
Research Journal of Applied Sciences, Engineering and Technology 7(21): 4476-4489, 2014
DOI:10.19026/rjaset.7.824
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2014 Maxwell Scientific Publication Corp.
Submitted: December 01, 2013 Accepted: January 07, 2014 Published: June 05, 2014

Corresponding Author: Ijaz Ali Shoukat, Department of Computer Science, Faculty of Computing, Universiti Teknologi

Malaysia, 81310, Johor Bahru, Malaysia
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

4476

Research Article

A Novel Dynamic Data Blocking Mechanism for Symmetric Cryptosystems

1, 2Ijaz Ali Shoukat, 1Kamalrulnizam Abu Bakar and 1Subariah Ibrahim
1Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia,

81310, Johor Bahru, Malaysia
2Computer Science Department, College of Computer and Information Sciences,

 King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia

Abstract: This study contributes a dynamic data blocking mechanism to replace the fixed (static) data blocking
mechanism in symmetric cryptosystems. The robustness of cryptosystems relies on dynamicity and probability to
provide sufficient randomness. Any encryption method is considered as secure as it retains randomness properties.
Current cryptographic algorithms (AES, DES) utilize fixed (static) data blocking mechanism that enable practical
cracking of DES and academic cracking of AES-256 up to full 14 rounds with almost practical complexity of (q.267)
queries through related-key distinguisher attack which works for 1 key out of 235 keys with 2120 data and time
complexity trials. Fixed (static) data blocking mechanism triggers the applicability of this kind of security attacks on
symmetric cryptosystems by offering computable probability range. In this study, we proposed a dynamic (variable)
data blocking mechanism to achieve robust probabilistic randomness in computing of number of data blocks and
their number of bits in symmetric cryptosystems for the enhancement of security strength. The ultimate objective
behind this proposed dynamic data blocking mechanism is to produce different number of data blocks with different
number of bits in order to lead the complexity (probability) of block partitioning as a NP-hard problem (P ≠ NP -
widely believed for which no efficient algorithm exists). In our proposed scheme the diversity of both parameters
(block numbers, block bits) is dependent on a plaintext data and key. We applied superlative tactics of digital logic
and mathematics in order to evaluate and justify our proposed Dynamic Data Blocking Mechanism (DDBM).

Keywords: Brute force attack, cryptographic algorithms, decryption, dynamic data blocking mechanism, symmetric

encryption

INTRODUCTION

The art of secret writing can be applied by either
utilizing the steganography or cryptographic schemes.
But cryptographic practices are robust to stenographic
methods as reported by Shoukat et al. (2011). Recent
trend of encrypting confidential information is getting
potential fame under hybrid encryption schemes with
full of security and privacy. A generic Hybrid
Encryption System (HES) has been proposed (Shoukat
et al., 2013) which works optimally with joint
combination of symmetric and asymmetric algorithms
and offers a complete set of security objectives as
recommended by National Institute of Standard and
Technology (NIST). In any case of encrypting the
information either with just symmetric or hybrid
cryptosystems, the security of symmetric algorithms
cannot be compromised. Cryptography deals with
symmetric, asymmetric and hybrid schemes, however,
symmetric block ciphers are significantly preferred in
order to save battery power, CPU time and memory
requirements (Elminaam and Abdul-Kader, 2010). Due

to these prominent advantages, symmetric encryption is
the key choice of governmental bodies for storing or
communicating confidential information especially
related to banking transactions, ministry of finance,
police departments, scientific laboratories, Army units,
Navy Force units, Air Force bodies, hospitals and
assurance companies. The replacement of fixed data
blocking is an active issue with present encryption
standards (AES, DES). The widely implemented block
cipher AES uses fixed sized data block (128 bits) and
fixed 8 bits substitution boxes (Young and Yang, 2010).
The other foremost Data Encryption Standard (DES)
uses 64 bits fixed block sizes, permutations and fixed
substitution for encrypting data (Singh and Bansal,
2010).

The successful philosophy of differential
cryptanalysis attacks is its larger probability than the
randomly occurred permutations on fixed size (length)
data blocks (Lu, 2010; Lu, 2008). At present, advanced
cryptanalysis techniques are creating critical situation
against the security satisfaction of standard-
cryptosystems (AES, DES). Data Encryption Standard

Res. J. Appl. Sci. Eng. Technol., 7(21): 4476-4489, 2014

4477

(DES) is insecure as it had been cracked earlier just
within 4.5 days (Wobst, 2001) even the security
satisfaction of Triple DES (TDES) is also vulnerable as
witnessed by its practical cracking within 800 days on a
machine that can execute 50 billion keys/sec (Alanazi
et al., 2010). Moreover, Biryukov et al. (2010) reported
that, TDES has already been cracked with key
complexity of 256 bits as claimed by Biryukov et al.
(2010). Similarly, the highly reputed algorithm (AES-
192/156 bits key) (Biryukov et al., 2010) has been
academically considered as insecure as claimed by
Biryukov and Khovratovich (2009). Furthermore, the
authors of study (Ferguson et al., 2001) performed
significant effort with a success of 244 rather to 272 trials
in order to crack the 6 rounds of AES. The 7 rounds of
192 and 256 key AES has also been cracked with 232
plain text choosing probability under the complexity of
2140 encryption tries (Gilbert and Minier, 2000). The 5
rounds of AES with 128 bits key have been cracked
with 246 chosen plain texts under 246 encryption tries
and 6 rounds with 278 encryption tries with utilization
of 278 chosen plain texts when Boomerang attack is
implemented by Biryukov (2004). Effort remained
continue and consequently, in 2009 Biryukov and his
fellows successfully cracked the AES with 192 and 256
bits key as claimed in studies (Biryukov and
Khovratovich, 2009; Biryukov et al., 2009). In 2009
meet-in-the-middle attack is applied by Huseyin
Demirci and his fellows on 7-round AES which seems
to be superior in time complexity rather than the
previous reported attacks (Demirci et al., 2009).
Against 9 rounds of AES-256 239 encryption tries can
crack it by calculating the XOR of encrypted plaintext
under 2 related keys in many ways and 10 rounds can
be cracked academically in the same way with 245
encryption tries (Biryukov et al., 2010). The most
shocking situation is the academic cracking of AES-256
up to full 14 rounds with almost practical complexity of
(q.267) queries through related-key distinguisher attack
which works for 1 key out of 235 keys with 2120 data and
time complexity trials (Biryukov and Khovratovich
et al., 2009).

Therefore, the security satisfaction of Advanced
Encryption Standard (AES) is minimizing its realistic
attraction to select it as a confident verdict due to its
academic cracking. Furthermore, the Biryukov and
Dunkelman et al. (2010) also claimed that AES security
strength is not as strong as it is believed or conveyed.
The actual cause of this kind of cracking with AES and
DES is the utilization of fixed data block partitioning
because permutation on fixed length data blocks is not
an optimal case against hefty probability of differential
cryptanalysis attacks (Lu, 2010; Lu, 2008). The authors
of study (Shoukat and Baker, 2013) claimed that new
design of symmetric cryptosystem must be evaluated
under dynamicity constraints like dynamicity in data
blocking step, dynamic selection of encryption
operations, pseudo random based key state’s updating
and operational pseudo randomness in encryption

algorithm (s). The implementation of dynamic data
blocking mechanism under some probabilistic
randomness can provide sufficient resistance with series
of large optimizations which may also be robust to
provide initial safe-guard against these kinds of
powerful attacks. Therefore, such kind of situation
necessitates the timely development of dynamic data
blocking mechanism in order to create sufficient
resistance against modern cryptanalysis of symmetric
cryptosystems.

