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Abstract: This study contributes a dynamic data blocking mechanism to replace the fixed (static) data blocking 
mechanism in symmetric cryptosystems. The robustness of cryptosystems relies on dynamicity and probability to 
provide sufficient randomness. Any encryption method is considered as secure as it retains randomness properties. 
Current cryptographic algorithms (AES, DES) utilize fixed (static) data blocking mechanism that enable practical 
cracking of DES and academic cracking of AES-256 up to full 14 rounds with almost practical complexity of (q.267) 
queries through related-key distinguisher attack which works for 1 key out of 235 keys with 2120 data and time 
complexity trials. Fixed (static) data blocking mechanism triggers the applicability of this kind of security attacks on 
symmetric cryptosystems by offering computable probability range. In this study, we proposed a dynamic (variable) 
data blocking mechanism to achieve robust probabilistic randomness in computing of number of data blocks and 
their number of bits in symmetric cryptosystems for the enhancement of security strength. The ultimate objective 
behind this proposed dynamic data blocking mechanism is to produce different number of data blocks with different 
number of bits in order to lead the complexity (probability) of block partitioning as a NP-hard problem (P ≠ NP - 
widely believed for which no efficient algorithm exists). In our proposed scheme the diversity of both parameters 
(block numbers, block bits) is dependent on a plaintext data and key. We applied superlative tactics of digital logic 
and mathematics in order to evaluate and justify our proposed Dynamic Data Blocking Mechanism (DDBM). 
 
Keywords: Brute force attack, cryptographic algorithms, decryption, dynamic data blocking mechanism, symmetric 

encryption 
 

INTRODUCTION 
 

The art of secret writing can be applied by either 
utilizing the steganography or cryptographic schemes. 
But cryptographic practices are robust to stenographic 
methods as reported by Shoukat et al. (2011). Recent 
trend of encrypting confidential information is getting 
potential fame under hybrid encryption schemes with 
full of security and privacy. A generic Hybrid 
Encryption System (HES) has been proposed (Shoukat 
et al., 2013) which works optimally with joint 
combination of symmetric and asymmetric algorithms 
and offers a complete set of security objectives as 
recommended by National Institute of Standard and 
Technology (NIST). In any case of encrypting the 
information either with just symmetric or hybrid 
cryptosystems, the security of symmetric algorithms 
cannot be compromised. Cryptography deals with 
symmetric, asymmetric and hybrid schemes, however, 
symmetric block ciphers are significantly preferred in 
order to save battery power, CPU time and memory 
requirements (Elminaam and Abdul-Kader, 2010). Due 

to these prominent advantages, symmetric encryption is 
the key choice of governmental bodies for storing or 
communicating confidential information especially 
related to banking transactions, ministry of finance, 
police departments, scientific laboratories, Army units, 
Navy Force units, Air Force bodies, hospitals and 
assurance companies. The replacement of fixed data 
blocking is an active issue with present encryption 
standards (AES, DES). The widely implemented block 
cipher AES uses fixed sized data block (128 bits) and 
fixed 8 bits substitution boxes (Young and Yang, 2010). 
The other foremost Data Encryption Standard (DES) 
uses 64 bits fixed block sizes, permutations and fixed 
substitution for encrypting data (Singh and Bansal, 
2010).  

The successful philosophy of differential 
cryptanalysis attacks is its larger probability than the 
randomly occurred permutations on fixed size (length) 
data blocks (Lu, 2010; Lu, 2008). At present, advanced 
cryptanalysis techniques are creating critical situation 
against the security satisfaction of standard-
cryptosystems (AES, DES). Data Encryption Standard 
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(DES) is insecure as it had been cracked earlier just 
within 4.5 days (Wobst, 2001) even the security 
satisfaction of Triple DES (TDES) is also vulnerable as 
witnessed by its practical cracking within 800 days on a 
machine that can execute 50 billion keys/sec  (Alanazi 
et al., 2010). Moreover, Biryukov et al. (2010) reported 
that, TDES has already been cracked with key 
complexity of 256 bits as claimed by Biryukov et al. 
(2010). Similarly, the highly reputed algorithm (AES- 
192/156 bits key) (Biryukov et al., 2010) has been 
academically considered as insecure as claimed by 
Biryukov and Khovratovich (2009). Furthermore, the 
authors of study (Ferguson et al., 2001) performed 
significant effort with a success of 244 rather to 272 trials 
in order to crack the 6 rounds of AES. The 7 rounds of 
192 and 256 key AES has also been cracked with 232 
plain text choosing probability under the complexity of 
2140 encryption tries (Gilbert and Minier, 2000). The 5 
rounds of AES with 128 bits key have been cracked 
with 246 chosen plain texts under 246 encryption tries 
and 6 rounds with 278 encryption tries with utilization 
of 278 chosen plain texts when Boomerang attack is 
implemented by Biryukov (2004). Effort remained 
continue and consequently, in 2009 Biryukov and his 
fellows successfully cracked the AES with 192 and 256 
bits key as claimed in studies (Biryukov and 
Khovratovich, 2009; Biryukov et al., 2009). In 2009 
meet-in-the-middle attack is applied by Huseyin 
Demirci and his fellows on 7-round AES which seems 
to be superior in time complexity rather than the 
previous reported attacks (Demirci et al., 2009). 
Against 9 rounds of AES-256 239 encryption tries can 
crack it by calculating the XOR of encrypted plaintext 
under 2 related keys in many ways and 10 rounds can 
be cracked academically in the same way with 245 
encryption tries (Biryukov et al., 2010). The most 
shocking situation is the academic cracking of AES-256 
up to full 14 rounds with almost practical complexity of 
(q.267) queries through related-key distinguisher attack 
which works for 1 key out of 235 keys with 2120 data and 
time  complexity  trials  (Biryukov  and Khovratovich 
et al., 2009). 

Therefore, the security satisfaction of Advanced 
Encryption Standard (AES) is minimizing its realistic 
attraction to select it as a confident verdict due to its 
academic cracking. Furthermore, the Biryukov and 
Dunkelman et al. (2010) also claimed that AES security 
strength is not as strong as it is believed or conveyed. 
The actual cause of this kind of cracking with AES and 
DES is the utilization of fixed data block partitioning 
because permutation on fixed length data blocks is not 
an optimal case against hefty probability of differential 
cryptanalysis attacks (Lu, 2010; Lu, 2008). The authors 
of study (Shoukat and Baker, 2013) claimed that new 
design of symmetric cryptosystem must be evaluated 
under dynamicity constraints like dynamicity in data 
blocking step, dynamic selection of encryption 
operations, pseudo random based key state’s updating 
and operational pseudo randomness in encryption 

algorithm (s). The implementation of dynamic data 
blocking mechanism under some probabilistic 
randomness can provide sufficient resistance with series 
of large optimizations which may also be robust to 
provide initial safe-guard against these kinds of 
powerful attacks. Therefore, such kind of situation 
necessitates the timely development of dynamic data 
blocking mechanism in order to create sufficient 
resistance against modern cryptanalysis of symmetric 
cryptosystems.  

