is the data set, U = {ui |i = 1, 

…, n} is the membership set and η is the threshold. The 
variable ui 

serves to decide whether xi is an outlier or a 
sample. When ui = 1, the portion of energy contributed 
by the sample xi is taken into consideration; otherwise xi 

is considered as an outlier (Moon et al., 2009). The goal 
is to minimize E (U, w) with respect to ui and w. Since 
ui is the binary variable and, w is the continuous 
variable, the optimization with gradient descent 
approach is hard to solve using gradient descent. To 
overcome the problem, the minimization problem was 
transformed to maximization of Gibbs distribution with 
the use of a partition function. The new problem thus 
looks like below: 
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where Z is the partition function ensuring 
∑ ׬ ܲ	ሺܷ,ݓሻ ൌ 1

	
௪௎ . The measure could be one of the 

following functions: 
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The gradient descent rules for minimizing ܧଵ ൌ

	∑ 	௡
௜ୀଵ ݁ଵሺݔ௜ሻ and ܧଶ ൌ 	∑ 	௡

௜ୀଵ ݁ଶሺݔ௜ሻ are: 
 

    ,new old
t i iw w y x u y x                     (7) 
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where ߙ௧ 

is the learning rate, y = wTxi, u = yw and v = 
wTu. Oja presented a nonlinear PCA (Oja, 1995), 
where, 
 

   3
T

i ie x x w g y                                         (9) 

 
and where y = xi

w

 
and g can be chosen as nonlinear 

function. In this case the weight updating would be: 
 

    3
new old T old

t i iw w xe w F e x g y            (10) 

 
where,   d

F g y
dy

   

 
The fuzzy variant of the objective function Eq. (1) 

is proposed by Yang and Wang, they adopt fuzzy 
memberships by altering the membership set ui, with a 
factor called the fuzziness variable denoted by m in the 
next equation below, thus the objective function was 
stated as:  
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Subject to ui∈ ሾ0, 1ሿ

 
and m∈ ሾ0, 1ሿ. Now ui 

being 
the membership of xi 

belonging to data cluster and (1-
ui) is the membership of xi 

belonging to noise cluster. M 
is the so called fuzziness variable. In this case, e (xi) 
measures the error between xi 

and the class center. This 
idea is similar to the C-means algorithm (Oja, 1982). 
Since ui 

is now a continuous variable the difficulty of a 
mixture of discrete and continuous optimization can be 
avoided and the gradient descent approach can be used. 
The derivatives of (7) with respect to both ui 

and w 
were found: 
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Setting the derivative to zero gives the solution as:  
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Using this result in the objective function and 

simplifying, we obtain: 
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The gradient with respect to w is:  
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where,  
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And m is the fuzziness variable. If m = 1 the fuzzy 

membership reduces to the hard membership and can be 
determined by following rule: 
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                                    (17) 

Now η is a hard threshold in this situation. There is 
no general rule for the setting of m, but most papers set 
m = 2. In Yang and Wang (1999), authors derived the 
three following algorithm for the optimization 
procedure: 
 
FRPCA1 algorithm: 
 
Step 1:  Initially set the iteration count t = 1, iteration 

bound T, learning coefficient ߙ଴߳ሺ0, 1ሿ soft 
threshold η to a small positive value and 
randomly initialize the weight w. 

Step 2:  While t is less than T, perform the next steps 3 
to 9. 

Step 3:  Compute  0 1t t T   set i = 1 and σ = 0. 

Step 4:  While i = 1 is less than T, do steps 5-8. 
Step 5:  Compute T

iy w x , u = yw and Tv w u . 

Step 6:  Update the weight: 
 

     new old
t i i iw w x y x u y x        

 

 
Step 7:  Update the temporary count  1 ie x   . 

Step 8:  Add 1 to i. 

Step 9:  Compute ߟ ൌ ሺ
ఋ

௡
ሻ
 

and add 1 to t. 

 
FRPCA2 algorithm: The same as FRPCA1 except 
steps 6-7: 
 
Step 6: Update the weight: 
 

  2new old
t i i T

w
w w x x y y

w w
      

 
 

 
Step 7: Update the temporary count:  2 ie x    

 
FRPCA3 algorithm: Follow the same as FRPCA1 
except steps 6-7: 
 
Step 6: Update the weight: 
 

  2new old
t i iw w x x y wy   

 
 

Step 7: Update the temporary count:  i ie x    

As we can remark, the three algorithms are slightly 
different but we have applied the new Nonlinear 
FRPCA3 proposed in Luukka (2009), where the change 
is in the way of updating the weight and count. 
 