This study aims to convey a dynamic data blocking
mechanism for symmetric cryptosystems in order to
create dynamic data blocks rather to fixed sized data
blocks. The ultimate objective behind this proposed
dynamic data blocking mechanism is to produce
different number of data blocks with different number
of bits against different set of plaintext and secret key in
order to achieve the complexity of probability
computation as likely NP-hard problem (P ≠ NP -
widely believed for which no efficient algorithm
exists). For hard problems, this hypothesis (P ≠ NP) is
broadly believed but it has not been proven yet (Gomes
and Williams, 2005; Taslaman, 2012). In proposed
scheme, for a selected plaintext and key, the all blocks
contain same number of bits but without this knowledge
that how many bits are in a block and how much are
total blocks? Similarly for another plaintext and key the
number of blocks and their bits will be different but all
blocks contain same number of bits which means
number of data blocks and the length of data blocks are
dependent on the set of plaintext and secret key. Most
significantly, this study has putt-forwarded the
presented idea of dynamic block creation for future
cryptosystems, however this scheme can also be
utilized to input such dynamic data blocks to any
widely known symmetric cryptosystem with just minor
changes. Our proposed idea is enriched with novelty of
dynamic data block creation with vital scope in the
development of forthcoming cryptographic algorithms
to kick off fixed block creation philosophy.

METHODS AND PROCEDURES

The proposed dynamic data blocking mechanism
relies on a secret number that is generated from the
initial 160 bits long secret key. Encryption key should
not be too lengthy or too short as agreed by Shoukat
et al. (2011). On the other hand, Institute of Standard
and Technology (SP800-57, NIST 2005a) also
recommends minimum key length ranged from 112 to
128 bits up to year 2030 (Une and Kanda, 2007). In
order to find this secret number cracker needs a secret
key (160 bits) that is quite secure against brute force
attack according to the specified length of ISO and
NIST. This secret number is just like a probabilistic
random number that is considered as computationally
hard problem in cryptography. The data blocking is
dependent on this random number is sufficiently

Res. J. Appl. Sci. Eng. Technol., 7(21): 4476-4489, 2014

4478

Fig. 1: Overview of proposed and prior schemes with comparison

dynamic. The proposed dynamic data blocking
mechanism can generate two types of block ranges. The
first block range lies between 80 to 128 bits but this is
not a recommend range. The other block range lies
between 128 to 256 bits block sizes, is recommended
range to get optimal security in any block cipher. The
chosen 160 bits binary key requires the following
conditions to get optimal security:

• Key length must be 160 bits in binary form and

should be selected by the user
• Key cannot contain all zeroes
• Key cannot contain all ones
• It is too good if no more than six continuous

pattern of 0’s or 1’s should be repeated in initial
160 bits key. This is the preferred condition to get
highest security satisfaction but it is up to user
whether to follow or not

Figure 1 shows the flow and comparison between

prior and proposed data blocking mechanisms which
start working by receiving of plaintext. After receiving
the plain text value of block length (X) is input to the
mechanism in order to partition the plaintext into output
blocks as depicted in Fig. 1 through arrow flow. In prior
approach, plain text is converted according to the fixed
(static) value which is known to the cracker. However
in proposed approach the value of ‘X’ is dynamically
calculated with the involvement of Key (K) and this
value of X is dynamic (random) and un-known for the
cracker. Moreover, in prior approach, parameter m is
deterministic but in proposed approach m is non-
deterministic. Proposed idea of dynamic block creation
revolves around the novel philosophy, how dynamic
(randomized) value of X and m can be generated and
how m can be non-deterministic in block partitioning
step of symmetric encryption algorithm.

Logical key blocking mechanism: Dynamic data
blocking follows a secret (random) digit that can be
calculated from initial 160 bits key. In order to find out
this probabilistic random digit the initial 160 bits key is
converted into 10 key blocks having 16 bits each. This
key partitioning is logical and its mutual security
strength is not affected due to this logical partitioning.
The dynamic data blocking procedure with logical
partitioning of initial 160 bits key is discussed step by
step with their operational flow in Fig. 2. Logical key
blocking mechanism follows various steps. In step 1,
the initial 160 bits key is divided by 10 to get 10 key
blocks each having 16 bits length. The first right side
key block is designated with K1, the second right side
key block is designated with K2 and so on up to 10th
key block designated with K10. In 2nd step, a decimal
value is calculated against each key block (K1, K2,
K3…… K10). This calculated decimal value is referred
as Key Block Decimal Value (KBDV). Each KBDV
always lies under the given conditions to manage block
sizes. Two ranges of block sizes can be created under
this dynamic data blocking mechanism through given
block size management conditions. The block size
management conditions are as follows.

Conditions for (80 to 128) bit’s block sizes:

IF KBDV < = 128 then do nothing
IF KBDV >128 and < = 256 then KBDV/2
IF KBDV >256 and < = 512 then KBDV/4
IF KBDV >512 and < = 1024 then KBDV/6
IF KBDV >1024 and < = 2048 then KBDV/16
IF KBDV >2048 and < = 4096 then KBDV/32
IF KBDV >4096 and < = 16384 then KBDV/64
IF KBDV >16384 and <24576 then KBDV/128
IF KBDV >OR = 24576 then KBDV/232
IF DBAV <80 then DBAV = DBAV + 8 (1)

Res. J. Appl. Sci. Eng. Technol.,

Fig. 2: Logical key blocking mechanism

Conditions for 128 to 256 bit’s block sizes

IF KBDV > = 128 and < = 256 then do nothing
IF KBDV >256 and < = 512 then KBDV/2
IF KBDV >512 and < = 1024 then KBDV/4
IF KBDV >1024 and < = 2048 then KBDV/6
IF KBDV >2048 and < = 4096 then KBDV/16
IF KBDV >4096 and < = 8192 then KBDV/22
IF KBDV >8192 and< = 16384 then KBDV/32
IF KBDV >16384 and <32368 then KBDV/64
IF KBDV >OR = 32368 then KBDV/92

Figure 2, represents the logical key blocking

procedure step by step. In first step 160 bits key is
selected and divided by 10 that results the bit length (16
bits) of sub logical key block. In this way, in 2
the key converts to 10 logical blocks and designates
with unique variables K1, K2, K3….

Where the right most 16 bits of binary key are
to K1 and the left most 16 bits are assigned to K10. In
next step, a decimal value is calculated against each
logical key blocks (K1, K2, K3…. Kn

Round function [Round {∑n
i=1 Ki (KBDV/

Res. J. Appl. Sci. Eng. Technol., 7(21): 4476-4489, 2014

4479

block sizes:

IF KBDV > = 128 and < = 256 then do nothing
IF KBDV >256 and < = 512 then KBDV/2

1024 then KBDV/4
2048 then KBDV/6

IF KBDV >2048 and < = 4096 then KBDV/16
IF KBDV >4096 and < = 8192 then KBDV/22

16384 then KBDV/32
32368 then KBDV/64

IF KBDV >OR = 32368 then KBDV/92 (2)

Figure 2, represents the logical key blocking
procedure step by step. In first step 160 bits key is

divided by 10 that results the bit length (16
bits) of sub logical key block. In this way, in 2nd step,
the key converts to 10 logical blocks and designates

 Kn, respectively.
Where the right most 16 bits of binary key are assigned
to K1 and the left most 16 bits are assigned to K10. In
next step, a decimal value is calculated against each

n) and filters by
KBDV/10)}] After

that, any desired set of conditions Eq. (1
applied on K1, K2, K3…. Kn. This function returned the
Data Block Average Value (DBAV) which is used to
partition the plain-text data into blocks. The first block
size management condition (1) is not recommended; it
is an optional trait for small devices. However, the
second block management condition
recommended for getting optimal
block sizes from 128 bits up to 256 bits. It means the
length of each block remains in between this specified
limit but it is not known to the cracker; what is the bit
length of each block. The bit length is dynamic and
varies from key to key and data to data so called
dynamic. After applying desired block management
condition, each Key block gets a KBDV. In next step 3,
KBDV against (K1, K2, K3………. K
following mathematical formula Eq. (3) to get a secret
(probabilistic random) number. This random digit is
referred as Data Block Average Value (DBAV). The
round function is applied on this random DBAV to get
a fraction free number. Data (Plain Text) will be
blocked according to randomly calculated DBAV,
if DBAV = 120 and let suppose, minimum

conditions Eq. (1) or (2) is
. This function returned the

Data Block Average Value (DBAV) which is used to
text data into blocks. The first block

size management condition (1) is not recommended; it
nal trait for small devices. However, the

condition (2) is
 security that creates

block sizes from 128 bits up to 256 bits. It means the
length of each block remains in between this specified

to the cracker; what is the bit
length of each block. The bit length is dynamic and
varies from key to key and data to data so called
dynamic. After applying desired block management
condition, each Key block gets a KBDV. In next step 3,

