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Abstract: The NAND based SSD is a tremendous challenge for file system page cache management design as it 
possess inbuilt imbalance in reading and writing speeds. The present disk-based page cache management policies 
adopt strategies to maximize the page hit ratio and treat the cost of page read and writes are equal rather than fully 
exploiting the characteristics of the SSD. Therefore there exists slowness in SSD write which eventually affects the 
SSD endurance. In special cases like in random writes there exists a problem of augmented write amplification 
resulting in penalty of write performance. Therefore, a new page replacement algorithm is needed for storage 
systems based on NAND flash memory. The aim of this study is to propose a new page replacement algorithm for 
operating systems which focuses on reducing the replacement cost and I/O execution time. Trace-driven simulations 
show that the proposed algorithm performs better than existing algorithms in terms of the replacement cost and I/O 
execution time. 
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cache 

 
INTRODUCTION 

 
Flash memory has evolved into cost-effective and 

potent solid-state storage technology as an alternative to 
disk based storage solution. Commercially flash is of 
two types NOR and NAND. NOR-this type of flash 
memory supports the byte unit I/O and shows longer 
write time and shorter read time in comparison with 
NAND. NAND-this flash memory helps in supporting 
the page unit input/output and this furnishes the block 
mode interface. NAND provides faster write time and 
slower read time compared to NOR and is prominently 
used for the purpose of data storage which acts as an 
alternative for hard disk drives. In this chapter the 
characteristics of NAND flash based SSD and an 
overview of FTL and its related work is presented. 
 
Flash memory characteristics: NAND based SSD 
consists of set of blocks which are fixed in number and 
each block comprises of a fixed set of pages or whole 
pages set makes up a block. Typical page size is 4 KB 
and block size is 512 KB. In SSD the tiny unit which is 
addressable is known as sector or page. Generally 
NAND flash memory comprises of three operations 
they include read, program or write and erase. The 
operation read conveys the data from a page, program 
operation helps in writing the data on a page and erase 
operation readjusts the target block values to one. 
Execution of operations read and write takes place per 

page level. Once after writing on the page it should be 
erased before the next writing operation continues on 
the same page. On the other hand the data is erased on 
block level by using erase operation and this is termed 
as erase block which is smallest erasable part in SSD. 
The erase operation should be executed before rewrite. 
Since the write and erase operations accompany each 
other the access time is high. 

In write procedure, Flash memory must first be 

erased before it can be rewritten with new data. In order 

to write a page of data, the SSD's NAND Controller 

will first ensure that the destination block is erased, 

before it writes the new data. So the other pages in the 

block have to copied and rewritten with the new page 

data. This erase/write cycle of the entire block occurs 

even if only a single bit changes in the block. This is 

known as write amplification (Gal and Toledo, 2005). 

The definition of write amplification is as follows: 
 
“Write Amplification = Actual no. of page 
writes/No. of user page write” 
 

The following operations should be followed in 

SSDs to write a single page or sector. The erasure block 

should be read which stores a requested sector and 

changing the block with requested sector and write the 

modified block. This sequential operations are termed 

as read modify write operations. This is commonly seen 
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in random write requests. Write amplification is 

observed during the garbage collection process. 

 

Flash translation layer: The device hardware features 
should be understood by the file system for data storage 
and retrieval from SSD. File systems such as logFS was 

practiced on SSD by understanding the characteristics. 
However the dependency of a particular file system 
becomes mandatory and in this approach the 
performance and endurance of SSD is not addressed 
completely. 

But the updated high performance SSD’s, 

comprises of a program known as Flash Translations 

Layer (FTL) which helps in managing the flash 

memory. The FTL possess following characteristics, It 

abstracts the hardware features of device therefore it is 

called as pseudo file system. It presents block device 

(Intel Corporation, 1998) interface by hiding the 

hardware characteristics of NAND device and the file 

system consumes the interface. FTL maps the logical 

address space into physical locations of the flash 

memory is done by FTL. It also helps in operations like 

garbage collection and wear leveling. For device 

endurance and high performance read and write cycles 

diverse algorithms are required and FTL contains these 

algorithms. The basic function of FTL algorithm is to 

map the page number from logical to physical and these 

mapping entry data is preserved in random access 

memory. The FTL address mapping procedures are 

classified into three categories namely, block level 

mapping, page level mapping and hybrid mapping. 

Hybrid mapping is used in the recent FTL’s which 

uses both page and block mapping techniques to create 

a hybrid FTL. By doing this the random access memory 

usage of page mapping can be minimized and there will 

reduction in erase counts related to block mapping. The 

example for this is log block based FTL. This executes 

through a principle of writing a page into a log block by 

using page mapping and allows the mapping of the 

page anywhere inside the block. The action of garbage 

collection enters the role when the log block is 

completely filled. The victim block is selected by the 

FTL and it merges with corresponding data blocks. 