New nonlinear FRPCA3 algorithm: The same as 
FRPCA3 except steps 6-7: 
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Step 6: Compute g (y), F = 
ௗ

ௗ௬
 (g (y)), e3 (xi) = xi - w

old 

g (y).  
Update the weight: 
 

        3 3

Tnew old old
t i i i iw w x x e x w F e x g y     

 
Step 7: Update the temporary count:  3 ie x    

 
The weight w in the updating rules converges to the 

principal component vector almost surely (Oja, 1982; 
Oja and Karhunen, 1985). 
 

FAULT DETECTION AND IDENTIFICATION 
 
Fault detection: Once a FRPCA model is built, it is 
necessary to have a criterion to judge whether this 
model is valid for control. The multivariate statistical 
process monitoring makes use of these criterions. The 
index, which is called the Squared Prediction Error 
(SPE), also known as Q, is used here, for data tests 
FRPCA based model. The SPE is given by:  
 

       2
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Q SPE k x k x k
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             (18) 

 
where, xj (k) is an FRPCA input and ݔො௝ሺ݇ሻ is the 
prediction of xj (k) from the FRPCA model. With a 
control limit δ2 as: 
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where,  is the confidence limit and: 
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 and λi 
is the ith 

eigenvalue of the covariance matrix. The control limit 
is calculated from reference data. If the SPE is above its 
control limit, the system is considered in a faulty state, 
this is explained by the change of correlation structure 
of the process variables. 
 
Fault identification: When a fault is detected, it is 
necessary to identify the variable which is at issue; this 
is name the fault localization. 

Several methods for located the variable in defects 
were proposed in literature, in this study we are 

interesting by the techniques of contribution plots and 
reconstruction fault. 
 
Contribution plots: The classical approach used in 
fault identification by PCA is based on the calculated 
contributions to the index of detection (Alcala and Qin, 
2009), so the variable with a largest contribution to the 
detection indicator is the variable incriminating in the 
cause of detection index SPE. A contribution of the jth 
variable to the SPE-statistic is defined as: 
 

 2
ˆSP E

j j jC x x                                            (22) 

 
Reconstruction fault: The principle of reconstruction 
consists in estimating one of the variables of data vector 
x (k) at a given time denoted xi (k), using the PCA 
model and others variables. There are three different 
approaches that can be used for reconstructing of faulty 
sensor, in this study the iterative reconstruction 
algorithm was used to reconstruct faulty sensor. 
Assumed that fault direction is known, the 
reconstruction ݔො௜ of the ith variable from the selected 
number of principal component by iterative technique 
whereby the value of the faulty sensor is replaced by 
the predicted value is given by: 
 

ˆ  0  ˆ oldT Tc c xi ii ii ix x c 
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where, ˆ old

ix  
can be considered as a projection of x on 

the PCs, it can be calculated as by: ݔො ൌ  where ,ݔܥ
ܥ ൌ ்ܲܲ and  0   T T

i ic c     
is a vector of matrix C which 

the ith
 column of cii 

equation: is replaced by 0. The 
iterative process converges to the following formula: 
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c
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where, cii ≠ 1, In the case of cii = 1, the ith cannot be 
reconstructed by this method. 

In the case of faulty sensor, we have a significant 
reduction in SPE before and after reconstruction. 
However, in some situations, reducing the SPE may 
affect all entries, which makes the faulty sensor 
unidentifiable. A Sensor Validity Index (SVI) was 
introduced. Assuming that only one sensor fault occur 
in the system process (Dunia et al., 1996), this index 
determine the status of each sensor. It can be defined 
as: 

 

 
 
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                                                       (25) 

where, ݔ௜
∗
 
is a reconstructed vector. 
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Apparently, ߟ௜
ଶ
 

ranges between (0, 1), because the

   iSPE x SPE x . When ߟ௜
ଶ
 
is close to 0, it indicates 

that the ith
 sensor is faulty. On the other hand, when ߟ௜

ଶ
 

is close to 1, it means that the sensor variations is 
consistent with others ones. 
 