………. K10) follows the
following mathematical formula Eq. (3) to get a secret
(probabilistic random) number. This random digit is
referred as Data Block Average Value (DBAV). The
round function is applied on this random DBAV to get

fraction free number. Data (Plain Text) will be
calculated DBAV, e.g.,
t suppose, minimum

Res. J. Appl. Sci. Eng. Technol.,

Fig. 3: Random block management value generation algorithm

data is 2292 bits, then 2292/120 = 19.1.
data will be converted into 20 blocks in which block 1
to 19 will contain 120 bits. So 120*19 = 2280 bits
therefore, 2292-2280 = 12 bits so 20
contains 12 bits rather than 120 bits. To cope small
number of bits of last block a Last Block Management
Algorithm (LBMA) is applied as discussed in below
section. Before to apply LBMA, there is need to
generate random block management value through the
employment of Random Block Management Value
(RBMV) algorithm.

Random block management value algorithm:
dynamic data block generation procedure, the last data
block may be smaller in number of bits as compared to
the all other data blocks. Usually, the small sized data
block is considered as a weak in security strength of
block ciphers. Therefore, in order to make its bit length
equal to the other data blocks, we proposed a Random
Block Management Value (RBMV) algorithm. This
algorithm generates a random 160 bit value from initial
key that will be used to manage the last data block size
as depicted in Fig. 3. In this algorithm, permutations
and ��� operation are used. This �
specifically designed for proposed Dynamic Data
Blocking Mechanism. In this function (
tracking is not possible without knowing the

Res. J. Appl. Sci. Eng. Technol., 7(21): 4476-4489, 2014

4480

Fig. 3: Random block management value generation algorithm

bits, then 2292/120 = 19.1. This means
data will be converted into 20 blocks in which block 1
to 19 will contain 120 bits. So 120*19 = 2280 bits

2280 = 12 bits so 20th block will
contains 12 bits rather than 120 bits. To cope small

Block Management
Algorithm (LBMA) is applied as discussed in below
section. Before to apply LBMA, there is need to
generate random block management value through the
employment of Random Block Management Value

lue algorithm: In
dynamic data block generation procedure, the last data
block may be smaller in number of bits as compared to
the all other data blocks. Usually, the small sized data-
block is considered as a weak in security strength of

refore, in order to make its bit length
equal to the other data blocks, we proposed a Random
Block Management Value (RBMV) algorithm. This
algorithm generates a random 160 bit value from initial
key that will be used to manage the last data block size

epicted in Fig. 3. In this algorithm, permutations
��� operation is

specifically designed for proposed Dynamic Data
Blocking Mechanism. In this function (���), back

le without knowing the original

key string. This function is an alternative to XOR
function. The utilization of ��� is mutually binded with
RBMV algorithm as depicted in Fig. 3 for further
discussion. The RBMV generation algorithm’s working
flow is illustrated in Fig. 3. Firstly, the 160 bits initial
key is blocked into 10 equal blocks
K10) each having 16 bit length. In the next step, each 16
bits block is rotated from right to left. E.g., B1 = 10110
after rotation will be B1 = 01101. After rotation the all
10 blocks are considered as single block. In the next
step, this single key block (160 bits) is converted into 2
blocks in which the first block contains 154 bits and 2
block contains 6 bits. The permutation operation
[4X3’X4] X3’X [4X3’X4]. It means in
value middle 3 bits will be complemented and other 4
bits will be interchanged. The permutation operation:
[4X3’X4] X3’X [4X3’X4] can be computed as follows:

Suppose B1 = 0011011101010110001101101

In [4X3’X4] X3’X [4X3’X4] format it will

B1 = [0011X011X1010] X101X

The 3’ (Complement of middle 3 bits in red color)
will be applied as follows:

key string. This function is an alternative to XOR
is mutually binded with

RBMV algorithm as depicted in Fig. 3 for further
The RBMV generation algorithm’s working

y, the 160 bits initial
key is blocked into 10 equal blocks (K1, K2, K3,……,

each having 16 bit length. In the next step, each 16
bits block is rotated from right to left. E.g., B1 = 10110

= 01101. After rotation the all
blocks are considered as single block. In the next

step, this single key block (160 bits) is converted into 2
blocks in which the first block contains 154 bits and 2nd
block contains 6 bits. The permutation operation:

It means in each bracket
value middle 3 bits will be complemented and other 4
bits will be interchanged. The permutation operation:

can be computed as follows:

Suppose B1 = 0011011101010110001101101

[4X3’X4] format it will become:

X101X [1000X110X1101]

The 3’ (Complement of middle 3 bits in red color)

Res. J. Appl. Sci. Eng. Technol.,

B1 = [0011X100X1010] X010X [1000X001X1101]

The 4 underlined bits in each bracket will be

interchanged to each other as follows:

B1 = [1010X100X0011] X010X [1101X001X1000]
Result (B1) = 1010100001101011010011000

Similarly, Permutation operation [2X2’X2] can be

applied on 6 bit left side 2nd block. After applying these
both kinds of permutation operations, the
is applied as follows:

Suppose, Text Block = 01 10 10 11 and
Selected Key = 10 11 11 01

Before applying ��� operation each Text Block and
selected Key shall be converted into pairs of two binary
bits. If any of block contains odd number of bit
the right most bit of selected key will be concatenated

to the left of any odd number bits block either text or
key. After completing this procedure of pair
conversion, the ��� conditions (Fig. 3) shall be checked
on selected key but all replacements shall be done on
text block. Firstly, the ��� condition will be checked on
first pair of selected key and replacement will be done
on the first pair of text block, then ���
checked on 2nd pair of key but replacement will be done
of 2nd pair of text block and so on up to last pair

Selected Key bits = 10 11 11 01

In this block in red color pair left side digit is “a”

and right side digit is called b, similarly,
pair left side digit is “a” and right side digit is called b.
In the same way a and b values are assigned against
each pair of text block. According to
each pair if a = b in selected key pair it will result
text block and if a ≠ b in key pair it will result ba on
text block. These notations can be written as follows:

 (ab) � if a = b in Key : ab̑ on Text Block
 (ab) � if a ≠ b in Key : ba on Text Bloc

where, a ̑ means complement of “a”. After applying
operation the text block can be written as follows:

 (Text Block) = PTB = 10 00 00 11

In order to re-compute the original value from
PTB = 10 00 00 11, there is need to apply the same
conditions on Selected Key = 10 11
replacements shall be done on PTB. After applying the
��� conditions the following original value is generated
from PTB = 10 00 00 11

Res. J. Appl. Sci. Eng. Technol., 7(21): 4476-4489, 2014

4481

[1000X001X1101]

The 4 underlined bits in each bracket will be

[1101X001X1000]
Result (B1) = 1010100001101011010011000

Similarly, Permutation operation [2X2’X2] can be
block. After applying these

both kinds of permutation operations, the ��� operation

Suppose, Text Block = 01 10 10 11 and

operation each Text Block and
selected Key shall be converted into pairs of two binary
bits. If any of block contains odd number of bits then
the right most bit of selected key will be concatenated:

 (3)

to the left of any odd number bits block either text or
key. After completing this procedure of pair

conditions (Fig. 3) shall be checked
on selected key but all replacements shall be done on

condition will be checked on
first pair of selected key and replacement will be done

 condition will be
pair of key but replacement will be done

pair of text block and so on up to last pair:

In this block in red color pair left side digit is “a”
and right side digit is called b, similarly, in each blue
pair left side digit is “a” and right side digit is called b.
In the same way a and b values are assigned against

 ��� condition in
each pair if a = b in selected key pair it will result ab̑ on

≠ b in key pair it will result ba on
text block. These notations can be written as follows:

b on Text Block
b in Key : ba on Text Block

means complement of “a”. After applying ���
operation the text block can be written as follows:

11

compute the original value from
11, there is need to apply the same ���

11 11 01 but all
replacements shall be done on PTB. After applying the

conditions the following original value is generated

 (PTB) = 01 10 10 11 = Text Block

This ��� (PTB) is equla to the original value of
Text Block. Hence, the ���
recomputed with 100% accoracy.