This study aims to convey a dynamic data blocking 
mechanism for symmetric cryptosystems in order to 
create dynamic data blocks rather to fixed sized data 
blocks. The ultimate objective behind this proposed 
dynamic data blocking mechanism is to produce 
different number of data blocks with different number 
of bits against different set of plaintext and secret key in 
order to achieve the complexity of probability 
computation as likely NP-hard problem (P ≠ NP - 
widely believed for which no efficient algorithm 
exists). For hard problems, this hypothesis (P ≠ NP) is 
broadly believed but it has not been proven yet (Gomes 
and Williams, 2005; Taslaman, 2012). In proposed 
scheme, for a selected plaintext and key, the all blocks 
contain same number of bits but without this knowledge 
that how many bits are in a block and how much are 
total blocks? Similarly for another plaintext and key the 
number of blocks and their bits will be different but all 
blocks contain same number of bits which means 
number of data blocks and the length of data blocks are 
dependent on the set of plaintext and secret key. Most 
significantly, this study has putt-forwarded the 
presented idea of dynamic block creation for future 
cryptosystems, however this scheme can also be 
utilized to input such dynamic data blocks to any 
widely known symmetric cryptosystem with just minor 
changes. Our proposed idea is enriched with novelty of 
dynamic data block creation with vital scope in the 
development of forthcoming cryptographic algorithms 
to kick off fixed block creation philosophy. 
 

METHODS AND PROCEDURES 
 

The proposed dynamic data blocking mechanism 
relies on a secret number that is generated from the 
initial 160 bits long secret key. Encryption key should 
not  be  too  lengthy or too short as agreed by Shoukat 
et al. (2011). On the other hand, Institute of Standard 
and Technology (SP800-57, NIST 2005a) also 
recommends minimum key length ranged from 112 to 
128 bits up to year 2030 (Une and Kanda, 2007). In 
order to find this secret number cracker needs a secret 
key (160 bits) that is quite secure against brute force 
attack according to the specified length of ISO and 
NIST. This secret number is just like a probabilistic 
random number that is considered as computationally 
hard problem in cryptography. The data blocking is 
dependent on this random number is sufficiently
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Fig. 1: Overview of proposed and prior schemes with comparison 
 
dynamic. The proposed dynamic data blocking 
mechanism can generate two types of block ranges. The 
first block range lies between 80 to 128 bits but this is 
not a recommend range. The other block range lies 
between 128 to 256 bits block sizes, is recommended 
range to get optimal security in any block cipher. The 
chosen 160 bits binary key requires the following 
conditions to get optimal security: 

 
• Key length must be 160 bits in binary form and 

should be selected by the user 
• Key cannot contain all zeroes 
• Key cannot contain all ones 
• It is too good if no more than six continuous 

pattern of 0’s or 1’s should be repeated in initial 
160 bits key. This is the preferred condition to get 
highest security satisfaction but it is up to user 
whether to follow or not 

 
Figure 1 shows the flow and comparison between 

prior and proposed data blocking mechanisms which 
start working by receiving of plaintext. After receiving 
the plain text value of block length (X) is input to the 
mechanism in order to partition the plaintext into output 
blocks as depicted in Fig. 1 through arrow flow. In prior 
approach, plain text is converted according to the fixed 
(static) value which is known to the cracker. However 
in proposed approach the value of ‘X’ is dynamically 
calculated with the involvement of Key (K) and this 
value of X is dynamic (random) and un-known for the 
cracker. Moreover, in prior approach, parameter m is 
deterministic but in proposed approach m is non-
deterministic. Proposed idea of dynamic block creation 
revolves around the novel philosophy, how dynamic 
(randomized) value of X and m can be generated and 
how m can be non-deterministic in block partitioning 
step of symmetric encryption algorithm. 

Logical key blocking mechanism: Dynamic data 
blocking follows a secret (random) digit that can be 
calculated from initial 160 bits key. In order to find out 
this probabilistic random digit the initial 160 bits key is 
converted into 10 key blocks having 16 bits each. This 
key partitioning is logical and its mutual security 
strength is not affected due to this logical partitioning. 
The dynamic data blocking procedure with logical 
partitioning of initial 160 bits key is discussed step by 
step with their operational flow in Fig. 2. Logical key 
blocking mechanism follows various steps. In step 1, 
the initial 160 bits key is divided by 10 to get 10 key 
blocks each having 16 bits length. The first right side 
key block is designated with K1, the second right side 
key block is designated with K2 and so on up to 10th 
key block designated with K10. In 2nd step, a decimal 
value is calculated against each key block (K1, K2, 
K3…… K10). This calculated decimal value is referred 
as Key Block Decimal Value (KBDV). Each KBDV 
always lies under the given conditions to manage block 
sizes. Two ranges of block sizes can be created under 
this dynamic data blocking mechanism through given 
block size management conditions. The block size 
management conditions are as follows. 
 
Conditions for (80 to 128) bit’s block sizes: 
 

IF KBDV < = 128 then do nothing 
IF KBDV >128 and < = 256 then KBDV/2 
IF KBDV >256 and < = 512 then KBDV/4 
IF KBDV >512 and < = 1024 then KBDV/6 
IF KBDV >1024 and < = 2048 then KBDV/16 
IF KBDV >2048 and < = 4096 then KBDV/32 
IF KBDV >4096 and < = 16384 then KBDV/64 
IF KBDV >16384 and <24576 then KBDV/128 
IF KBDV >OR = 24576 then KBDV/232 
IF DBAV <80 then DBAV = DBAV + 8            (1) 
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Fig. 2: Logical key blocking mechanism 
 

Conditions for 128 to 256 bit’s block sizes

 

IF KBDV > = 128 and < = 256 then do nothing
IF KBDV >256 and < = 512 then KBDV/2
IF KBDV >512 and < = 1024 then KBDV/4
IF KBDV >1024 and < = 2048 then KBDV/6
IF KBDV >2048 and < = 4096 then KBDV/16
IF KBDV >4096 and < = 8192 then KBDV/22
IF KBDV >8192 and< = 16384 then KBDV/32
IF KBDV >16384 and <32368 then KBDV/64
IF KBDV >OR = 32368 then KBDV/92

 
Figure 2, represents the logical key blocking 

procedure step by step. In first step 160 bits key is 
selected and divided by 10 that results the bit length (16 
bits) of sub logical key block. In this way, in 2
the key converts to 10 logical blocks and designates 
with unique variables K1, K2, K3…. 

Where the right most 16 bits of binary key are
to K1 and the left most 16 bits are assigned to K10. In 
next step, a decimal value is calculated against each 
logical key blocks (K1, K2, K3…. Kn

Round function [Round {∑n
i=1 Ki (KBDV/
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block sizes: 

IF KBDV > = 128 and < = 256 then do nothing 
IF KBDV >256 and < = 512 then KBDV/2 

1024 then KBDV/4 
2048 then KBDV/6 

IF KBDV >2048 and < = 4096 then KBDV/16 
IF KBDV >4096 and < = 8192 then KBDV/22 

16384 then KBDV/32 
32368 then KBDV/64 

IF KBDV >OR = 32368 then KBDV/92             (2) 

Figure 2, represents the logical key blocking 
procedure step by step. In first step 160 bits key is 

divided by 10 that results the bit length (16 
bits) of sub logical key block. In this way, in 2nd step, 
the key converts to 10 logical blocks and designates 

 Kn, respectively. 
Where the right most 16 bits of binary key are assigned 
to K1 and the left most 16 bits are assigned to K10. In 
next step, a decimal value is calculated against each 

n) and filters by 
KBDV/10)}] After 

that, any desired set of conditions Eq. (1
applied on K1, K2, K3…. Kn. This function returned the 
Data Block Average Value (DBAV) which is used to 
partition the plain-text data into blocks. The first block 
size management condition (1) is not recommended; it 
is an optional trait for small devices. However, the 
second block management condition
recommended for getting optimal 
block sizes from 128 bits up to 256 bits. It means the 
length of each block remains in between this specified 
limit but it is not known to the cracker; what is the bit 
length of each block. The bit length is dynamic and 
varies from key to key and data to data so called 
dynamic. After applying desired block management 
condition, each Key block gets a KBDV. In next step 3, 
KBDV against (K1, K2, K3………. K
following mathematical formula Eq. (3) to get a secret 
(probabilistic random) number. This random digit is 
referred as Data Block Average Value (DBAV). The 
round function is applied on this random DBAV to get 
a fraction free number. Data (Plain Text) will be 
blocked according to randomly calculated DBAV, 
if DBAV = 120 and let suppose, minimum 