Depending upon the situation the merge operation is 

generally of three types such as switch, partial and full 

merge. 

When complete pages in the data block are 

invalidated, the log block moves to the new data block 

and  erases  the  old  one  then  switch  merge  arises 

(Fig. 1). Partial merge arises (Fig. 2) if every valid page 

is to be copied to the remaining empty block places in 

the log block. Full merge (Fig. 3) needs 2 block 

erasures like ‘n’ page writes and ‘n’ page reads. The 

synonym for full merge is normal merge. This merge 

assigns a free block which is erased before and copies 

the recent updated valid pages into this free space. 

These valid pages are collected either from log block or 

data block. Once after completion of copying the free 

block is replaced by data block and the log blocks and 

previous data blocks are erased. 

Though hybrid FTL is advanced compared with 

block based or pure page FT, still the performance is 

poor due to read, write and erases merge operations for 

random writes (Min et al., 2012). For better scale up of 

flash potential this poor performance should be 

addressed. Advanced research has mainly focused on 

the improvement of random write performances of flash 

by the addition of DRAM-backed buffers and also on 

implementation of buffering write requests by 

employing page cache algorithms. 

 

Garbage collection and wear leveling: In the flash 

data delete operation, data is obsoleted not deleted. 

Obsolete data still occupies storage and cannot be 

deleted alone in the same erase block. Therefore a 

garbage collector is required to clean an erase block by 

moving all valid data into a free erase block, obsoleting 

old erase block. For the preparation of new incoming 

data, the data which is valid is separated from the 

invalid data and is moved to an unoccupied storage 

area. As a result the invalid data containing block is 

erased. This process of collecting, moving of valid data 

and erasing the invalid data is called as garbage 

collection. Through SSD firmware command TRIM 

(Shu and Obr, 2007) the garbage collection is triggered 

for deleted file blocks by the file system. To 

communicate that a range of logical pages usage is no 

longer an ATA inter face standard called TRIM is used. 

This garbage collection used for flash file systems is 

similar to that of segment cleaning method in log 

structured file systems (Rosenblum and Ousterhou, 

1992). Although garbage collection enhances the 

performance but it involves an additional cost of 

computation and live data migrations. 
Commonly used erase blocks puts off quickly, 

slows down access times and finally burning out. 
Therefore the erase count of each erase block should be 
monitored. There are wide number of wear-leveling 
techniques used in FTL to address this problem. 
 
Motivation and contribution: SSD write performance 
and device endurance is affected by the write 
amplification. Most of the file systems perform sub-
optimally when running on top of SSDs with FTL 
technology. This suboptimal performance is attributed 
by the poor random write (Qiu and Reddy, 2013) 
performance in SSDs. Particularly SSD performance 
gets affected on random write workloads on overwrite 
file systems. Random writes also shortens the lifespan 
of SSDs as these writes include more block erases for 
every write. So designing the operating system’s page 
replacement algorithm is very crucial for SSD writes. 
Especially for over write file systems, the host based 
page replacement algorithm for SSD must be designed 
factoring the write amplification scenario. However,  
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Fig. 1: FTL switch merge-one erase operation 

 

 
 

Fig. 2: FTL partial merge-one erase operation+live data copy 

 
 

Fig. 3: FTL full merge-two erase operations+live data copy 

 
this new cache replacement method should not affect 
the host cache expulsion rate which leads to over or 
under use of file system page cache. Hence, the flash-
aware host based page cache replacement algorithm 
should drive the FTL for the probability of reduced 
partial, full merges and increased switch merges. 

We summarize the basic principles of the proposed 
flash-aware host based page cache replacement 
algorithm as follows. The algorithm drives the FTL for 
the increased probability converting full and partial 
merge to switch merge; this is the design construct for 
our algorithm. The following are the design principles 
of the algorithm: 

 

• Cluster the dirty pages for write efficiency 

• Convert the random work load into sequential 
workload through write enlargement 

• Clean page eviction policies to enhance the spatial 
locality and to support the write enlargement 

 
This algorithm maximizes the present LRU (Least 

Recently Used) algorithm’s efficiency. Depending upon 
the design principles various cache management 
strategies are developed and implemented on the LRU 
algorithm. K-means (Lloyd, 1982) clustering algorithm 
is used for dirty page clustering to form write clusters. 
Generally, in regular application SSD’s need sequential 
work load for high write throughput and it is difficult to 
assure in real time. Hence a set of cache management 
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policies are developed to make sure that the writes are 
sequential in nature. The probability of page writes 
targeting on a specific SSD erasure block is increased 
by applying these policies. The proposal is termed as 
CSWLRU, which means Clustering dirty pages and 
Sequential Write formation on Least Recently Used. 
The results were promising on implementation of this 
CSWLRU in a trace driven simulation environment 
compared to the previously proposed algorithms. 
 