Last block management algorithm:
the random block management value through RBMV
algorithm, the next step is to adjust this random value in
the last data block that contains small number of
This task is necessary in order to make the last data
block size (bits) equal to the all other blocks. In
cryptographic algorithms the small sized block
possesses greater chance to crack rather to the bulky
block having more number of bits. The recom
block size is 128 bits or more. The proposed Dynamic
Data Blocking Mechanism (DDBM) recommends that
block size should be between 128 to 256 bits for getting
optimal security. However DDBM has the option to
generate block size in between 80 to 128 bits
block range is for small devices. For managing the size
of last block this study proposes a Last Block
Management Algorithm which is as follows

Last block management algorithm
Declare B, NLB, R2, LB as string and all having initial
value = “ ”
LDBBV = 010010010110 // Supposed last block’s bits
B = Calculate_Bits (LDBBV);
IF B<80 bits AND First-Last bit (RBMV)
For Block size (128-256), 80 bits will be replaced by
128
{
NLB = Select “LEFT Side” 128 bits (from left side) of
RBMV;
}
Else IF B<80 bits AND First-Last bit (RBMV)
Different // For Block size (128-256), 80 bits will be
replaced by 128
{
NLB = Select “FIRST RIGHT Side” 128
right side) of RBMV;
}
NLB = Latest NLB value;
LB = Select DBAV bits from right side (NLB ||
LDBBV); // DBAV means its decimal value
End if;
End if;
IF B>80 bits AND<DBAV AND Not Multiple of 8 //
For Block size (128-256), 80 bits will be replaced by
128
{
R2 = [Select only left side of decim
(LDBBV bits /8) + 1] * 8;
LB = Select first R2 no. of bits from LB starting from
right to left;
}
Else
Do nothing;

(PTB) = 01 10 10 11 = Text Block

(PTB) is equla to the original value of
 operation can be

Last block management algorithm: After generating
the random block management value through RBMV
algorithm, the next step is to adjust this random value in
the last data block that contains small number of bits.
This task is necessary in order to make the last data
block size (bits) equal to the all other blocks. In
cryptographic algorithms the small sized block
possesses greater chance to crack rather to the bulky
block having more number of bits. The recommend
block size is 128 bits or more. The proposed Dynamic
Data Blocking Mechanism (DDBM) recommends that
block size should be between 128 to 256 bits for getting
optimal security. However DDBM has the option to
generate block size in between 80 to 128 bits but this
block range is for small devices. For managing the size
of last block this study proposes a Last Block
Management Algorithm which is as follows.

Last block management algorithm:
Declare B, NLB, R2, LB as string and all having initial

// Supposed last block’s bits

Last bit (RBMV) = Same //
256), 80 bits will be replaced by

NLB = Select “LEFT Side” 128 bits (from left side) of

Last bit (RBMV) =
256), 80 bits will be

= Select “FIRST RIGHT Side” 128 bits (from

from right side (NLB ||
; // DBAV means its decimal value

DBAV AND Not Multiple of 8 //
256), 80 bits will be replaced by

R2 = [Select only left side of decimal point value of

= Select first R2 no. of bits from LB starting from

Res. J. Appl. Sci. Eng. Technol., 7(21): 4476-4489, 2014

4482

LB = Select Right Side DBAV No. bits From (LB);
LB = latest LB value;
End if;

At receiver’s end the dynamic data blocking
procedure will be done in the same way as it has done
at sender’s side. However, the last block management
algorithm will automatically be omitted at receiver’s
end because the cipher text has already gone through
the blocking phase therefore, it will satisfy the block
size conditions. The bit counts value of last data block
will be calculated at sender’ side before the
implementation of last block management algorithm.
This block count will be sent with key to other party.
After completing the decryption phase the string will be
compared with last block count’s value. The string up
to last block count will be preserved and other extra
string will be discarded.

RESULTS AND EVALUATION

In order to evaluate the working accuracy of

proposed dynamic data blocking mechanism, we
applied all of its steps (algorithms) upon a supposed
encryption key and plain text data. All proposed
algorithms have been tested through digital logic and
mathematical proofs. We utilized the same evaluation
approach which has been followed in the book of
digital logic and design. The mathematical evaluation is
as follows.

Initial 160 bit key in string form:
ijazshoukat@pakistan

Initial key 160 bit key in binary form:

[Leftside]0110100101101010011000010111101001110
011011010000110111101110101011010110110000101
110100010000000111000001100001011010110110100
101110011011101000110000101101110 [Right Side]

According to the proposed dynamic data blocking
mechanism, the initial key can be partitioned in to 10
blocks having 16 bits each by applying this
mathematical formula:

Initial Key (K) = 160 bits: 160/10 = 16 bits of each
sub key.

After partitioning the master 160 bits key, we got
the following sub key blocks:

Right Side Key Block-1
(R-K1): 0110000101101110
K2: 0111001101110100
K3: 0110101101101001
K4: 0111000001100001
K5: 0111010001000000
K6: 0110101101100001

K7: 0110111101110101
K8: 0111001101101000
K9: 0110000101111010
Left Side Key Block- 10
(L-K10): 0110100101101010

Similarly, we choose a supposed plain text data

which is as follow.

Plain text data in string form: In the name of Allah
the most beneficent the merciful. There is not God but
Allah, Muhammad is the Prophet of Allah. This data is
going to be implemented with newly developed
symmetric encryption algorithm named as Random
Encryption Method (REM). This data will be encrypt
and decrypt with REM practically.

Plain text data in binary form (2292 bits):
{Left Side} 01001001 01101110 0001 01110100
01101000 01100101 0001 01101110 01100001
01101101 01100101 0001 01101111 01100110 0001
01000001 01101100 01101100 01100001 01101000
0001 01 110100 01101000 01100101 0001 01101101
01101111 01110011 01110100 0001 01100010
01100101 01101110 01100101 01100110 01101001
01100011 01100101 01101110 01110100 0001
01110100 01101000 01100101 0001 01101101
01100101 01110010 01100011 01101001 01100110
01110101 01101100 00101110 0001 01010100
01101000 01100101 01110010 01100101 0001
01101001 01110011 0001 01101110 01101111
01110100 0001 01000111 01101111 01100100 0001
01100010 01110101 01110100 0001 01000001
01101100 01101100 01100001 01101000 00101100
0001 01001101 01110101 01101000 01100001
01101101 01101101 01100001 01100100 0001
01101001 01110011 0001 01110100 01101000
01100101 0001 01010000 01110010 01101111
01110000 01101000 01100101 01110100 0001
01101111 01100110 0001 01000001 01101100
01101100 01100001 01101000 00101110 0001
01010100 01101000 01101001 01110011 0001
01100100 01100001 01110100 01100001 0001
01101001 01110011 0001 01100111 01101111
01101001 01101110 01100111 0001 01110100
01101111 0001 01100010 01100101 0001 01101001
01101101 01110000 01101100 01100101 01101101
01100101 01101110 01110100 01100101 01100100
0001 01110111 01101001 01110100 01101000 0001
01101111 01110101 01110010 0001 01101110
01100101 01110111 01101100 01111001 0001
01100100 01100101 01110110 01100101
0110110001101111 01110000 01100101 01100100
0001 01110011 01111001 01101101 01101101
0110010101110100 01110010 01101001 01100011
0001 01100101 01101110 01100011 01110010
01111001 01110000 01110100 01101001 01101111
01101110 0001 01100001 01101100 01100111