 

conditions Eq. (1) or (2) is 
. This function returned the 

Data Block Average Value (DBAV) which is used to 
text data into blocks. The first block 

size management condition (1) is not recommended; it 
nal trait for small devices. However, the 

condition (2) is 
 security that creates 

block sizes from 128 bits up to 256 bits. It means the 
length of each block remains in between this specified 

to the cracker; what is the bit 
length of each block. The bit length is dynamic and 
varies from key to key and data to data so called 
dynamic. After applying desired block management 
condition, each Key block gets a KBDV. In next step 3, 

………. K10) follows the 
following mathematical formula Eq. (3) to get a secret 
(probabilistic random) number. This random digit is 
referred as Data Block Average Value (DBAV). The 
round function is applied on this random DBAV to get 

fraction free number. Data (Plain Text) will be 
calculated DBAV, e.g., 
t suppose, minimum 
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Fig. 3: Random block management value generation algorithm
 
data is 2292 bits, then 2292/120 = 19.1.
data will be converted into 20 blocks in which block 1 
to 19 will contain 120 bits. So 120*19 = 2280 bits 
therefore, 2292-2280 = 12 bits so 20
contains 12 bits rather than 120 bits. To cope small 
number of bits of last block a Last Block Management 
Algorithm (LBMA) is applied as discussed in below 
section. Before to apply LBMA, there is need to 
generate random block management value through the 
employment of Random Block Management Value 
(RBMV) algorithm. 
 
Random block management value algorithm: 
dynamic data block generation procedure, the last data 
block may be smaller in number of bits as compared to 
the all other data blocks. Usually, the small sized data
block is considered as a weak in security strength of 
block ciphers. Therefore, in order to make its bit length 
equal to the other data blocks, we proposed a Random 
Block Management Value (RBMV) algorithm. This 
algorithm generates a random 160 bit value from initial 
key that will be used to manage the last data block size 
as depicted in Fig. 3. In this algorithm, permutations 
and ��� operation are used. This �
specifically designed for proposed Dynamic Data 
Blocking Mechanism. In this function (
tracking is not  possible  without  knowing  the  
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Fig. 3: Random block management value generation algorithm 

bits, then 2292/120 = 19.1. This means 
data will be converted into 20 blocks in which block 1 
to 19 will contain 120 bits. So 120*19 = 2280 bits 

2280 = 12 bits so 20th block will 
contains 12 bits rather than 120 bits. To cope small 

Block Management 
Algorithm (LBMA) is applied as discussed in below 
section. Before to apply LBMA, there is need to 
generate random block management value through the 
employment of Random Block Management Value 

lue algorithm: In 
dynamic data block generation procedure, the last data 
block may be smaller in number of bits as compared to 
the all other data blocks. Usually, the small sized data-
block is considered as a weak in security strength of 

refore, in order to make its bit length 
equal to the other data blocks, we proposed a Random 
Block Management Value (RBMV) algorithm. This 
algorithm generates a random 160 bit value from initial 
key that will be used to manage the last data block size 

epicted in Fig. 3. In this algorithm, permutations 
��� operation is 

specifically designed for proposed Dynamic Data 
Blocking Mechanism. In this function (���), back 

le  without  knowing  the  original 

key string. This function is an alternative to XOR 
function. The utilization of ��� is mutually binded with 
RBMV algorithm as depicted in Fig. 3 for further 
discussion. The RBMV generation algorithm’s working 
flow is illustrated in Fig. 3. Firstly, the 160 bits initial 
key is blocked into 10 equal blocks 
K10) each having 16 bit length. In the next step, each 16 
bits block is rotated from right to left. E.g., B1 = 10110 
after rotation will be B1 = 01101. After rotation the all 
10 blocks are considered as single block. In the next 
step, this single key block (160 bits) is converted into 2 
blocks in which the first block contains 154 bits and 2
block contains 6 bits. The permutation operation
[4X3’X4] X3’X [4X3’X4]. It means in 
value middle 3 bits will be complemented and other 4
bits will be interchanged. The permutation operation:
[4X3’X4] X3’X [4X3’X4] can be computed as follows:
 

Suppose B1 = 0011011101010110001101101 
 
In [4X3’X4] X3’X [4X3’X4] format it will 
 

B1 = [0011X011X1010] X101X
 

The 3’ (Complement of middle 3 bits in red color) 
will be applied as follows: 

 

key string. This function is an alternative to XOR 
is mutually binded with 

RBMV algorithm as depicted in Fig. 3 for further 
The RBMV generation algorithm’s working 

y, the 160 bits initial 
key is blocked into 10 equal blocks (K1, K2, K3,……, 

each having 16 bit length. In the next step, each 16 
bits block is rotated from right to left. E.g., B1 = 10110 

= 01101. After rotation the all 
blocks are considered as single block. In the next 

step, this single key block (160 bits) is converted into 2 
blocks in which the first block contains 154 bits and 2nd 
block contains 6 bits. The permutation operation: 

It means in each bracket 
value middle 3 bits will be complemented and other 4 
bits will be interchanged. The permutation operation: 

can be computed as follows: 

Suppose B1 = 0011011101010110001101101  

[4X3’X4] format it will become: 

X101X [1000X110X1101] 

The 3’ (Complement of middle 3 bits in red color) 
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B1 = [0011X100X1010] X010X [1000X001X1101]
 
The 4 underlined bits in each bracket will be 

interchanged to each other as follows: 
 

B1 = [1010X100X0011] X010X [1101X001X1000]
Result (B1) = 1010100001101011010011000

 
Similarly, Permutation operation [2X2’X2] can be 

applied on 6 bit left side 2nd block. After applying these 
both kinds of permutation operations, the
is applied as follows: 
 
Suppose, Text Block = 01 10 10 11 and 
Selected Key = 10 11 11 01 

Before applying ��� operation each Text Block and 
selected Key shall be converted into pairs of two binary 
bits. If any of block contains odd number of bit
the right most bit of selected key will be concatenated

 

 
 
to the left of any odd number bits block either text or 
key. After completing this procedure of pair 
conversion, the ��� conditions (Fig. 3) shall be checked 
on selected key but all replacements shall be done on 
text block. Firstly, the ��� condition will be checked on 
first pair of selected key and replacement will be done 
on the first pair of text block, then ��� 
checked on 2nd pair of key but replacement will be done 
of 2nd pair of text block and so on up to last pair
 

Selected Key bits = 10 11 11 01 
 
In this block in red color pair left side digit is “a” 

and right side digit is called b, similarly, 
pair left side digit is “a” and right side digit is called b. 
In the same way a and b values are assigned against 
each pair of text block. According to 
each pair if a = b in selected key pair it will result 
text block and if a ≠ b in key pair it will result ba on 
text block. These notations can be written as follows:
 

 (ab) � if a = b in Key : ab̑ on Text Block
 (ab) � if a ≠ b in Key : ba on Text Bloc

 
where, a ̑ means complement of “a”. After applying 
operation the text block can be written as follows:
 

