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Abstract: Cladding is the most economical process used on the surface of low carbon structural steel to improve the 
corrosion resistance. The corrosion resistant property is based on the amount of ferrite present in the clad layer. 
Generally, the ferrite content present in the layer is expressed in terms of Ferrite Number (FN). The optimum range 
of ferrite number provides adequate surface properties like chloride stress corrosion cracking resistance, pitting and 
crevice corrosion resistance and mechanical properties. For achieving maximum economy and enhanced life, duplex 
stainless steel (E2209T1-4/1) is deposited on the surface of low carbon structural steel of IS: 2062. The problem 
faced in the weld cladding towards achieving the required amount of ferrite number is selection of optimum 
combination of input process parameters. This study concentrates on estimating FN and analysis of input process 
parameters on FN of heat treated duplex stainless steel cladding. To predict FN, mathematical equations were 
developed based on four factor five level central composite rotatable design with full replication using regression 
methods. Then, the developed models were embedded further into integrated ANN-SA to estimate FN. From the 
results, the integrated ANN-SA is capable of giving maximum FN at optimum process parameters compared to that 
of experimental, regression and ANN modeling. 
 
Keywords: Artificial neural network, duplex stainless steel, ferrite number, flux cored arc welding, simulated 

annealing, solution annealing heat treatment 

 
INTRODUCTION 

 
Today, both utilization of engineering materials 

and its availability are inversely proportional due to 
diminishing of natural resources. Hence, implementing 
innovative method is absolutely necessary in the field 
of fabrication industry. Apart from this, industries such 
as paper, chemical, fertilizer, nuclear, food processing, 
petrochemical and other allied industries require their 
components with special surface properties such as 
stress corrosion cracking, pitting and crevice corrosion 
resistance, wear resistance and hardness etc. So, the 
most effective and economical method of producing a 
thick layer on the surface of low carbon steel is 
cladding process. It consist of following advantages: 
 

• The fusion bonding of the material with the 
substrate is good. 

• It is easy to use and it consists of component that 
has improved surface properties. 

 
Here, Duplex Stainless Steel (DSS) is used for 

surface cladding, where a high energy density source 
such as an electric arc has been widely used 

commercially to enhance the surface properties of the 
materials. Various welding processes employed for 
cladding are Shielded Metal Arc Welding (SMAW), 
Gas Tungsten Arc Welding (GTAW), Submerged Arc 
Welding (SAW), Gas Metal Arc Welding (GMAW), 
Flux Cored Arc Welding (FCAW), Electroslag Welding 
(ESW), Oxyacetylene Welding (OAW) and Explosive 
welding (Murugan and Parmer, 1994). In FCAW 
process, an electric arc is used between a continuous 
supply of duplex stainless steel filler metal and the weld 
pool, with shielding from externally supplied gas which 
may be carbon dioxide to provide stable arc, uniform 
metal transfer. The heat of the arc melts the surface of 
base metal and end of the electrode. The molten metal 
from the electrode is transferred and deposited on the 
surface of the base metal. The characteristics of the 
weld metal are mainly depending on the presence of 
ferrite number, which is key factor to decide many 
desired properties. The presence of FN in duplex 
stainless steel clad metal plays a major role to 
determining mechanical and surface properties. 
Namely, properties of DSS clad metals such as 
corrosion, wear resistance are predicted by estimating 
FN. A minimum FN is necessary to avoid hot cracking 
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whereas maximum FN determines the propensity to 
embrittlement   due   to   second    phase    precipitation. 
Particularly, strength and stress corrosion cracking 

resistance may be reduced when FN is less than 30. 

Similarly, there is some loss in ductility and toughness, 

when the FN is above 70 (Kotecki, 1997). Hence, the 

clad weld structure was embedded into solution 

annealing heat treatment to increase FN with above said 

process parameters. 

 

Experimental setup: The test specimens were cut from 

the base metal of low carbon structural steel (IS: 2062) 

plate with the size of 200×150×20 mm. Before 

cladding, the surface of the base metal was ground as 

per the metallurgical procedure for the purpose of 

removing oxide scale and dirt. The material used for 

cladding process is flux cored duplex stainless steel 

welding wire E2209T1-4/1 with the size of 1.2 mm 

diameter. The details of chemical compositions of filler 

and base metal are given in Table 1. 