Res. J. Appl. Sci. Eng. Technol., 7(21): 4476-4489, 2014

4483

Table 1: Logical key blocking mechanism
Sub key block # Blocks (right to left) Key Block Decimal Value (KBDV)
K1 0110000101101110 24942>24576 so 24942/232 = 107.50 = 107
K2 0111001101110100 7374>4096 and <16384 so 7374/64 = 115.21 = 115
K3 0110101101101001 27497>24576 so 27497/232 = 118.52 =118
K4 0111000001100001 7061>4096 and <16384 so 7061/64 = 110.32 = 110
K5 0111010001000000 29760>24576 so 29760/232 = 128.27 = 128
K6 0110101101100001 27489>24576 so 27489/232 = 118.48 = 118
K7 0110111101110101 28533>24576 so 28533/232 = 122.98 = 123
K8 0111001101101000 29544>24576 so 29544/232 = 127.34 = 127
K9 0110000101111010 24954>24576 so 24954/232 = 107.56 = 107
K10 0110100101101010 15282>4096 and <16384 so 15282/64 = 238.78 = 239>128 and <256 so 239/2 = 119.5

= 119
AVG Data Block Avg. Value

(DBAV)
1172/10 117.2 = 117 For getting each block as multiple of 8 this rule will be followed:
117/8 = 14.62 = 15 and again 15*8 = 120
It means each data block will contains 120 bits. This value is dynamic.
IF DBAV<80 then DBAV = DBAV + 8 (this condition is not for block sizes of 128 to
256 bits)

01101111 01110010 01101001 01110100 01101000
01101101 0001 01101110 01100001 01101101
01100101 01100100 0001 01100001 01110011 0001
01010010 01100001 01101110 01100100 01101111
01101101 0001 01000101 01101110 01100011
01110010 01111001 01110000 01110100 01101001
01101111 01101110 0001 01001101 01100101
01110100 01101000 01101111 01100100 0001
00101000 01010010 01000101 01001101 00101001
00101110 0001 01010111 01100101 0001 01110111
01101001 01101100 01101100 0001 01110000
01110010 01100001 01100011 01110100 01101001
01100011 01100001 01101100 01101100 01111001 00
01 0100010101101110 0110001101110010
0111100101110000 01110100 01100101 / 01100100
0001 0110000101101110 01100100 000101000100
0110010101100011 01110010 01111001 0111000 0
01110100 0001011101000 11010000110 /
100101110011000101100100011000010111010001100
001000101110111011010010111010001101000000101
010010010001010100110100101110 {Right side}

Implementation of logical key blocking mechanism:
The mathematical transformation Eq. (3) with logical
key blocking mechanism as depicted in Fig. 2, can be
applied and calculated as described in Table 1. If Data
(Plain Text Message) will be less than 2048 bits then it
will be converted to 2048 bits at least before staring
encryption. It is known that, 1 charter = 8 bits in binary
representation. So approximately 256 char message is
needed. As 256*8 = 2048 bits. For every message the
chars will be count, if chars <256 then Message-
Chars/256 = R (Result) and same message is repeated
by R times after putting “~” symbol at the left end of
original message. For minimizing the risk of known
symbol, there is another solution for this problem that is
in case of not putting any symbol, the message (Plain
text Data) binary bits can be calculated before
converting it into 2048 bits. This binary counter can
easily be exchanged with symmetric key. In 160 bits
key, the number of 1 and 0 cannot be repeated 5 times
continuously. It means 0 or 1 can repeat 4 times but not
5 times continuously. By following this pre condition,

the KBDV column cannot be less than 73 decimal
value. Moreover, minimum Key Block Decimal Value
(KBDV) will not be less than 127 bits and maximum
KBDV will not be greater than 16260 (if all last 7 bits
of each key block will be on). In case of odd number of
plain text binary bits, the number of blocks will follow
the rule as exampled here, e.g., if minimum data is 2292
bits, Then 2292/120 = 19.1 it means data will be
converted in to 20 blocks in which block 1 to 19 will
contain 120 bits. So 120*19 = 2280 bits therefore,
2292 - 2280 = 12 bits so 20th block will contains 12 bits
rather to 120 bits. The recommended data block size is
128 to 256 bits. However, there is a choice of 80 to 128
bits block size too. These block sizes are dependent on
the conditions discussed in Eq. (1) and (2). Here, in this
practical proof, the conditions of Eq. (1) has been
applied on column 3 of Table 1 which means the data
block size will remain between 80 to 128 bits long.
According to Table 1, in the last left side 20th block
contains only 12 bits.

Left Side Last Data Block Binary Value (LDBBV):
010010010110.

In order to make this LDBBV equal to 120 bits as
all other 19 data blocks are, there is need of random
bits. These random bits can be derived from initial 160
bits key by applying Random Block Management
Value (RBMV) Algorithm as discussed in Table 2.

Implementation of Random Block Management
Value (RBMV) algorithm: RBMV requires the
following three operations on the initial 160 bit key in
order to get the probabilistic random string that can be
used to manage last data block:

• Rotation: Rotate each 16 bit block (R�L)

(Table 3)
• Permutations operations: [4X3’X4] and

[2X2’X2]
• PX ̚̚ ̚̚ operation: It means select pairs of string (s)

from right to left if pair are different just shift
rotate if pair is same then select the 2nd bit of this
pair and replace it with the complement of first bit
of same pair

Res. J. Appl. Sci. Eng. Technol., 7(21): 4476-4489, 2014

4484

Table 2: Random Block Management Value (RBMV) algorithm with implementation
4X4 conversion of permutated 160 bit key After applying PX̚ operation Random Block Management Value (RBMV)
[Right side] 1101 0110 RBMV =

[Left side]
1001101010010110100110101010011010010101
100101101010010110100
1101001011010100110101001101010100110010
1100101010110100110101010100101101010011
0100110010110010110 [right side]

0111 1001
1011 0101
1000 0110
0001 1010
0011 1001
0001 1010
1010 0101
0001 1010
0001 1010
1101 0110
0101 1010
1011 0101
1110 0101
1101 0110
0111 1001
0011 1001
0001 1010
1100 0110
0001 1010
1001 0110
0000 1010
1001 0110
0110 1001
1101 0110
0001 1010
1011 0101
0101 1010
1101 0110
0011 1001
1111 0101
0010 1001
1001 0110
0001 1010
0001 1010
0010 1001
1001 0110
0010 1001
0101 1010
[Left side] 0110 1001

Table 3: Rotation operation implementations
160 bits initial key blocks After applying rotation (R�L) 160 bits rotated key
R-K1: 0110000101101110 Rotate (R�L) R-K1: 0111011010000110
K2: 0111001101110100 Rotate (R�L) K2: 0010111011001110
K3: 0110101101101001 Rotate (R�L) K3: 1001011011010110
K4: 0111000001100001 Rotate (R�L) K4: 1000011000001110
K5: 0111010001000000 Rotate (R�L) K5: 0000001000101110
K6: 0110101101100001 Rotate (R�L) K6: 1000011011010110
K7: 0110111101110101 Rotate (R�L) K7: 1010111011110110
K8: 0111001101101000 Rotate (R�L) K8: 0001011011001110
K9: 0110000101111010 Rotate (R�L) K9: 0101111010000110
L-K10: 0110100101101010 Rotate (R�L) L-K10: 0101011010010110

Permutation operation: In next step, the permutation
operation [4X3’X4] X3’X [4X3’X4] is applied on 160
bits rotated key. However, for last 6 bits in the left part
of key at left side the permutation operation [2X2’X2]
is implemented. The operation [4X3’X4] X3’X
[4X3’X4] means, select first 4 bits from right side of
key (string) as it is, then take the complement of next 3
bits and then again select the next 4 bits as it is, then

exchange both left and right side 4 bits with each other
and so on. Moreover, the middle 3 bits of large bracket
pairs will just be complemented in whole string.
However, at the last, the left most 6 bits of the left part
of rotated key are permutated by using [2X2’X2]
permutation operation which means select 2 bits of key
as it is then take the complement of next 2 bits and then
again select the 2 bits as it is then exchange both 2 bits