 (Text Block) = PTB = 10 00 00 11
 

In order to re-compute the original value from 
PTB = 10 00 00 11, there is need to apply the same
conditions on Selected Key = 10 11 
replacements shall be done on PTB. After applying the
��� conditions the following original value is generated 
from PTB = 10 00 00 11 
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[1000X001X1101] 

The 4 underlined bits in each bracket will be 

[1101X001X1000] 
Result (B1) = 1010100001101011010011000 

Similarly, Permutation operation [2X2’X2] can be 
block. After applying these 

both kinds of permutation operations, the ��� operation 

Suppose, Text Block = 01 10 10 11 and  

operation each Text Block and 
selected Key shall be converted into pairs of two binary 
bits. If any of block contains odd number of bits then 
the right most bit of selected key will be concatenated: 

              (3) 

to the left of any odd number bits block either text or 
key. After completing this procedure of pair 

conditions (Fig. 3) shall be checked 
on selected key but all replacements shall be done on 

condition will be checked on 
first pair of selected key and replacement will be done 

 condition will be 
pair of key but replacement will be done 

pair of text block and so on up to last pair: 

In this block in red color pair left side digit is “a” 
and right side digit is called b, similarly, in each blue 
pair left side digit is “a” and right side digit is called b. 
In the same way a and b values are assigned against 

 ��� condition in 
each pair if a = b in selected key pair it will result ab̑ on 

≠ b in key pair it will result ba on 
text block. These notations can be written as follows: 

b on Text Block 
b in Key : ba on Text Block 

means complement of “a”. After applying ��� 
operation the text block can be written as follows: 

11 

compute the original value from  
11, there is need to apply the same ��� 

11 11 01 but all 
replacements shall be done on PTB. After applying the 

conditions the following original value is generated 

 (PTB) = 01 10 10 11 = Text Block
 

This ��� (PTB) is equla to the original value of 
Text Block. Hence, the ��� 
recomputed with 100% accoracy. 
 
Last block management algorithm: 
the random block management value through RBMV 
algorithm, the next step is to adjust this random value in 
the last data block that contains small number of 
This task is necessary in order to make the last data 
block size (bits) equal to the all other blocks. In 
cryptographic algorithms the small sized block 
possesses greater chance to crack rather to the bulky 
block having more number of bits. The recom
block size is 128 bits or more. The proposed Dynamic 
Data Blocking Mechanism (DDBM) recommends that 
block size should be between 128 to 256 bits for getting 
optimal security. However DDBM has the option to 
generate block size in between 80 to 128 bits
block range is for small devices. For managing the size 
of last block this study proposes a Last Block 
Management Algorithm which is as follows
 
Last block management algorithm
Declare B, NLB, R2, LB as string and all having initial 
value = “ ” 
LDBBV = 010010010110 // Supposed last block’s bits
B = Calculate_Bits (LDBBV); 
IF B<80 bits AND First-Last bit (RBMV)
For Block size (128-256), 80 bits will be replaced by 
128 
{ 
NLB = Select “LEFT Side” 128 bits (from left side) of 
RBMV;  
} 
Else IF B<80 bits AND First-Last bit (RBMV)
Different // For Block size (128-256), 80 bits will be 
replaced by 128 
{ 
NLB = Select “FIRST RIGHT Side” 128
right side) of RBMV;  
} 
NLB = Latest NLB value; 
LB = Select DBAV bits from right side (NLB || 
LDBBV); // DBAV means its decimal value
End if; 
End if; 
IF B>80 bits AND<DBAV AND Not Multiple of 8 // 
For Block size (128-256), 80 bits will be replaced by 
128 
{ 
R2 = [Select only left side of decim
(LDBBV bits /8) + 1] * 8; 
LB = Select first R2 no. of bits from LB starting from 
right to left; 
} 
Else  
Do nothing; 

(PTB) = 01 10 10 11 = Text Block 

(PTB) is equla to the original value of 
 operation can be 

Last block management algorithm: After generating 
the random block management value through RBMV 
algorithm, the next step is to adjust this random value in 
the last data block that contains small number of bits. 
This task is necessary in order to make the last data 
block size (bits) equal to the all other blocks. In 
cryptographic algorithms the small sized block 
possesses greater chance to crack rather to the bulky 
block having more number of bits. The recommend 
block size is 128 bits or more. The proposed Dynamic 
Data Blocking Mechanism (DDBM) recommends that 
block size should be between 128 to 256 bits for getting 
optimal security. However DDBM has the option to 
generate block size in between 80 to 128 bits but this 
block range is for small devices. For managing the size 
of last block this study proposes a Last Block 
Management Algorithm which is as follows.  

Last block management algorithm: 
Declare B, NLB, R2, LB as string and all having initial 

// Supposed last block’s bits 

Last bit (RBMV) = Same // 
256), 80 bits will be replaced by 

NLB = Select “LEFT Side” 128 bits (from left side) of 

Last bit (RBMV) = 
256), 80 bits will be 

= Select “FIRST RIGHT Side” 128 bits (from 

from right side (NLB || 
; // DBAV means its decimal value 

DBAV AND Not Multiple of 8 // 
256), 80 bits will be replaced by 

R2 = [Select only left side of decimal point value of 

= Select first R2 no. of bits from LB starting from 
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LB = Select Right Side DBAV No. bits From (LB); 
LB = latest LB value; 
End if; 
 

At receiver’s end the dynamic data blocking 
procedure will be done in the same way as it has done 
at sender’s side. However, the last block management 
algorithm will automatically be omitted at receiver’s 
end because the cipher text has already gone through 
the blocking phase therefore, it will satisfy the block 
size conditions. The bit counts value of last data block 
will be calculated at sender’ side before the 
implementation of last block management algorithm. 
This block count will be sent with key to other party. 
After completing the decryption phase the string will be 
compared with last block count’s value. The string up 
to last block count will be preserved and other extra 
string will be discarded. 
 

RESULTS AND EVALUATION 

 
In order to evaluate the working accuracy of 

proposed dynamic data blocking mechanism, we 
applied all of its steps (algorithms) upon a supposed 
encryption key and plain text data. All proposed 
algorithms have been tested through digital logic and 
mathematical proofs. We utilized the same evaluation 
approach which has been followed in the book of 
digital logic and design. The mathematical evaluation is 
as follows.  
 
Initial 160 bit key in string form: 
ijazshoukat@pakistan 
 

Initial key 160 bit key in binary form:  
 
[Leftside]0110100101101010011000010111101001110
011011010000110111101110101011010110110000101
110100010000000111000001100001011010110110100
101110011011101000110000101101110 [Right Side] 
 

According to the proposed dynamic data blocking 
mechanism, the initial key can be partitioned in to 10 
blocks having 16 bits each by applying this 
mathematical formula: 

Initial Key (K) = 160 bits: 160/10 = 16 bits of each 
sub key. 

After partitioning the master 160 bits key, we got 
the following sub key blocks: 
 

Right Side Key Block-1  
(R-K1): 0110000101101110 
K2: 0111001101110100 
K3: 0110101101101001 
K4: 0111000001100001 
K5: 0111010001000000 
K6: 0110101101100001 

K7: 0110111101110101 
K8: 0111001101101000 
K9: 0110000101111010 
Left Side Key Block- 10  
(L-K10): 0110100101101010 

 
Similarly, we choose a supposed plain text data 

which is as follow. 
 