SIMULATED ACTIVATED SLUDGE MODEL 
 

In this section, an Activated Sludge Process (ASP) 
for nitrogen removal is presented. This process is well 
described in Lopez-Arenas et al. (2004). The basic 
design of an ASP is shown in Fig. 1. In its basic 
configuration, the activated sludge process consists of 
two reactors and a settler. To enhance the nitrogen 
removal, anoxic/anaerobic processes operate 
alternately. During the aerobic phase ammonia nitrogen 
is converted into nitrite by Nitrosommas and 
subsequently into nitrate by Nitrobacters, in the anoxic 
phase the produced nitrate is converted into harmless 
nitrogen gas. As illustrated in Fig. 1, before it enters the 
aeration reactor, raw wastewater Qin is passed by the 
anoxic zone, afterward the influent flow Qout is fed into 
a settler to separate the stream into the clean water and 
sludge, the major part of it is recycled to reactor Qr and 
a small part is wasted Qw, The actual process model is 
based on the Activated Model Sludge No. 1 (ASM1) by 
Kim et al. (2011). It was adopted with two 
modifications (Lopez-Arenas et al., 2004): 

 
 The nitrification is modeled by a two step process 

(the conversion of nitrite to nitrate by the 
nitrosoma bacteria and the conversion of nitrite to 
nitrate by the nitrobacters).  

 The hydrolysis of rapidly biodegradable substrate 
is included. 
 
Then the resulting biodegradation model consists 

of     18     state     variables     (particles    and    soluble 
concentrations) and 30 model parameters. However it is 
 

possible to reduce the model, such model is proposed 
by Gomez-Quintero et al. (2000). 

This  model  consists of 8 states variables: 
dissolved oxygen ሺܵ௢మ

௣ , ܵ௢మ
௡ ሻ, nitrate ሺܵேைయ

௣ , ܵேைమ
௡ ሻ, 

ammonia ሺܵேுర
௣ , ேுరݏ

௡ ሻ and biodegradable substrate 

concentrations  ሺܵௌ
௣, ௌܵ

௡ሻ,  for   each  reactor  zone  (p 
and n denote pre-denitrification and nitrification 
respectively). 
Rewritten the reduced model in state format is given as: 
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So, this model consists of eight state variables: 
 

3 2 43 2 41 8,..., , , , , , , ,
TT p p p p n n n n

NO O NH SSNO O NHx x x S S S S S S S S        

 
 

 
 

Fig. 1: Schematic of a typical wastewater treatment plant 
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where, 
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And six exogenous inputs represent the influents 

concentrations and flow rates: 
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The model needs of only five reaction rates given by: 
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And it has twelve model parameters:  
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RESULTS AND DISCUSSION 
 
Simulated activated sludge process: In our case study, 
a formulated process monitoring system to the problem 
of faulty sensor consists on estimating the measurement 
vector Y given as: 
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where, u1 = Qin, u2 = Qr, u3 = qair: aeration rate which 
affect the process through the oxygen mass transfer 
coefficient kLa. 

Now, the algorithms for process monitoring, 
including fault detection and identification are applying 
to the process. The SPE for data in faulty state is given 
in  Fig. 2 to 5 indicates  clearly  that  the fault sensor is 
sx = 3 since it’s the sensor validity index drops below a 
certain threshold δ. 
 
Case study:  
The WWTP of Annaba city: In this case study, the 
wastewater treatment plant of Annaba city (situated in 
the North-East of Algeria) has two principal stages. 
 
The primary stage: Which includes bar racks, grit 
chamber, de-oiling and sand filters whose objective is 
the removal of solids. 
 
The secondary stage: Whose objective is the 
biological treatment of the organic load and which is 
essential to remove the organic matter present in the 
incoming wastewater. The organic matter serve as food 
for the micro-organisms culture as it grows. Biological 
treatment is classified by the type of micro-organisms 
that are used in the removal of the organic pollutants 
and is either aerobic, anaerobic or both. 