Res. J. Appl. Sci. Eng. Technol., 7(21): 4476-4489, 2014

4485

Table 4: Right side, half part of 160 bits rotated key after applying permutations (permutation operation part a)
000 1000 101 1101 000 0110 000 0111 010 0101 101 1010 110 0010 111 0110 011 1001 110 1101 000 0110

111 0000 010 0110 111 1101 111 0101 101 0111 010 0010 001 1010 000 1001 100 0110 001 0110 111 1101
Left side, half part of 160 bits rotated key after applying permutations (permutation operation part b)
01 01 01 101 0010 110 0101 111 0100 001 1000 010 1101 100 1110 101 0111 011 1101 101 0000 110 1101 011 0000

01 10 01 010 0101 001 0010 000 1000 110 0100 101 1110 011 1101 010 1101 100 0111 010 1101 001 0000 100 1000

Table 5: Last block management algorithm with implementation
Last block management algorithm Practical implementation
Declare B, NLB, R2, LB as string and all having initial
value = “”
LDBBV = 010010010110
B = Calculate_Bits (LDBBV);
IF B<80 bits AND first-last bit (RBMV) = same // for block size
(128-256), 80 bits will be replaced by 128
{
NLB = select “LEFT side” 128 bits (from left side) of RBMV;
}
Else IF B<80 bits AND first-last bit (RBMV) = different // for
block size (128-256), 80 bits will be replaced by 128
{
NLB = select “FIRST RIGHT Side” 128 bits (from right side) of
RBMV;
}
NLB = latest NLB value;
LB = select DBAV bits from right side (NLB || LDBBV); //
DBAV means its decimal value
End if;
End if;
IF B>80 bits AND<DBAV AND not multiple of 8 // for block
size (128-256), 80 bits will be replaced by 128
{
R2 = [select only left side of decimal point value of (LDBBV bits
/ 8) + 1] * 8;
LB = Select first R2 no. of bits from LB starting from right to
left;
}
Else
Do nothing;
LB = Select right side DBAV No. bits from (LB);
LB = latest LB value;
End if;

LDBBV = 010010010110;

B = 12; // this value will indicate the length of last data block at the time of
decryption and
So B<80 and first-last bit = same therefore,

NLB = [left side]
1001101010010110100110101010011010010101100101101010010110100
1101001011010100110101001101010100110010110010101011010011010
101010 [right side]

NLB = NLB;
DBAV = 20; // so right side 120 bits are selected from NLB
LB =
[left side]
1001011010011010101001101001010110010110101001011010011010010
11010100110101001101010100110010110010101011010011010101010 ||
010010010110 [right side]

LB =
[left side]
1001011010011010101001101001010110010110101001011010011010010
11010100110101001101010100110010110010101011010011010101010
010010010110 [right side]
From above 132 bits long LB string right most 120 bits are selected because
DBAV = 120 bits lengthy.
LB = [left side]
1010101001101001010110010110101001011010011010010110101001101
01001101010100110010110010101011010011010101010 010010010110
[right side]

pair with each other. The permutation operations can be
applied as Table 4.

The ultimate objective this kind of permutation is
to produce uniform dynamic modification in the key
that will further be mixed through the utilization of ���
operation. It is well known that the change of bit in key
can produced enough complexity for the cracker. Our
reflect with the opinion of authors who claim, if key
state is updated on some random bases then it can be
resulted as quiet hard for adversary (attacker) to get
useful secret information (Kocher et al., 2011). In our
case many bits of key have been dynamic modified
without having the knowledge of their identity (0 or 1)
and the remaining bits are permutated. After applying
the rotation and permutation operations, the permutated
key becomes:

[Leftside]0110010100101001001000010001100100101
111001111010101101100011101011010010000100100
011100000100110111110111101011010111010001000
110100001001100011000101101111101 [Right Side]

Now, in next step the PX ̚ operation is applied that
requires 4 by 4 bits conversion which is applied in
Table 2. In next step, the Last Block Management
Algorithm (LBMA) is applied and evaluated
mathematically as discussed in Table 5.

Hence, the Last Block Binary Value (LDBBV):
010010010110 which was 12 bits long before the
employment of last Block Management value (RBMV)
algorithm now has become 120 bits long as the all other
19 data blocks are. The proposed dynamic data

Res. J. Appl. Sci. Eng. Technol., 7(21): 4476-4489, 2014

4486

blocking mechanism can generated dynamic number of
blocks with dynamic number of bits as follows:

R-DB1:
[Left Side]
100101110011000101100100011000010111010001100
001000101110111011010010111010001101000000101
010010010001010100110100101110 [Right Side]
DB2:
[Left Side]
011001000001011000010110111001100100000101000
100011001010110001101110010011110010111000001
110100000101110100011010000110 [Right Side]
.
+
.
.
+
.
L-DB20:
[Left Side]
101010100110100101011001011010100101101001101
001011010100110101001101010100110010110010101
011010011010101010010010010110 [Right Side]

The original value counter of last data block will
exchange with private key and after decrypting the data
only the right most value of last data block will be
considered as a plain text. In the light of mathematical
evaluation, our proposed Dynamic Data Blocking
Mechanism (DDBM) with its sub algorithms gives
100% correct results. This Dynamic data blocking
mechanism requires to perform on both sides (sender
and receiver) with the same logic.

DISCUSSION AND ANALYSIS

The proposed Dynamic Data Blocking Mechanism

(DDBM) is substantially significant to fixed data

blocking mechanism. Fixed length blocks support the
cracker in matching of hypothetical decrypted string
(block) with the targeted chosen plaintext string to get
accurate final results. The accuracy of final result is
actually dependent on matching of hypothetical
decrypted string with any chosen string of plaintext
which is easy in case of known fixed length data
blocks. Fixing block length can help the cracker in
mapping/matching step of hypothetical decrypted text
with known (chosen) block of plaintext. The other
noteworthy problem with fixed and known length block
is the brute force attacking approximation because any
chosen fixed sized block means that the same sized key
is implemented on it. Therefore, in this case, the brute
force attack is more likely and effectively to be
applicable as discussed in Table 6. Moreover,
Permutation is less effective in case of fixed
substitution and it just means to increase processing
computation ability which can easily be defeated in
current era’s based high computing processors. Fixed
parameters trigger the applicability of modern
cryptanalysis attacks on symmetric cryptosystems by
offering computable probability range because the
permutations happed against fixed sized data blocks is
less vigorous against the larger probability of
differential attacks as witnessed in studies (Lu, 2010;
Lu, 2008). This cause is reasonably notable in case of
AES and DES because both utilize fixed (static) data
blocking mechanism (Young and Yang, 2010) (Singh
and Bansal, 2010). Proposed scheme is fully able to
create dynamic data blocks. This is more convincing
that DES utilized fixed data blocks and fixed 8 bits
substitution and practically cracked in just 4.5 days
(Wobst, 2001) even the security satisfaction of Triple
DES (TDES) is also vulnerable as its practical cracking
requires 800 days on a machine that can execute 50
billion keys per second (Alanazi et al., 2010).
Moreover, Biryukov et al. (2010) reported that, TDES
has already been cracked with key complexity of 256

Table 6: Comparison of randomness between dynamic and static data blocking

Parameters
With prior fixed data blocking schemes (DES, AES-
128) With proposed DDBM scheme

Probabilistic randomness
calculation

Suppose, plain text data (Ð) = 2048 bits.
Blocking with AES-128 = 2048/128 = 16 blocks, so
No. of data blocks (β) = 16
No. of bits of each block (µ): 128 bits

Probabilistic randomness calculation formula:
β * 2 µ bits where
For each single block = 1* 2 µ bits
If: β is fixed = 16 in supposed case
µ is fixed = 128 in supposed case
So, 16 * 2 128 bits