Plain text data in string form: In the name of Allah 
the most beneficent the merciful. There is not God but 
Allah, Muhammad is the Prophet of Allah. This data is 
going to be implemented with newly developed 
symmetric encryption algorithm named as Random 
Encryption Method (REM). This data will be encrypt 
and decrypt with REM practically.  
 
Plain text data in binary form (2292 bits): 
{Left Side} 01001001 01101110 0001 01110100 
01101000 01100101 0001 01101110 01100001 
01101101 01100101 0001 01101111 01100110 0001 
01000001 01101100 01101100 01100001 01101000 
0001 01 110100 01101000 01100101 0001 01101101 
01101111 01110011 01110100 0001 01100010 
01100101 01101110 01100101 01100110 01101001 
01100011 01100101 01101110 01110100 0001 
01110100 01101000 01100101 0001 01101101 
01100101 01110010 01100011 01101001 01100110 
01110101 01101100 00101110 0001 01010100 
01101000 01100101 01110010 01100101 0001 
01101001 01110011 0001 01101110 01101111 
01110100 0001 01000111 01101111 01100100 0001 
01100010 01110101 01110100 0001 01000001 
01101100 01101100 01100001 01101000 00101100 
0001 01001101 01110101 01101000 01100001 
01101101 01101101 01100001 01100100 0001 
01101001 01110011 0001 01110100 01101000 
01100101 0001 01010000 01110010 01101111 
01110000 01101000 01100101 01110100 0001 
01101111 01100110 0001 01000001 01101100 
01101100 01100001 01101000 00101110 0001 
01010100 01101000 01101001 01110011 0001 
01100100 01100001 01110100 01100001 0001 
01101001 01110011 0001 01100111 01101111 
01101001 01101110 01100111 0001 01110100 
01101111 0001 01100010 01100101 0001 01101001 
01101101 01110000 01101100 01100101 01101101 
01100101 01101110 01110100 01100101 01100100 
0001 01110111 01101001 01110100 01101000 0001 
01101111 01110101 01110010 0001 01101110 
01100101 01110111 01101100 01111001 0001 
01100100 01100101 01110110 01100101 
0110110001101111 01110000 01100101 01100100 
0001 01110011 01111001 01101101 01101101 
0110010101110100 01110010 01101001 01100011 
0001 01100101 01101110 01100011 01110010 
01111001 01110000 01110100 01101001 01101111 
01101110 0001 01100001 01101100 01100111
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Table 1: Logical key blocking mechanism 
Sub key block # Blocks (right to left) Key Block Decimal Value (KBDV) 
K1 0110000101101110 24942>24576 so 24942/232 = 107.50 = 107 
K2 0111001101110100 7374>4096 and <16384 so 7374/64 = 115.21 = 115 
K3 0110101101101001 27497>24576 so 27497/232 = 118.52 =118 
K4 0111000001100001 7061>4096 and <16384 so 7061/64 = 110.32 = 110 
K5 0111010001000000 29760>24576 so 29760/232 = 128.27 = 128 
K6 0110101101100001 27489>24576 so 27489/232 = 118.48 = 118 
K7 0110111101110101 28533>24576 so 28533/232 = 122.98 = 123 
K8 0111001101101000 29544>24576 so 29544/232 = 127.34 = 127 
K9 0110000101111010 24954>24576 so 24954/232 = 107.56 = 107 
K10 0110100101101010 15282>4096 and <16384 so 15282/64 = 238.78 = 239>128 and <256 so 239/2 = 119.5 

= 119 
AVG Data Block Avg. Value 

(DBAV) 
1172/10 117.2 = 117 For getting each block as multiple of 8 this rule will be followed: 
117/8 = 14.62 = 15 and again 15*8 = 120 
It means each data block will contains 120 bits. This value is dynamic. 
IF DBAV<80 then DBAV = DBAV + 8 (this condition is not for block sizes of 128 to 
256 bits) 

 
01101111 01110010 01101001 01110100 01101000 
01101101 0001 01101110 01100001 01101101 
01100101 01100100 0001 01100001 01110011 0001 
01010010 01100001 01101110 01100100 01101111 
01101101 0001 01000101 01101110 01100011 
01110010 01111001 01110000 01110100 01101001 
01101111 01101110 0001 01001101 01100101 
01110100 01101000 01101111 01100100 0001 
00101000 01010010 01000101 01001101 00101001 
00101110 0001 01010111 01100101 0001 01110111 
01101001 01101100 01101100 0001 01110000 
01110010 01100001 01100011 01110100 01101001 
01100011 01100001 01101100 01101100 01111001 00 
01 0100010101101110 0110001101110010 
0111100101110000 01110100 01100101 / 01100100 
0001 0110000101101110 01100100 000101000100 
0110010101100011 01110010 01111001 0111000 0 
01110100 0001011101000 11010000110 / 
100101110011000101100100011000010111010001100
001000101110111011010010111010001101000000101
010010010001010100110100101110 {Right side} 
 
Implementation of logical key blocking mechanism: 
The mathematical transformation Eq. (3) with logical 
key blocking mechanism as depicted in Fig. 2, can be 
applied and calculated as described in Table 1. If Data 
(Plain Text Message) will be less than 2048 bits then it 
will be converted to 2048 bits at least before staring 
encryption. It is known that, 1 charter = 8 bits in binary 
representation. So approximately 256 char message is 
needed. As 256*8 = 2048 bits. For every message the 
chars will be count, if chars <256 then Message-
Chars/256 = R (Result) and same message is repeated 
by R times after putting “~” symbol at the left end of 
original message. For minimizing the risk of known 
symbol, there is another solution for this problem that is 
in case of not putting any symbol, the message (Plain 
text Data) binary bits can be calculated before 
converting it into 2048 bits. This binary counter can 
easily be exchanged with symmetric key. In 160 bits 
key, the number of 1 and 0 cannot be repeated 5 times 
continuously. It means 0 or 1 can repeat 4 times but not 
5 times continuously. By following this pre condition, 

the KBDV column cannot be less than 73 decimal 
value. Moreover, minimum Key Block Decimal Value 
(KBDV) will not be less than 127 bits and maximum 
KBDV will not be greater than 16260 (if all last 7 bits 
of each key block will be on). In case of odd number of 
plain text binary bits, the number of blocks will follow 
the rule as exampled here, e.g., if minimum data is 2292 
bits, Then 2292/120 = 19.1 it means data will be 
converted in to 20 blocks in which block 1 to 19 will 
contain  120 bits. So 120*19 = 2280 bits therefore, 
2292 - 2280 = 12 bits so 20th block will contains 12 bits 
rather to 120 bits. The recommended data block size is 
128 to 256 bits. However, there is a choice of 80 to 128 
bits block size too. These block sizes are dependent on 
the conditions discussed in Eq. (1) and (2). Here, in this 
practical proof, the conditions of Eq. (1) has been 
applied on column 3 of Table 1 which means the data 
block size will remain between 80 to 128 bits long. 
According to Table 1, in the last left side 20th block 
contains only 12 bits. 

Left Side Last Data Block Binary Value (LDBBV): 
010010010110.  

In order to make this LDBBV equal to 120 bits as 
all other 19 data blocks are, there is need of random 
bits. These random bits can be derived from initial 160 
bits key by applying Random Block Management 
Value (RBMV) Algorithm as discussed in Table 2.  
 