 

Schematic of cladded specimen: The FN and 

properties of clad metals are strongly influenced by 

dilution, which depends on input process parameters. 

Dilution is the ratio of the amount of Base metal melted 

(B) to the sum of the filler metal Added and Base metal 

melted (A+B). The geometrical characteristics of weld 

bead are shown in Fig. 1. 

 

Experimental parameters and design: The cladding 

experiments were conducted on a constant voltage 

programmable welding machine (Unimacro 501C). The 

experimental setup used for this study is a travelling 

carriage with a table for supporting the specimen. The 

welding gun was held stationary in a frame mounted 

above the worktable and it consists of an arrangement 

with multidirectional positions. In this experiment, a 

stringer bead technique was used for laying the beads 

with constant overlap of 40% and the interpass 

temperature of 150°C was maintained during cladding 

experiment. The experimental setup is shown in Fig. 2. 

To protect the molten metal from atmospheric gases, 

carbon dioxide was used at the rate of 18 L/min with 

constant flow rate to maintain a stable arc and uniform 

metal  transfer.  The   presence  of  FN   in   the   duplex  

 
 

Fig. 1: Characteristics of weld bead geometry 

 

 
 

Fig. 2: Experimental setup for cladding 

 

stainless steel clad metal is a vital role to obtain the 

required properties. FN in the clad weld metal by 

FCAW process is always affected by primary 

parameters viz welding current, welding speed and the 

secondary process parameters viz contact tip-to- 

specimen distance and gun angle. The working ranges 

of all selected parameters were fixed by conducting trial 

runs. This was carried out by varying one of the factors 

while keeping the rest of them at constant value. The 

working range of process parameters have been 

explored by inspection of bead appearance carried out 

by varying one of the factors while keeping the rest of 

them at constant value. The working range of process 

parameters have been explored by inspection of bead 

appearance without any visible defects such as surface 

porosity, undercut etc. In this regard, the FCAW 

process parameters and their levels with units are 

presented in Table 2. The upper limit of a factor was 

coded as +2 and the lower limit was coded as -2. The 

coded values for middle values can be calculated using 

the Eq. (1): 

 

X� =
�[�����	
�� �	���]

��	
� � �	���
                                 (1) 

 
Table 1: Chemical composition of filler and base metals 

Material C Si Mn S Al Cr Mo Ni N2 Cu 

IS: 2062 0.150 0.160 0.870 0.016 0.031 - - - -  - 

E2209 T1-4/1 0.023 0.760 1.030 0.002  - 23.14 3.05 9.22 0.13  0.09 

 

Table 2: Welding parameters and their levels 

Parameter Unit Notations 

Factor levels 

------------------------------------------------------------------------------------

-2 -1 0 1 2 

Welding current A I    200  225 250 275 300 

Welding speed cm/min S 20  30 40 50 60 

Contact tip-to-specimen distance mm N 22  24 26 28 30 

Gun angle degree T 70  75 80 85 90 
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Table 3: Design matrix with ferrite number (after heat treatment) 

Design matrix 
------------------------------------------------------------------------------------ 
Trial No.    I    S    N   T Measured FN 

01  -1  -1  -1  -1 40 

02 +1  -1  -1  -1 27 

03  -1 +1  -1  -1 37 

04 +1 +1  -1  -1 28 

05  -1  -1 +1  -1 39 

06 +1  -1 +1  -1 37 

07  -1 +1 +1  -1 39 

08 +1 +1 +1  -1 28 

09  -1  -1  -1 +1 39 

10 +1  -1  -1 +1 32 

11  -1 +1  -1 +1 23 

12 +1 +1  -1 +1 19 

13  -1  -1 +1 +1 42 

14 +1  -1 +1 +1 35 

15  -1 +1 +1 +1 24 

16 +1 +1 +1 +1 24 

17  -2   0   0   0 49 

18 +2   0   0   0 27 

19   0  -2   0   0 38 

20   0 +2   0   0 19 

21   0   0  -2   0 33 

22   0   0 +2   0 40 

23   0   0   0  -2 36 

24   0   0   0 +2 25 
25   0   0   0   0 34 
26   0   0   0   0 31 
27   0   0   0   0 34 
28   0   0   0   0 34 
29   0   0   0   0 32 
30   0   0   0   0 37 
31   0   0   0   0 37 