Interest is normally focused on secondary 
biological treatment and the WWTP considered in this 
study involves extended aeration and it is well 

 

 
 
Fig. 2: Time evolution of the selected variables 
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Fig. 3: SPE for normal data 
 

 
 
Fig. 4: SPE for data in faulty state, fault isolation using contribution to SPE (fault in the first sensor, ܵேைయ

௣
) 

 
instrumented. A schematic  of  the  plant  is  shown in 
Fig. 6. The actual data is collected in a period of three 
months of the year 2011. A data matrix X has been 
formed of N = 180 observations which represent a 
normal operation of the process. In particular, the data 
of such a matrix are centered and scaled using the 

means and standard deviations of reserved data to the 
model. For the monitoring model one selected a vector 
of measurements construct of 12 variables mentioned 
above. Figure 7 represents the statistical SPE of the data 
set during normal operation process to a confidence 
level for 95%. 
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Fig. 5: SVI for the FRPCA with a fault in sensor sx = 3 
 

 
 
Fig. 6: Schematic of the wastewater treatment plant of Annaba city 
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Fig. 7: Statistical SPE to α = 0.05  
 

 
 

Fig. 8: Statistical SPE to α = 0.05 
 

 
 

Fig. 9: Localization of defect by the contributions to the SPE index 



 
 

Res. J. App. Sci. Eng. Technol., 7(21): 4434-4444, 2014 
 

4443 

After the construction of multivariate statistical 
monitoring model from normal data and in order to 
illustrate the fault diagnosis performance, an offset fault 
affecting the x7, (x7 ≡	ܵைమ,௘௙௙ oxygen at the output of 
WWTP) is simulated, from the sample k = 45 as a 10% 
of the maximum amplitude of variation of the variable 
x7. Figure 8 shows the statistical SPE. We note that the 
statistical SPE indicated in Fig. 9 immediately allows 
the detection of the fault. To identify the faulty sensor, 
it was exploited the contributions approach to detection 
index SPE. 

 
CONCLUSION 

 
In many industries, it is important to determine 

when significant adverse process changes occur. The 
idea is to discover these changes while they are still 
relatively minor, before substandard product or 
significant pollution is produced. This study discusses 
the use of robust process control method for the 
purpose of monitoring wastewater data. It has been 
previously shown that traditional statistical process 
control methods are sensitive to noise. The present 
study investigates the use of robust multivariate 
statistical process monitoring for biological nutriment 
plant. It has been shown that the FRPCA is efficient 
multivariate statistical process monitoring tool. 
Although the good performance of this method, it can 
be improved for the better in the future, especially to 
cover a wide range of normal operating conditions due 
to changing influent water parameters and organic load. 
 

NOMENCLATURE 
 

d : Exogenous input 
E : Residual matrices 
f : Model map 
iXB 

: Mass N/mass COD in biomass 
kLα 

: Oxygen mass transfer coefficient (d-1) 
 ைమ,ுܭ

: Aerobic oxygen half-saturation coefficient 
 ைమ,஺ܭ

: Aerobic/anoxic oxygen half-sat coefficient 
 	ேைయܭ

: Nitrate half-saturation coefficient 
 	ேுరܭ

: Ammonia half-saturation coefficient 
m : Number of retained principal components 
P : Loading matrix 
pj 

: Loading vector 
p : Model parameter 
Q : Q statistic 
ri 

: i-th reaction rate (1≤i≤5)
  ܵேைయ	 

: Nitrate concentration 3(  )g N m  
ܵைమ	 

: Dissolved oxygen concentration 3
2(  )g O m  

ܵேுర	 
: Ammonia concentration 3(  )g N m  

SS 
: Biodegradable substrate conc. 3(  )g COD m  

SOST 
: Dissolved oxygen saturation conc. 3

2(  )g O m  
SVI : Sensor validity index 

SPE : Squared prediction error 
T : Score matrix 
tj 

: Score vector 
ui 

: Membership set 
V : Reactor volume (m3)  

n mX   : Matrix of data representing the normal 
functioning of the system 

x : Process state 
xi

*

 
: Reconstructed value of measurement xi YH 
: Heterotrophic yield 

y : Measured output 
 
Greek symbols: 
 
αi :

 
i-th reduced model parameter (1≤i≤4)

  ηg 
: Correction factor for anoxic growth 

ηH 
: Correction factor for anoxic hydrolysis 

δ2
 : Confidence limit for Q statistic 

 
Subscripts: 
 
in : Influent 
r : Return activated sludge, RAS 
w : Waste activated sludge, WAW 
out : Reaction exit 
eff : (Clean effluent) 
 
Superscripts: 
 
P : Pre-denitrification 
n : Nitrification 
^ : Estimated 
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