Therefore:-
It is static and easily computable

Suppose plain text data (Ð) is,
Ð = 2048 bits
No. of data blocks (will be done randomly) = ₱ (β)
No. of bits of each block (will be selected
Randomly) = ₱ (µ) bits
Probabilistic randomness calculation
formula: ₱ (β)* 2 ₱(µ) bits
Where
₱ (β) is random
₱ (µ) is random
As these are unknown to the cracker. So it is quite
confusing for the cracker to guess it.
Therefore:
It is dynamic and not easy to compute

Result Weak and guessable Robust and hard to guess
NP-hard property for block
partitioning

× √ (see discussion section debate on P and NP)

Res. J. Appl. Sci. Eng. Technol., 7(21): 4476-4489, 2014

4487

bits as claimed by Biryukov et al. (2010). Similarly,
AES utilizes fixed substitution and fixed data blocks
and has been victim under chosen key distinguisher
attack which was verified by the authors of study
(Biryukov et al., 2009) with almost applied complexity
of (q.267) queries to crack full 14 rounds of AES-256
which works for 1 key out of 235 keys with 2120 data and
time complexity trials. Moreover, these threats possibly
becomes practical under some modes of operations that
take chosen inputs block as a key (Biryukov and
Dunkelman et al., 2010). This is commonly known that
fixed parameters in creation of portability and
randomness are not considered robust that’s why
proposed approach aims to create dynamic data blocks
rather to fixed data blocks. In Table 6 and in below
section, we have discussed how, fixed data blocking
cannot create sufficient probability and leads the
situation to non-NP Completeness.

Thus, fixed data blocking approach did not create
sufficient randomness (Table 6) and is not adequately
secure against brute force attack. Our opinion quite
reflects the prior research analysis of different authors.
In Ritter (1995), has been reported that Dynamic
(Variable) Data blocking is architecturally simple but
computationally stronger and faster than fixed data
blocking. Dynamic data blocking facilitates vigorous
pseudorandom-permutation that is the superlative
principle in designing of block ciphers (Cook, 2006).
Dynamicity can create sufficient randomness.
Randomness and mathematical robustness are good
heuristic to resist cryptanalysis attacks (Cook, 2006).

Discussion on P, NP and (P ≠≠≠≠ NP): P class belongs to
(∈) set of deterministic (not-harder) based all decision
problems (yes or no) which can be solved in
polynomial time (O (n^k) where n is problem size and k
is constant. In other words for P class problems,
efficient algorithms persist to solve desired problem
practically by using deterministic Turing machine. NP
class ∈ set of non-deterministic (hard) natured all
optimization problems (series of possible guesses)
which require infinite time to predict possible solution
so called hard (non-deterministic). In other words the
problem belongs to NP Class has not an efficient
algorithm with practical solution. In class of P, mostly a
solution is find out and then it required to verify against
NP within time span T. where, the Polynomial Time (T)
term is used for an efficient algorithm which can solve
any problem quickly in reasonable time. For hard
problems, it is broadly believed (P ≠ NP) but it has not
been proven yet (Gomes and Williams, 2005;
Taslaman, 2012).

For this widely believed hypothesis (P ≠ NP -
widely believed for which no efficient algorithm

exists), it is assumed that the solution against the related
problem is intractable which means, there persist no
efficient algorithm that guarantees an optimal solution
for such hard problems as witnessed in a book (Gomes
and Williams, 2005). Therefore, generally but unproved
hypothesis (P ≠ NP) has no known polynomial
algorithm to solve the NP-Complete problem optimally
and this hypothesis is famously known as hard problem
(P ≠ NP) as agreed by Taslaman (2012). NP-Complete
problems require too bulky set of tries to guess the
solution of a problem which further required large
optimizations (serious of guess) to verify the exact
solution in polynomial Time (T). Therefore, problem is
said to be NP-Hard if all the supplementary problems in
NP class can be reduce in time T which means if X�Y

and Y �Z then X�Z satisfy the reduction properties
through functions f and h. These functions (fxz, hxy) and
(fyz, hYZ) can be reduced as X to Y and Y to Z
respectively through a reduction composition fYz.fxy
maps the instance of X to an instance of Z and similarly
hxy.hyz can track the solution of Z back to X which
satisfies, problem X is NP-Complete and any other
problem like X will also be NP complete (Dasgupta
et al., 2008). This reduction can be represented with a
notation X≤pZ (Polynomial reducible to Z).
Mathematically, it can be written as:
A problem X is NP-complete if:

• X∈NP
• X≤pZ for every X∈NP: polynomial reducible from

X� Z Similarly
• Z≤pX for every Z∈NP: polynomial reducible from

Z �X

This proof satisfy the properties of NP-
Completeness, i.e., P is NP-hard (polynomial reducible)
and P∈NP in accordance with general P and NP
completeness transformation.

By taking the probabilistic randomness
computation example of Table 6 against AES and
proposed scheme, we can write the probabilistic
computation complexity equation as follows:

₱ = β * 2
µ bits

 (4)

where,
₱: Probability computational complexity
β: The no. of blocks
µ: The bit-length of each block

Lemma: we prove NP-Completeness of probabilistic
randomness equation ₱ = β * 2µ(bits) in case of AES and
proposed case of DDBM by supposing Ð is known in
both cases. The purpose of declaring Ð as known is

Res. J. Appl. Sci. Eng. Technol., 7(21): 4476-4489, 2014

4488

only to evaluate the robustness of probabilistic
randomness complexity for which generally at least one
parameter should be known in both cases for
comparison.

First case: blocking partitioning under AES-128: In
this case: µ ∉ NP as:- µ is known (as discussed in
Table 6) which means it is deterministic because it is
fixed (128 bit).

Where ∉ means “not belongs to” and ⇒ means
“implies that”.

Similarly, we can compute β = Ð. µ-1
Therefore, β ∉ NP:- as β can easily be computed

through simple function (β = Ð. µ-1) having both known
parameters (Ð , µ) ⇒ β is deterministic.

So β ∈P and µ ∈P:- as P is a deterministic class
According to NP-Complete transformation as

discussed earlier, the Eq. (4) is hard if-and-only-if: β
∈NP and µ ∈NP which is false here. It means ₱ = β *
2

µ bits is deterministic and is not a hard problem against
NP-Completeness.

Second case: block partitioning under proposed

DDBM: µ∈NP as:- µ follows a series of possible
guesses (Table 6) which means it belongs to
optimization problem class (NP) having non-
deterministic series of instances of µ = µ1, µ2, µ3 ……
µn (µ1, µ2, µ3 …… µn) ⊂ µ ∈ NP ⇒ µ n ∈ NP: as µ n is
a subset (⊂) of µ

Similarly, β ∈ NP as:- β follows a series of
possible guesses which means it belongs to
optimization problem class (NP) having non-
deterministic series of instances of β = β 1, β 2, β 3 ……
β n (β 1, β 2, β 3 …… β n) ⊂ β ∈ NP ⇒ β n ∈ NP: as β n
is a subset (⊂) of β.
Now let we try to compute:

β = Ð. µ-1 (5)

In this computation we only know Ð but we do not

know β and µ which both parameters have non-
deterministic property as both ∈ NP, even its subsets
(sub-instances) also ∈ NP ⇒ Eq. (5)∈ NP.
Therefore,

Eq. (5) ≤p Eq. (4):- as instances of Eq. (5) ∈ NP

Eq. (4) ≤p Eq. (5):- as instances of Eq. (4) ∈ NP

Where Eq. (5) ⊂ Eq. (4) ⇒ Eq. (4) ∈ NP which
links to optimization problem (series of possible
guesses) that are hard to guess which means no
polynomial efficient algorithm persists which gives
optimal or guaranteed solution for such problems
belong to NP. This hypothesis is widely believed as
hard problem (P ≠ NP) because no efficient algorithm
exists to find practical solution for all problems which

satisfy this hypothesis as agreed by the authors of
studies (Gomes and Williams, 2005; Taslaman, 2012).