 

 
 

Fig. 3: Pit furnace used for the heat treatment of cladded 
specimen 

 

 
 
Fig. 4: Locations of FN measurements 

 
where, Xi is the required coded value of parameter X, X 
is any value of a parameter from Xmax to Xmin, Xmin is 
the lower limit of the variable and Xmax is the upper 
limit of the parameter. Due to wide range of parameters 
a central composite rotatable design (Cochran and Cox, 
1987) with full factorial was used. The experimental 
design has 31 runs that are shown in Table 3. This 

design matrix consists of 16 rows (2
4
 = 16) with full 

factorial and next eight rows show the star points and 
last seven rows show the star points and last seven rows 
exhibit the center point. The clad specimens were heat 
treated to increase the ferrite content and restore the 
ferrite and austenite phase balance. As the temperature 
is decreased, the amount of austenite increases whereas 
the amount of ferrite decreased. The unbalanced 
microstructure of the clad weld metal is altered by 
proper annealing heat treatment. Heat treatment at low 
temperature range (300°-1000°C) will lead to form 
different phase precipitation (Karlsson et al., 1995; 
Karlsson, 1999). In practical, many papers have paid 
more attention to reduce the FN when both filler and 
base metal were welded in DSS. The FN was increased, 
when  increasing  the  heat  treatment temperature

 
(Lai 

et al., 1995) and high aging temperature above 1000°C 
is also encouraged to increase the FN

 
(Badji et al., 

2004, 2008) with changes in mechanical properties. 
Consequently, these treatments favor to minimize the 
undesirable precipitations at high temperature range. 
From previous research

 
(Heejoon and Yongsoo, 2009) 

high temperature annealing treatment favors to increase 
the FN along with grain size. From previous research 
the test specimens were heat treated at constant 
temperature of 1093°C

 
(Kotecki, 1989) and held the 

specimen at 1038°C for 4 h. The furnace used for heat 
treatment is pit furnace, which is shown in Fig. 3. To 
measure the FN in the heat treated specimen 
conveniently, the top surface of the clad specimens 
were ground towards longitudinal direction. The 
quantitative measurement of ferrite number was 
performed by magnetic measurement using the device, 
which is called Feritescope. These values are given in 
Table 3. To get optimum readings, the FN was 
measured as shown in Fig. 4, at six different points 
from three consecutive beads towards longitudinal axis. 
The device used for measuring the FN was calibrated in 
accordance with procedures specified in ANSI/AWS A 
4.2. 

 

METHODOLOGY 

 

The following modules are involved in this study. 

These are: 

 

• Experimental data 

• Regression modeling 

• ANN modeling 

• Optimization of SA 

• Integrated ANN-SA type A  

• Integrated ANN-SA type B 

 

The objectives of two integrated systems are: 

 

• To estimate the maximum FN of Solution annealed 

duplex stainless steel cladding is compared with 

regression and ANN models. 
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Fig. 5: The flow chart for proposed integrated ANN-SA  

 

• The values of optimum process parameters are 

estimated. For experimental trial, these values 

should be within the range of maximum and 

minimum coded values of experimental design. 

• The optimum solution of process parameters with 

minimum iteration is estimated and compared with 

other types of optimization for the same optimum 

process parameters. 

 

The steps followed in integrated ANN-SA type A 

and integrated ANN-SA type B are satisfied the above 

three objectives. These are: 

 

• The FN values obtained at different level of 

combinations of process parameters were used for 

modeling purpose. 

• The mathematical model was developed using 

multiple regression method. This mathematical 

model is used to predict the FN. 

• From experimental data, the ANN model was 
developed for predicting maximum FN at non-
optimal process parameters. 