Implementation of Random Block Management 
Value (RBMV) algorithm: RBMV requires the 
following three operations on the initial 160 bit key in 
order to get the probabilistic random string that can be 
used to manage last data block:  
 
• Rotation:  Rotate  each  16  bit  block  (R�L) 

(Table 3) 
• Permutations operations: [4X3’X4] and 

[2X2’X2] 
• PX ̚̚ ̚̚ operation: It means select pairs of string (s) 

from right to left if pair are different just shift 
rotate if pair is same then select the 2nd bit of this 
pair and replace it with the complement of first bit 
of same pair 
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Table 2: Random Block Management Value (RBMV) algorithm with implementation 
4X4 conversion of permutated 160 bit key After applying PX̚ operation Random Block Management Value (RBMV) 
[Right side] 1101 0110 RBMV =   

[Left side]  
1001101010010110100110101010011010010101
100101101010010110100 
1101001011010100110101001101010100110010
1100101010110100110101010100101101010011
0100110010110010110 [right side] 
 

0111 1001 
1011 0101 
1000 0110 
0001 1010 
0011 1001 
0001 1010 
1010 0101 
0001 1010 
0001 1010 
1101 0110 
0101 1010 
1011 0101 
1110 0101 
1101 0110 
0111 1001 
0011 1001 
0001 1010 
1100 0110 
0001 1010 
1001 0110 
0000 1010 
1001 0110 
0110 1001 
1101 0110 
0001 1010 
1011 0101 
0101 1010 
1101 0110 
0011 1001 
1111 0101 
0010 1001 
1001 0110 
0001 1010 
0001 1010 
0010 1001 
1001 0110 
0010 1001 
0101 1010 
[Left side] 0110 1001 
 
Table 3: Rotation operation implementations 
160 bits initial key blocks  After applying rotation (R�L) 160 bits rotated key 
R-K1: 0110000101101110 Rotate (R�L) R-K1: 0111011010000110 
K2: 0111001101110100 Rotate (R�L) K2: 0010111011001110 
K3: 0110101101101001 Rotate (R�L) K3: 1001011011010110 
K4: 0111000001100001 Rotate (R�L) K4: 1000011000001110 
K5: 0111010001000000 Rotate (R�L) K5: 0000001000101110 
K6: 0110101101100001 Rotate (R�L) K6: 1000011011010110 
K7: 0110111101110101 Rotate (R�L) K7: 1010111011110110 
K8: 0111001101101000 Rotate (R�L) K8: 0001011011001110 
K9: 0110000101111010 Rotate (R�L) K9: 0101111010000110 
L-K10: 0110100101101010 Rotate (R�L) L-K10: 0101011010010110 

 

Permutation operation: In next step, the permutation 
operation [4X3’X4] X3’X [4X3’X4] is applied on 160 
bits rotated key. However, for last 6 bits in the left part 
of key at left side the permutation operation [2X2’X2] 
is implemented. The operation [4X3’X4] X3’X 
[4X3’X4] means, select first 4 bits from right side of 
key (string) as it is, then take the complement of next 3 
bits and then again select the next 4 bits as it is, then 

exchange both left and right side 4 bits with each other 
and so on. Moreover, the middle 3 bits of large bracket 
pairs will just be complemented in whole string. 
However, at the last, the left most 6 bits of the left part 
of rotated key are permutated by using [2X2’X2] 
permutation operation which means select 2 bits of key 
as it is then take the complement of next 2 bits and then 
again select the 2 bits as it is then exchange both 2 bits
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Table 4: Right side, half part of 160 bits rotated key after applying permutations (permutation operation part a) 
000 1000 101 1101 000 0110 000 0111 010 0101 101 1010 110 0010 111 0110 011 1001 110 1101 000 0110 
                      

111 0000 010 0110 111 1101 111 0101 101 0111 010 0010 001 1010 000 1001 100 0110 001 0110 111 1101 
Left side, half part of 160 bits rotated key after applying permutations (permutation operation part b) 
01 01 01 101 0010 110 0101 111 0100 001 1000 010 1101 100 1110 101 0111 011 1101 101 0000 110 1101 011 0000 
                         

01 10 01 010 0101 001 0010 000 1000 110 0100 101 1110 011 1101 010 1101 100 0111 010 1101 001 0000 100 1000 
 

Table 5: Last block management algorithm with implementation 
Last block management algorithm Practical implementation   
Declare  B,  NLB,  R2,  LB  as  string  and  all having initial 
value = “” 
LDBBV = 010010010110    
B = Calculate_Bits (LDBBV); 
IF B<80 bits AND first-last bit (RBMV) = same // for block size 
(128-256), 80 bits will be replaced by 128 
{ 
NLB = select “LEFT side” 128 bits (from left side) of RBMV;     
} 
Else IF B<80 bits AND first-last bit (RBMV) = different // for 
block size (128-256), 80 bits will be replaced by 128 
{ 
NLB = select “FIRST RIGHT Side” 128 bits (from right side) of 
RBMV;     
} 
NLB = latest NLB value; 
LB = select DBAV bits from right side (NLB ||  LDBBV); // 
DBAV means its decimal value 
End if; 
End if; 
IF  B>80 bits AND<DBAV AND not multiple of 8 // for block 
size (128-256), 80 bits will be replaced by 128 
{ 
R2 = [select only left side of decimal point value of (LDBBV bits 
/ 8) + 1] * 8; 
LB = Select first R2 no. of bits from LB starting from right to 
left; 
} 
Else  
Do nothing; 
LB = Select right side DBAV No. bits from (LB); 
LB = latest LB value; 
End if; 
 

LDBBV = 010010010110; 
 
B = 12; // this value will indicate the length of last data block at the time of 
decryption and  
So B<80 and first-last bit = same therefore, 
 
 
NLB = [left side] 
1001101010010110100110101010011010010101100101101010010110100
1101001011010100110101001101010100110010110010101011010011010
101010 [right side]   
 
 
 
 
 
NLB = NLB; 
DBAV = 20; // so right side 120 bits are selected from NLB 
LB =  
[left side] 
1001011010011010101001101001010110010110101001011010011010010
11010100110101001101010100110010110010101011010011010101010 || 
010010010110 [right side] 
 
 
LB = 
[left side] 
1001011010011010101001101001010110010110101001011010011010010
11010100110101001101010100110010110010101011010011010101010 
010010010110 [right side] 
From above 132 bits long LB string right most 120 bits are selected because 
DBAV = 120 bits lengthy.  
LB = [left side] 
1010101001101001010110010110101001011010011010010110101001101
01001101010100110010110010101011010011010101010 010010010110 
[right side] 

 
pair with each other. The permutation operations can be 
applied as Table 4. 

The ultimate objective this kind of permutation is 
to produce uniform dynamic modification in the key 
that will further be mixed through the utilization of ���  
operation. It is well known that the change of bit in key 
can produced enough complexity for the cracker. Our 
reflect with the opinion of authors who claim, if key 
state is updated on some random bases then it can be 
resulted as quiet hard for adversary (attacker) to get 
useful secret information (Kocher et al., 2011). In our 
case many bits of key have been dynamic modified 
without having the knowledge of their identity (0 or 1) 
and the remaining bits are permutated. After applying 
the rotation and permutation operations, the permutated 
key becomes: 

[Leftside]0110010100101001001000010001100100101
111001111010101101100011101011010010000100100
011100000100110111110111101011010111010001000
110100001001100011000101101111101 [Right Side] 
 

Now, in next step the PX ̚ operation is applied that 
requires 4 by 4 bits conversion which is applied in 
Table 2. In next step, the Last Block Management 
Algorithm (LBMA) is applied and evaluated 
mathematically as discussed in Table 5. 