In our proposed scheme the diversity of both
parameters (block numbers, block bits) is dependent on
a plaintext data and key. Proposed DDBM scheme is
enriched with dynamicity to create sufficient
randomness as for one set of plaintext data and key {Ð1,
Ҟ1} the block length (β) will be βx but all data blocks
will contain equal bits and βx will not be known to the
cracker. Similarly, for other set of data and key {Ð2,
Ҟ2} the block length (β) will be βy but all data blocks
will contain equal bits and βy will not be known to the
cracker. In both cases the block length (β(x, y)) and
number of blocks will vary from key to key and data to
data but for cracker these both variables will be
dynamic and unknown. The comparison of randomness
computation of proposed scheme with prior methods
used in DES and AES as explained in above section and
Table 6, which clearly appeal that proposed method of
data blocking is robust rather to prior schemes. The
complexity and probability of proposed method is
computationally hard (P ≠ NP) as discussed in above
section and Table 6. On the other hand in case of prior
cryptographic methods (DES, AES) the same
computation is mathematically computable and un-
adequately follows the condition (P ≠ NP). Hence, the
objective of creating dynamic data blocking in any
cryptographic is superior to fixed data blocking
mechanism.

CONCLUSION

Dynamic data blocking is a superlative philosophy

to stimulate probabilistic randomness in encryption
heuristics rather to employ any sort of static (fixed) data
partitioning policy. Fixed data blocking is an actual
cause of academic cracking of AES and practical
cracking of DES because fixed block partitioning
approach supports the cracker in matching of
hypothetical decrypted string (block) with the targeted
chosen plaintext string to get accurate final results.
Static (fixed) data blocking mechanism generates weak
randomized probability against exhaustive searching
and computationally weak to follow the condition
(P ≠ NP - widely believed for which no efficient
algorithm exists) in block partitioning step as discussed
in above section and Table 6, however, in contrast with
fixed data blocking, our proposed Dynamic Data
Blocking Mechanism (DDBM) is architecturally simple
but computationally robust in probabilistic randomness
to offer sufficient resistance with series of large
optimizations which is adequately robust to provide
initial safe-guard against powerful cryptanalysis
attacks. Proposed idea is enriched with dynamicity that
triggers more probabilistic randomness. Moreover, in
our proposed scheme (DDBM) the diversity of both
parameters (block numbers, block bits) is dependent on

Res. J. Appl. Sci. Eng. Technol., 7(21): 4476-4489, 2014

4489

a plaintext data and key. According to our best
knowledge our idea is novel and timely significant to
enhance the security of symmetric cryptosystems.
Moreover, it is enriched with robust scientific
contribution to replace the fixed data blocking
mechanism with dynamic tactics in future
cryptosystems to achieve higher degree of security
satisfaction.

REFERENCES

Alanazi, O.H., A.A. Zaidan, H.A. Jalab, M. Shabbir and

Y. Al-Nabhani, 2010. New comparative study
between DES, 3DES and AES within nine factors.
J. Comput., 2(3): 152-157.

Biryukov, A., 2004. Boomerang attack on 5 and 6-
round AES. Proceeding of the 4th Conference on
Advanced Encryption Standard.

Biryukov, A. and D. Khovratovich, 2009. Related-key
cryptanalysis of the full AES-192 and AES-256.
In: M. Matsui (Ed.), ASIACRYPT 2009. Lecture
Notes in Computer Science, Springer, Heidelberg,
Vol. 5912: 1-18.

Biryukov, A., D. Khovratovich and I. Nikolic, 2009.
Distinguisher and Related-key Attack on the Full
AES-256 (Extended Version). In: Halevi, S. (Ed.),
CRYPTO 2009. LNCS, Springer, Heidelberg,
5677: 231-249.

Biryukov, A., O. Dunkelman, N. Keller,
D. Khovratovich and A. Shamir, 2010. Key
Recovery Attacks of Practical Complexity on AES-
256 Variants with up to 10 Rounds. In: Gilbert, H.
(Ed.), EUROCRYPT 2010. Lecture Notes in
Computer Science, Springer, Heidelberg, 6110:
299-319.

Cook, D.L., 2006. Elastic Block Ciphers. Ph.D. Thesis,
Graduate School of Arts and Science, Columbia
University.

Dasgupta, S., C.H. Papadimitriou and U.V. Vazirani,
2008. Book-Algorithms. 1st Edn., Published by
McGraw Hill Book Publishers, pp: 336, ISBN-10:
0073523402.

Demirci, H., I. Taskın, M. Coban and A. Baysal, 2009.
Improved Meet-in-the-middle Attacks on AES. In:
B. Roy and N. Sendrier (Eds.), INDOCRYPT
2009. Springer-Verlag, Berlin, Heidelberg, LNCS,
5922: 144-156.

Elminaam, D.S. and H.M. Abdul-Kader, 2010.
Evaluating the performance of symmetric
encryption algorithms. Int. J. Network Secur.,
10(3): 213-219.

Ferguson, N., J. Kelsey, S. Lucks, B. Schneier and
M. Stay, 2001. Improved Cryptanalysis of
Rijndael. In: Schneier, B. (Ed.), FSE 2000. LNCS,
Springer, Heidelberg, pp: 213-230.

Gilbert, H. and M. Minier, 2000. A collision attack on 7
rounds of Rijndael. Proceeding of the 3rd AES
Candidate Conference (AES3), pp: 230-241.

Gomes, C.P. and R. Williams, 2005. Approximation
Algorithms. In: Burke and Kendall (Eds.),
Introduction to Optimization, Decision Support and
Search Methodologies, Kluwer, pp: 557-58.

Kocher, P., J. Jaffe, B. Jun and P. Rohatg, 2011.
Introduction to differential power analysis.
J. Cryptography Eng., 1: 5-27.

Lu, J., 2008. Cryptanalysis of block ciphers. Ph.D.
Thesis, the University of London, UK (2008). A
Copy is Available Online as Technical Report
RHUL-MA-2008-19, Department of Mathematics,
Royal Holloway and University of London, UK.
Retrieved form: http://www.ma.rhul.ac.uk/static/
techrep/2008/RHUL-MA-2008-19.pdf.

Lu, J., 2010. The (related-key) impossible boomerang
attack and its application to the AES block cipher.
Published in DES, Codes Cryptography-
Springerlink.com, DOI 10.1007/s10623- 010-
9421-9.

Ritter, T., 1995. Variable Size Block Ciphers.
Cryptography Software Analogy Digital. Retrieved
form: http://www.ciphersbyritter.com/VSBC.HTM.

Shoukat, I.A. and K.A. Bakar, 2013. Effective
evaluation metrics for the assessment of
cryptographic algorithms and key exchange tactics.
Inform. Tokyo (Japan), 16(5): 2801-2814.

Shoukat, I.A., K.A. Bakar and M. Iftikhar, 2011. A
survey about the latest trends and research issues of
cryptographic elements. Int. J. Comput. Sci., 8(3):
140-149.

Shoukat, I.A., A.B. Bakar and S. Ibrahim. 2013. A
generic hybrid encryption system (HES). Res.
J. Appl. Sci. Eng. Technol., 5(09): 2692-2700.

Singh, A. and M. Bansal, 2010. FPGA implementation
of optimized DES encryption algorithm on Spartan
3E. Int. J. Sci. Eng. Res., 1(1), ISSN: 2229-5518.

Taslaman, N., 2012. Exponential-time algorithms and
complexity of NP-hard graph problems. Ph.D.
Thesis, IT University of Copenhagen, Section of
Theoretical Computer Science.

Une, M. and M. Kanda, 2007. Year 2010 Issues on
Cryptographic Algorithms. Institute for Monetary
and Economic Studies, Japan. Retrieved form:
http://www.imes.boj.or.jp.

Wobst, R., 2001. The Advanced Encryption Standard
(AES): The successor of DES. Inform. Secur.
Bull., pp: 31-40.

Young, J.O. and D. Yang, 2010. A selective encryption
algorithm based on AES for medical information.
Health. Inform. Res., 16(1): 22-29.