• The mathematical model developed using 
regression methods would become the objective 
function in SA optimization. The maximum and 
minimum coded values for process parameters of 
this experiment would define the maximum and 
minimum value for optimization solution. The 
initial point for optimization solution is obtained 
from the process parameters value of regression 
model and the maximum predicted FN at optimum 
process parameters was estimated. 

• The objective function used in SA optimization is 
again used in integrated ANN-SA type A. In this 
optimization, the maximum and minimum 
boundary values are decided based on the 
combination of optimum process parameters of SA 
and ANN models. The optimum process 
parameters values of SA are fixed as the initial 
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point of this integration system. Hence, the 
maximum FN value of the optimization process 
parameters was estimated. 

• The objective function used in integrated ANN- SA 

optimization is again used in integrated ANN-SA 

type B. In this optimization, the maximum and 

minimum boundary values are decided based on 

the combination of optimum process parameters of 

SA and ANN models. The process parameters 

values of the best ANN model are fixed as the 

initial point for this system. Based on some of the 

criteria, the maximum FN at optimum process 

parameters was estimated. 

 

The strategies used for optimization in this study 

are illustrated in Fig. 5. 

 

Development of mathematical models: The response 

function representing FN, which can be expressed using 

Eq. (2): 

 

Y = f�A�, A�, A�, A��                                            (2) 

 

where, Y is response (FN), A1 is welding current (I) in 

Ampere, A2 is welding Speed (S) in cm/min, A3 is 

contact tip-to-work piece distance (N) in mm and A4 is 

gun angle (T) in degrees. The second order response 

surface models (Montgomery, 2003) were developed 

for the four selected parameters. These are given in the 

Eq. (3) and (4): 

 

Y = β
�

+ ∑ β
�
A�

�
��� +  ∑ β

��
�
��� A�� +  ∑ β

��
A�

�
���
�� 

A�     (3) 

 

The Eq. (3) can be written in the form of second 

order response surface model: 

 

Y = β0 + β1I + β2 S + β3 N + β4 T + β11 I
2 

+ β22 S
2 

+ 

β33 N
2 

+ β44 T
2 

+ β12 IS + β13 IN + β14 IT + β23SN + 

β24 ST + β34 NT                                                     (4) 

 

where, β0 is free term of the regression equation, the 

coefficient β1, β2, β3 and β4 are linear terms, the 

coefficients β11, β22, β33, β44 are quadratic terms and the 

coefficients β12, β13, β14, β23, β24 and β34 are interaction 

terms. The coefficients were calculated using QA six 

sigma-DOE software. After determining the 

coefficients, the mathematical model of Eq. (5) was 

developed as follows: 

 

Measured FN = 34.521 - 4.042 I - 4.458 S +1.542 

N-2.458 T + 0.706 I
2
 - 1.669 S

2
 - 1.169 T

2 
+ 0.812 

IN + 1.062 IT - 2.938ST                                      (5) 

 

To get final mathematical models, the insignificant 

coefficients were eliminated without affecting the 

accuracy of the models developed by using  t-test.  This 

Table 4: Predicted ferrite number of regression and ANN (after heat treatment) 

 Process parameters 

------------------------------------ 

 Ferrite number 

 ------------------------------------------- 

Trial 

No. I (A) 

S 

(cm/min) N (mm)  T (degree) Regression ANN 

02 -1 -1 -1 -1 34.585 28.918 

04 1 -1 -1 -1 28.207 27.784 

06 -1 1 -1 -1 39.293 35.476 

08 1 1 -1 -1 32.915 27.318 

10 -1 -1 1 -1 35.331 33.330 

12 1 -1 1 -1 17.201 16.994 

14 -1 1 1 -1 40.039 33.447 

16 1 1 1 -1 21.909 30.001 

18 -1 -1 -1  1 29.261 29.023 

20 1 -1 -1  1 18.929 20.540 

22 -1 1 -1  1 37.605 41.020 

24 1 1 -1  1 24.929 22.784 

26 -1 -1 1  1 34.521 28.403 

28 1 -1 1  1 34.521 35.975 

30 -1 1  1  1 34.521 40.265 

 

is done by back elimination technique. The Eq. (6) is 

the final mathematical model with process parameter in 

coded form: 

 

Measured FN = 34.521 - 4.042 I - 4.458 S + 1.542 

N - 2.458 T + 0.706 I
2
 - 1.669 S

2 
- 1.169 T

2
 + 0.812 

IN + 1.062IT - 2.938ST                (6) 

 

Subsequently, Eq. (6) will be proposed as the 

objective function for optimization solution of the SA, 

ANN-SA type A and ANN-SA type B. The results of 

prediction of the regression model are given in Table 4. 