Hence, the Last Block Binary Value (LDBBV): 
010010010110 which was 12 bits long before the 
employment of last Block Management value (RBMV) 
algorithm now has become 120 bits long as the all other 
19 data blocks are. The proposed dynamic data 
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blocking mechanism can generated dynamic number of 
blocks with dynamic number of bits as follows: 
 
R-DB1: 
[Left Side] 
100101110011000101100100011000010111010001100
001000101110111011010010111010001101000000101
010010010001010100110100101110 [Right Side] 
DB2:  
[Left Side]  
011001000001011000010110111001100100000101000
100011001010110001101110010011110010111000001
110100000101110100011010000110 [Right Side] 
. 
+ 
. 
. 
+ 
. 
L-DB20:  
[Left Side] 
101010100110100101011001011010100101101001101
001011010100110101001101010100110010110010101
011010011010101010010010010110 [Right Side] 
 

The original value counter of last data block will 
exchange with private key and after decrypting the data 
only the right most value of last data block will be 
considered as a plain text. In the light of mathematical 
evaluation, our proposed Dynamic Data Blocking 
Mechanism (DDBM) with its sub algorithms gives 
100% correct results. This Dynamic data blocking 
mechanism requires to perform on both sides (sender 
and receiver) with the same logic. 

 
DISCUSSION AND ANALYSIS 

 
The proposed Dynamic Data Blocking Mechanism 

(DDBM) is substantially significant to fixed data 

blocking mechanism. Fixed length blocks support the 
cracker in matching of hypothetical decrypted string 
(block) with the targeted chosen plaintext string to get 
accurate final results. The accuracy of final result is 
actually dependent on matching of hypothetical 
decrypted string with any chosen string of plaintext 
which is easy in case of known fixed length data 
blocks. Fixing block length can help the cracker in 
mapping/matching step of hypothetical decrypted text 
with known (chosen) block of plaintext. The other 
noteworthy problem with fixed and known length block 
is the brute force attacking approximation because any 
chosen fixed sized block means that the same sized key 
is implemented on it. Therefore, in this case, the brute 
force attack is more likely and effectively to be 
applicable as discussed in Table 6. Moreover, 
Permutation is less effective in case of fixed 
substitution and it just means to increase processing 
computation ability which can easily be defeated in 
current era’s based high computing processors. Fixed 
parameters trigger the applicability of modern 
cryptanalysis attacks on symmetric cryptosystems by 
offering computable probability range because the 
permutations happed against fixed sized data blocks is 
less vigorous against the larger probability of 
differential attacks as witnessed in studies (Lu, 2010; 
Lu, 2008). This cause is reasonably notable in case of 
AES and DES because both utilize fixed (static) data 
blocking mechanism (Young and Yang, 2010) (Singh 
and Bansal, 2010). Proposed scheme is fully able to 
create dynamic data blocks. This is more convincing 
that DES utilized fixed data blocks and fixed 8 bits 
substitution and practically cracked in just 4.5 days 
(Wobst, 2001) even the security satisfaction of Triple 
DES (TDES) is also vulnerable as its practical cracking 
requires 800 days on a machine that can execute 50 
billion keys per second (Alanazi et al., 2010). 
Moreover, Biryukov et al. (2010) reported that, TDES 
has already been cracked with key complexity of 256

 
Table 6: Comparison of randomness between dynamic and static data blocking 

Parameters 
With prior fixed data blocking schemes (DES, AES-
128) With proposed DDBM scheme 

Probabilistic randomness 
calculation 

Suppose, plain text data (Ð) = 2048 bits. 
Blocking with AES-128 = 2048/128 = 16 blocks, so 
No. of data blocks (β) = 16 
No. of bits of each block (µ): 128 bits 
 
Probabilistic   randomness   calculation   formula:   
β * 2 µ bits where  
For each single block = 1* 2 µ bits    
If: β is fixed = 16 in supposed case 
µ is fixed = 128 in supposed case  
So, 16 * 2 128 bits    
 
Therefore:-  
It is static and easily computable 

Suppose plain text data (Ð) is, 
Ð = 2048 bits 
No. of data blocks (will be done randomly) = ₱ (β) 
No. of bits of each block (will be selected 
Randomly) = ₱ (µ) bits 
Probabilistic randomness calculation 
formula:  ₱ (β)* 2 ₱(µ) bits    
Where 
₱ (β) is random  
₱ (µ) is random  
As these are unknown to the cracker. So it is quite 
confusing for the cracker to guess it.  
Therefore:  
It is dynamic and not easy to compute 

Result  Weak and guessable Robust and hard to guess 
NP-hard property for block 
partitioning 

× √ (see discussion section debate on P and NP) 
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bits as claimed by Biryukov et al. (2010). Similarly, 
AES utilizes fixed substitution and fixed data blocks 
and has been victim under chosen key distinguisher 
attack which was verified by the authors of study 
(Biryukov et al., 2009) with almost applied complexity 
of (q.267) queries to crack full 14 rounds of AES-256 
which works for 1 key out of 235 keys with 2120 data and 
time complexity trials. Moreover, these threats possibly 
becomes practical under some modes of operations that 
take chosen inputs block as a key (Biryukov and 
Dunkelman et al., 2010). This is commonly known that 
fixed parameters in creation of portability and 
randomness are not considered robust that’s why 
proposed approach aims to create dynamic data blocks 
rather to fixed data blocks. In Table 6 and in below 
section, we have discussed how, fixed data blocking 
cannot create sufficient probability and leads the 
situation to non-NP Completeness.  

Thus, fixed data blocking approach did not create 
sufficient randomness (Table 6) and is not adequately 
secure against brute force attack. Our opinion quite 
reflects the prior research analysis of different authors. 
In Ritter (1995), has been reported that Dynamic 
(Variable) Data blocking is architecturally simple but 
computationally stronger and faster than fixed data 
blocking. Dynamic data blocking facilitates vigorous 
pseudorandom-permutation that is the superlative 
principle in designing of block ciphers (Cook, 2006). 
Dynamicity can create sufficient randomness. 
Randomness and mathematical robustness are good 
heuristic to resist cryptanalysis attacks (Cook, 2006). 
 
Discussion on P, NP and (P ≠≠≠≠ NP): P class belongs to 
(∈) set of deterministic (not-harder) based all decision 
problems (yes or no) which can be solved in 
polynomial time (O (n^k) where n is problem size and k 
is constant. In other words for P class problems, 
efficient algorithms persist to solve desired problem 
practically by using deterministic Turing machine. NP 
class ∈ set of non-deterministic (hard) natured all 
optimization problems (series of possible guesses) 
which require infinite time to predict possible solution 
so called hard (non-deterministic). In other words the 
problem belongs to NP Class has not an efficient 
algorithm with practical solution. In class of P, mostly a 
solution is find out and then it required to verify against 
NP within time span T. where, the Polynomial Time (T) 
term is used for an efficient algorithm which can solve 
any problem quickly in reasonable time. For hard 
problems, it is broadly believed (P ≠ NP) but it has not 
been proven yet (Gomes and Williams, 2005; 
Taslaman, 2012).  