 

ANN modeling: The common classical method of 

optimization usually fails to find the optimum solution. 

Therefore, heuristic algorithms are powerful 

optimization techniques, which are widely used for 

solving the complicated problems. The heuristic 

algorithms, such as Genetic Algorithm (GA), Simulated 

Annealing (SA), Particle Swam Optimization (PSO) 

and Ant Colony Optimization (ACO) are generally 

used. Such optimization techniques have been applied 

to define the best output parameters through developing 

mathematical models to specify the relationship 

between the input process parameters and FN. 

Mathematical models used to predict FN in duplex 

stainless steel cladding is important in order to obtain 

better surface properties. From previous literatures
 
the 

reader can understand the details about cladding 

characteristics such as bead height, penetration, dilution 

have been studied by researchers in different modeling 

approaches (Nagesh and Datta, 2002, 2010; Kim et al., 

2002a, b; Ping et al., 1997; Palani and Murugan, 2007; 

Parikshit and Dilip, 2007; Yoganandh et al., 2012; 

Kannan and Murugan, 2005; Murugan and Palani, 

2004; Vidyut et al., 2009). There is very limited 

number of studies that dealt with the applications of 

ANN
 
(Vitek et al., 2000; Vasudevan et al., 2003). SA to 

optimize the FN in duplex stainless steel cladding 

process. Artificial Neural Network (ANN) is one of the 

powerful tools, which is used for modeling purpose in 

many  fields  even  if  the  data relationship is unknown. 
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Fig. 6: Configuration of ANN structure with layers and nodes 

 
The objective of this study is to maximize the FN in 
duplex stainless steel cladding surface. Firstly, ANN 
was used to model process parameters to set best 
possible out puts and secondly, simulated annealing 
was applied to identify those output values with 
maximum FN. To estimate the FN, an ANN model was 
developed, which is shown in Fig. 6. In this study, the 
ANN network structure has two hidden layers each 4 
and 2 nodes for estimating the predicted FN. The net 
input to k in the hidden layer is expressed in Eq. (7): 
 

Net _ hidden = ∑ C�," i� +  Ө"                               (7) 

 
where is the weight of the input neurons and hidden 
neurons, ij is the value of the input which consists of 
welding current, speed, contact tip-to-work piece 
distance and gun angle of the experimental sample and 
Өk is the bias of the hidden nodes. From Fig. 6 the net 
input to unit z the output layer is expressed in Eq. (8): 
 

Net _ output = ∑ D",% h" +  Ө%                             (8) 

 
where is the weight between hidden and output neurons 
is the value of the output for the hidden nodes and Фz is 
the bias of the output nodes. From the Eq. (7) and (8), 
the output for the hidden nodes can give as in Eq. (9) 
and  the  output  for the output nodes can be given in 
Eq. (10): 
 

hk = f (net hidden)                                                 (9) 
 

Фz = f (net output) = FN                                     (10) 
 
where, f-is the transfer function to predict the value of 
FN. In order to give better solution in ANN modeling, 
the number of layers, nodes and testing data are used as 
trial and error method. At present using integrated 
methods for optimization solution is familiar than 
single method

 
(Azlan et al., 2011). Here, 15 

experimental data were selected to be a testing data in 
order to provide good prediction. The result of 

prediction of FN values in the ANN model for testing 
data are given in Table 4. From Table 4, the values of 
optimum process parameters for providing maximum 
FN value will be proposed to combine with optimal 
points of SA. These values will be considered as 
maximum and minimum boundary values for the 
optimization of ANN-SA type A and ANN-SA type B. 
 
Optimization: Many optimization techniques have 
been developed to solve optimization problems with 
different ways. Unfortunately, no single method is 
available to solve all types of problem in the existing 
algorithms. Simulated Annealing is a well-known local 
optimization approach for solving complex 
combinatorial problems in manufacturing process. The 
main aim of this optimization is to find a good solution 
in an adequate amount of time. The concept of 
Simulated Annealing is based on the physical annealing 
process in metallurgy

 
(Kirkpatrick et al., 1983). In this 

process, physical annealing is named as heating and 
controlled cooling of metal to bring the material 
structure from an arbitrary initial state to a final state 
with the minimum amount of energy. During heating, 
the metal atoms become free from their current position 
and arrange themselves randomly. The slow cooling 
process allows the atoms to find highly structured 
configurations with lower internal energy than in the 
initial configuration. The concept of physical process 
used in this study is considered as an analogy, one 
which makes the solutions of an optimization problem 
with possible configurations of the atoms. The main 
objective of this process is to optimize the FN, which is 
equivalent to the internal energy. The responsibility of 
simulated annealing is to assign current values at each 
step to the variables of succeeding nodes. If assigning 
that value to a variable has an improvement without 
conflicts, such assignment will be accepted as a new 
one. The acceptance of new solutions is based on a 
probability which is calculated by using a parameter 
called temperature. The probability depends on the 
difference between the corresponding values of the 
objective function and the current temperature. The 
basic idea of SA is to generate a random point for the 
purpose of avoiding a trapped one and is able to explore 
globally for more possible solutions. In annealing 
process, a molten metal with high temperature is slowly 
cooled until thermal mobility molecules can move 
freely till to reach solidification stage. If the cooling is 
slow enough a perfect crystal is formed in which all the 
atoms are arranged in a low level lattice with minimum 
energy. As the metal cools, atoms may align in different 
directions. In this case, the whole regions of atoms 
should be reversed to escape this state of local 
optimum. The required energy is available as heat in the 
metal and it depends on the current temperature of the 
system, given by the Boltzmann distribution. As the 
temperature is decreased, great change become more 
difficult for the system. When the temperature 
approaches zero, movements become impossible and 
the state   of   the   atom   is  frozen.  In this way, for the  
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Fig. 7: The flow chart of SA optimization 

 

slowly cooled system, the atoms are arranged in a low 

energy state and produce a pure crystal. As important 

part of the SA process is how the inputs are 

randomized. The randomization process takes the 

previous values and the current temperature as inputs. 

The input values are then randomized according to the 

temperature. A higher will result in more randomization 

but the lower temperature will result in less 

randomization. So, there is no specific method defined 

by the SA algorithm for how to randomize the inputs. 

The exact nature by which this is done often depends 

upon the nature of the problem being solved. Figure 7 

illustrates the flow on how the SA technique operates in 

order to search the optimal solution.  

 

SA optimization solution: The main purpose of this 

optimization is to determine the optimum values of the 

process parameters that lead to the maximum FN. The 

regression Eq. (6) is considered to be the fitness 

function of the optimization solution and is given 

below:  

 

Measured FNmax = 34.521 - 4.042 I - 4.458S + 

1.542 N - 2.458 T + 0.706 I
2 

- 1.669 S
2 

- 1.169 T
2 

+ 

0.812 IN + 1.062IT - 2.938 ST                          (11) 

Table 5: Conditions to define limitation constraint bound of integrated 

ANN-SA 

Condition 

Design 
------------------------------------------ 

Lower limit Upper limit      

(OptANN) > (OptSA) OptSA OptANN 

(OptANN) < (OptSA) OptANN OptSA 

 

The maximum FN obtained from fitness function 

Eq. (11) is considered as boundaries (limitations) of the 

process parameters. The upper and lower boundary 

limits of process parameters in Table 2 are used as the 

limitations for optimization and are given below:  

 

200≤I≤300                            (12) 

 

20≤S≤60               (13)  

 

22≤N≤30                            (14) 

 

70≤T≤90               (15) 

 