For this widely believed hypothesis (P ≠ NP - 
widely believed for which no efficient algorithm 

exists), it is assumed that the solution against the related 
problem is intractable which means, there persist no 
efficient algorithm that guarantees an optimal solution 
for such hard problems as witnessed in a book (Gomes 
and Williams, 2005). Therefore, generally but unproved 
hypothesis (P ≠ NP) has no known polynomial 
algorithm to solve the NP-Complete problem optimally 
and this hypothesis is famously known as hard problem 
(P ≠ NP) as agreed by Taslaman (2012). NP-Complete 
problems require too bulky set of tries to guess the 
solution of a problem which further required large 
optimizations (serious of guess) to verify the exact 
solution in polynomial Time (T). Therefore, problem is 
said to be NP-Hard if all the supplementary problems in 
NP class can be reduce in time T which means if X�Y 

and Y �Z then X�Z satisfy the reduction properties 
through functions f and h. These functions (fxz, hxy) and 
(fyz, hYZ) can be reduced as X to Y and Y to Z 
respectively through a reduction composition fYz.fxy 
maps the instance of X to an instance of Z and similarly 
hxy.hyz can track the solution of Z back to X which 
satisfies, problem X is NP-Complete and any other 
problem  like  X  will  also  be NP complete (Dasgupta 
et al., 2008). This reduction can be represented with a 
notation X≤pZ (Polynomial reducible to Z). 
Mathematically, it can be written as: 
A problem X is NP-complete if: 
 
• X∈NP  
• X≤pZ for every X∈NP: polynomial reducible from 

X� Z Similarly 
• Z≤pX for every Z∈NP: polynomial reducible from 

Z �X 
 

This proof satisfy the properties of NP-
Completeness, i.e., P is NP-hard (polynomial reducible) 
and P∈NP in accordance with general P and NP 
completeness transformation. 

By taking the probabilistic randomness 
computation example of Table 6 against AES and 
proposed scheme, we can write the probabilistic 
computation complexity equation as follows: 
 

₱ = β * 2 
µ bits

                  (4) 
 
where,  
₱: Probability computational complexity  
β: The no. of blocks  
µ: The bit-length of each block  
 

Lemma: we prove NP-Completeness of probabilistic 
randomness equation ₱ = β * 2µ(bits) in case of AES and 
proposed case of DDBM by supposing Ð is known in 
both cases. The purpose of declaring Ð as known is 
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only to evaluate the robustness of probabilistic 
randomness complexity for which generally at least one 
parameter should be known in both cases for 
comparison.  
 
First case: blocking partitioning under AES-128: In 
this  case:  µ ∉ NP  as:- µ is known (as discussed in 
Table 6) which means it is deterministic because it is 
fixed (128 bit).  

Where ∉ means “not belongs to” and ⇒ means 
“implies that”. 

Similarly, we can compute β = Ð. µ-1 
Therefore, β ∉ NP:- as β can easily be computed 

through simple function (β = Ð. µ-1) having both known 
parameters (Ð , µ) ⇒ β is deterministic.  

So β ∈P and µ ∈P:- as P is a deterministic class 
According to NP-Complete transformation as 

discussed earlier, the Eq. (4) is hard if-and-only-if: β 
∈NP  and  µ ∈NP which  is  false here. It means ₱ = β * 
2 

µ bits is deterministic and is not a hard problem against 
NP-Completeness. 
 

Second case: block partitioning under proposed 

DDBM: µ∈NP as:- µ follows a series of possible 
guesses (Table 6) which means it belongs to 
optimization problem class (NP) having non-
deterministic series of instances of µ = µ1, µ2, µ3 …… 
µn  (µ1, µ2, µ3 …… µn ) ⊂ µ ∈ NP ⇒ µ n ∈ NP: as µ n is 
a subset (⊂) of µ 

Similarly, β ∈ NP as:- β follows a series of 
possible guesses which means it belongs to 
optimization problem class (NP) having non-
deterministic series of instances of β = β 1, β 2, β 3 …… 
β n  (β 1, β 2, β 3 …… β n ) ⊂ β ∈ NP ⇒ β n ∈ NP: as β n 
is a subset (⊂) of β. 
Now let we try to compute: 

 
β = Ð. µ-1                  (5) 
 
In this computation we only know Ð but we do not 

know β and µ which both parameters have non-
deterministic property as both ∈ NP, even its subsets 
(sub-instances) also ∈ NP ⇒ Eq. (5)∈ NP.  
Therefore, 
 

Eq. (5) ≤p Eq. (4):- as instances of Eq. (5) ∈ NP 

Eq. (4) ≤p Eq. (5):- as instances of Eq. (4) ∈ NP 

 

Where Eq. (5) ⊂ Eq. (4) ⇒ Eq. (4) ∈ NP which 
links to optimization problem (series of possible 
guesses) that are hard to guess which means no 
polynomial efficient algorithm persists which gives 
optimal or guaranteed solution for such problems 
belong to NP. This hypothesis is widely believed as 
hard problem (P ≠ NP) because no efficient algorithm 
exists to find practical solution for all problems which 

satisfy this hypothesis as agreed by the authors of 
studies (Gomes and Williams, 2005; Taslaman, 2012). 

In our proposed scheme the diversity of both 
parameters (block numbers, block bits) is dependent on 
a plaintext data and key. Proposed DDBM scheme is 
enriched with dynamicity to create sufficient 
randomness as for one set of plaintext data and key {Ð1, 
Ҟ1} the block length (β) will be βx but all data blocks 
will contain equal bits and βx will not be known to the 
cracker. Similarly, for other set of data and key {Ð2, 
Ҟ2} the block length (β) will be βy but all data blocks 
will contain equal bits and βy will not be known to the 
cracker. In both cases the block length (β(x, y)) and 
number of blocks will vary from key to key and data to 
data but for cracker these both variables will be 
dynamic and unknown. The comparison of randomness 
computation of proposed scheme with prior methods 
used in DES and AES as explained in above section and 
Table 6, which clearly appeal that proposed method of 
data blocking is robust rather to prior schemes. The 
complexity and probability of proposed method is 
computationally hard (P ≠ NP) as discussed in above 
section and Table 6. On the other hand in case of prior 
cryptographic methods (DES, AES) the same 
computation is mathematically computable and un-
adequately follows the condition (P ≠ NP). Hence, the 
objective of creating dynamic data blocking in any 
cryptographic is superior to fixed data blocking 
mechanism. 

 
CONCLUSION 

 
Dynamic data blocking is a superlative philosophy 

to stimulate probabilistic randomness in encryption 
heuristics rather to employ any sort of static (fixed) data 
partitioning policy. Fixed data blocking is an actual 
cause of academic cracking of AES and practical 
cracking of DES because fixed block partitioning 
approach supports the cracker in matching of 
hypothetical decrypted string (block) with the targeted 
chosen plaintext string to get accurate final results. 
Static (fixed) data blocking mechanism generates weak 
randomized probability against exhaustive searching 
and  computationally  weak  to  follow  the  condition 
(P ≠ NP - widely believed for which no efficient 
algorithm exists) in block partitioning step as discussed 
in above section and Table 6, however, in contrast with 
fixed data blocking, our proposed Dynamic Data 
Blocking Mechanism (DDBM) is architecturally simple 
but computationally robust in probabilistic randomness 
to offer sufficient resistance with series of large 
optimizations which is adequately robust to provide 
initial safe-guard against powerful cryptanalysis 
attacks. Proposed idea is enriched with dynamicity that 
triggers more probabilistic randomness. Moreover, in 
our proposed scheme (DDBM) the diversity of both 
parameters (block numbers, block bits) is dependent on 



 

 

Res. J. Appl. Sci. Eng. Technol., 7(21): 4476-4489, 2014 

 

4489 

a plaintext data and key. According to our best 
knowledge our idea is novel and timely significant to 
enhance the security of symmetric cryptosystems. 
Moreover, it is enriched with robust scientific 
contribution to replace the fixed data blocking 
mechanism with dynamic tactics in future 
cryptosystems to achieve higher degree of security 
satisfaction.  
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