The process parameters that lead to the maximum 

FN of the regression model as given in Table 5 will be 

chosen to be the initial points for the SA solution and 

are given as follows: 

 

Initial point of I = 225                           (16) 

 

Initial point of S = 50                            (17) 

 

Initial point of N = 28              (18) 

 

Initial point of T = 75                            (19) 

 

The  limitations  of  process  parameters  for  the 
Eq. (12)-(15), the initial points for the Eq. (16)-(19) are 
obtained using the fitness function Eq. (11). MATLAB 
tool box is used to find the maximum FN value at the 
optimum point. The Fig. 8 and 9 show the evidence of 
results obtained from MATLAB toolbox. From Fig. 8 
and 9, the maximum FN value obtained was 49.10. The 
values of process parameters that lead to maximum FN 
are 200.21 A, 34.55 cm/min, 22.56 mm and 76.13°. The 
optimum solution was obtained at 103-th iterations in 
the SA optimization. 

 

Optimization of integrated ANN-SA: 

Type A: As mentioned in above section and Fig. 5, the 

limits of upper and lower values are obtained from the 

combination of optimum process parameters of SA and 

ANN model. These limits are considered as boundary 

values in ANN-SA type A to get optimum solution. 

From Table 4, the optimum process parameters values 

that produce the maximum predicted FN values of the 

ANN model are 225 A, 50 cm/min, 24 mm and 85° for 

welding current, welding speed, distance between 

contact tip-to-specimen and gun angle, respectively.
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Fig. 8: Optimal solution of SA 

 

 
 

Fig. 9: Fitness function plot of SA 

 
Similarly, from Fig. 8, the values of optimum process 
parameter of SA are 200.21 A, 34.55 cm/min, 22.56 
mm and 76.13°. The conditions stated in Table 5 are 
used to form the Eq. (20)-(23) with above said values: 
 

200.21≤I≤225                                          (20) 
 
34.55≤S≤50                                      (21) 
 
22.56≤N≤24                     (22) 
 
76.13≤T≤85                (23) 

 

As mentioned in above section and Fig. 5, the 

initial setting points of ANN-SA type A System is 

selected by comparing the values of optimum process 

parameters that lead to maximum FN in SA and 

optimum process parameters of ANN with the help of 

conditions stated in Table 5: 

 

Initial point of I = 200.21              (24) 

 

Initial point of S = 34.55                                    (25) 

 

Initial point of N = 22.56              (26) 

 

Initial point of T = 76.13                                    (27) 

 
The results of ANN-SA type A is obtained by 

using the fitness function Eq. (11), the Eq. (20)-(23) 
and (24)-(27) with same setting process parameters 
applied in SA and MATLAB toolbox are utilized. The 
optimum solution of process parameters of ANN-SA 
Type A are shown in Fig. 10 and 11. From Fig. 10 and 
11 the maximum FN value obtained was 52.49. The 
values of process parameters that lead to maximum FN 
are 202.42 A, 36.86 cm/min, 27.45 mm and 71.94° and 
the optimum solution was obtained at 103-th iterations.  

 

Optimization of integrated ANN-SA: 

Type B: As mentioned in above section and Fig. 5, 

similar to integrated ANN-SA type A approach, the 

fitness function Eq. (11), the boundaries for upper and 

lower values used for optimization in Eq. (12)-(15)
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Fig. 10: Optimal solution of integrated ANN-SA type A 

 

 
 

Fig. 11: Fitness function plot of integrated ANN-SA type A 

 
and the points at which the maximum FN value 
achieved in ANN model will be considered as initial 
points of ANN-SA type B system. Hence, the Eq. from 
(28)-(31) are formed using Table 5 as below: 

 
Initial point of I = 225                                        (28) 
 
Initial point of S = 50               (29) 

 

Initial point of N = 24                                        (30) 

 

Initial point of T = 85               (31) 

 

The Fig. 12 and 13 are showing the results of 

integrated ANN-SA type B by using MATLAB 

optimization toolbox. From Fig. 12 and 13, the 

maximum FN value obtained was 53.98. The values of 

process parameters that lead to the maximum FN are 

200.05 A, 44.98 cm/min, 25.04 mm and 70.15°. The 

optimum solution was obtained at 103-the iterations.  

 

RESULTS AND DISCUSSION 

 

Evaluation of the maximum FN value: From Fig. 13, 

it shows that the maximum FN Value (measured) is 

53.98. The maximum FN value obtained in ANN-SA 

type B is higher, when compared to the result of 

experimental data, regression model ANN model.  

 

Experimental data vs. integrated ANN-SA: From 

Table 3, the maximum measured FN value among 31 

trials is 49. The maximum FN value obtained from 

ANN-SA type B is 53.98. Compared to experimental 

data, the maximum FN value reached in ANN-SA type 

B is higher value. Consequently, ANN-SA type B is 

increased the FN value at about 4.98 (10.16%). 

 

Regression vs. integrated ANN-SA: As shown in 

Table 4, the maximum predicted FN value from 

regression equation is 40.039. The maximum FN value 

obtained from ANN-SA type B is 53.98. Compared to 

regression model, the maximum FN value reached in 

ANN-SA type B is higher value. Consequently, ANN-

SA type B is increased the FN value at about 13.94 

(34.81%).  

 

ANN vs. integrated ANN-SA: As shown in Table 4, 

the maximum FN value (Measured) in ANN model is
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Fig. 12: Optimal solution of integrated ANN-SA type B 

 

 
 
Fig. 13: Fitness function plot of ANN-SA type B 

 
Table 6: Summary of the results 

Type of approach 
Measured 
FN value 

Optimum points of 
process parameters 

No. of 
iterations 

Regression 40.03 225, 50, 28, 75 - 
ANN 41.02 225, 50, 24, 85 - 
SA 49.10 200.21, 34.55, 22.56, 

76.13 
103 

ANN-SA type A 52.49 202.42, 36.86, 27.45, 
71.94 

103 

ANN-SA type B 53.97 200.05, 44.98, 25.04, 
70.15 

103 

 
41.0208. The maximum FN value obtained from ANN-
SA type B is 53.98. Compared to ANN model the 
maximum FN value reached in ANN-SA type B is 
higher value. Consequently, ANN-SA type B is 
increased the FN value at about 12.95 (31.59%). 

SA vs. integrated ANN-SA: As shown in Fig. 13, FN 
value  was  53.98.  As compared to SA optimization 
Fig. 13 has given maximum FN value. Therefore, the 
integrated system ANN-SA type B has increased the 
FN value at about 4.88 (9.94%). 
 
Evaluation of the optimum process: 
Parameters: The ranges mentioned against the process 
parameters in Table 2, are 200-300 A for welding 
current, 20-60 cm/mm for welding speed, 22-30 mm for 
contact tip-to-specimen distance, 70-90° for gun angle. 
The values of optimum process parameters of ANN-SA 
type B are 200.06 A for welding current, 44.98 cm/mm 
for welding speed, 25.04 mm for contact tip-to-
specimen distance, 70.15° for gun angle. The values of 
optimum process parameters are within the range of 
minimum and maximum values of experimental design. 
 
Evaluation of the number of iteration: From Fig. 9, 
11 and 13 the number of iterations required to achieve 
maximum FN in SA, ANN-SA type A and ANN-SA 
type B are 103. But the FN achieved in SA, ANN-SA 
type A and ANN-SA type B is 49.10, 52.49 and 53.98, 
respectively. 
 

CONCLUSION 
 

In this study, integrated ANN-SA type A and 

ANN-SA type B are proposed to estimate the optimal 
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solution of process parameters that lead to the 

maximum FN. The overall results of the duplex 

stainless steel cladding for four process parameters are 

summarized in Table 6. The integration of ANN-SA 

type B has been the effective technique for estimating 

the maximum FN compared to the experimental, 

regression and ANN results. The optimum value of 

process parameters obtained through integrated system 

has satisfied within the range of maximum and 

minimum coded values for process parameters of 

experimental design. As far as the iteration is 

concerned, different FN have received with same 

number of iterations. Compared to SA single based 

optimization, ANN-SA type B system has given better 

results. 
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