LITERATURE REVIEW 
 

CFLRU  Park  et  al. (2006)  and  LRUWSR (Jung 
et al., 2008) are based on modified form of LRU 
algorithm and is a flash aware page replacement 
strategy for operating systems. In CFLRU algorithm, 
the LRU list is divided into two parts. In clean-first 
region, the clean pages are selected as victims over 
dirty pages. Only in the absence of clean pages in clean 
first region the dirty pages are selected as victim pages. 
The buffer place for dirty pages is effectively increased 
by evicting the clean pages. Hence the flash write 
number reduces. LRUWSR uses only a single list as 
auxiliary data structure. The scheme of this LRUWSR 
is to maintain hot-dirty pages as buffer and eject the 
cold-dirty pages. If there is a necessary for victim page, 
the search begins from LRU end of the list. If a clean 
page is visited, it will be returned immediately (LRU 
and clean-first strategy). If a dirty page is visited and is 
marked “cold”, it will be returned; otherwise, it will be 
marked “cold” and the search continues. This strategy 
increases the page read count but reduces the number of 
page writes. As a result this algorithm improves the 
overall performance of SSD. CFLRU and LRU-WSR 
do not address the write patterns. 

The order of write is important to reduce the 
average cost of each write. WOW (Gill and Modha, 
2005) groups the pages in write groups and sorts them 
in logical order based on the physical proximity on the 
disk. WOW  solves  the  write  order  and  STOW (Gill 
et al., 2009) solves the write pace problem. STOW 
algorithm exploits the spatial and temporal locality by 
partitioning the dirty pages into sequential and random 
queue. By doing so it provides better control on page 
eviction and minimizes the one time sequential write 
cache pollution. Both WOW and STOW is proposed for 
the write performance in disk based storage system. 

In Btrfs (http://btrfs.wiki.kernel.org.) and WAFL 
(Hitz et al., 1994) file systems, always the dirty pages 
are written into new pages. Btrfs uses TRIM command 
for reporting the free blocks to the firmware and it is a 
SSD aware file system. Btrfs has effective 
optimizations like omitting the unnecessary seeks and 
writing group of dirty pages, even if they are from 
unrelated files. The outcome is faster write throughput 
and larger write operations. 

JFFS2 Woodhouse (2001) is a log-structured file 
system designed and optimized for raw flash devices 
and not FTL aware. JFFS2 is aware of the restrictions 
imposed by flash technology and which operates 

directly on the flash chips, thereby avoiding the 
inefficiency of having two journaling file systems on 
top of each other. IotaFS (Cook et al., year) is SSD 
optimized file system which places the random write 
into convenient write locations to lessen the impact of 
erase block copying overhead. In addition to this 
allocation is done on erasure block units to achieve 
spatial  locality  of  writes for high throughput. FAB (Jo 
et al., 2006) is one more buffer cache management 
policy used for flash memory. In this the buffers of the 
same erase blocks are grouped together on LRU 
sequence and victim groups are larger which are based 
on the page count on every group. In sequential writes 
FAB plays an effective role. 

CDFC (Ou et al., 2010) and CASA (Ou and 
Harder, 2010) are improvements of the CFLRU 
algorithm. Clean-First Dirty-Clustered (CFDC) is a 
flash aware buffer management algorithm which gives 
first priority for clean buffer pages in replacement 
process. The dirty pages are grouped for better spatial 
locality of the page flushes. This algorithm was 
incorporated with conventional page replacement 
algorithm and evaluation of performance is done in data 
bases. CASA improves CFLRU by automatically 
adjusting the size of buffer portions allocated for clean 
and dirty pages according to the storage device’s 
read/write cost ratio. 
 
DESIGN OF CUSTERING AND COMPOSING 

SEQUENTIAL WRITE ON LEAST  
RECENTLY USED 

 
CSWLRU is a host based page cache management 

scheme, host consists of CPU, a file system and the 
system page cache. Figure 4 shows the general system 
configuration considered in this study. 

CSWLRU is combination of three techniques 
namely, dirty page clustering, enlarged write through 
read ahead write cache and frequency and distance 
based clean page eviction. 
 
CSWLRU K-means page clustering: Clustering is an 
important tool for automated analysis of data. 
CSWLRU utilizes K-means clustering technique on 
dirty pages. Clustering dirty pages with large 
granularity will help to convert the random work load 
into sequential workload. For a given set of ‘n’ data 
points, the algorithm partitions the points into ‘k’ 
clusters. In k means clustering algorithm, initially the 
number of clusters known as ‘k’ value should be 
specified. After the ‘k’ value is determined, these ‘k’ 
points are selected as cluster centers. According to 
Euclidean (Aloise et al., 2009) distance metric all 
instances which are needed to be divided are assigned 
to their nearest cluster centers. 

Lloyd’s algorithm (Lloyd, 1982) is the most 

accepted method used for calculating k-means. One 

dimensional dirty page of length ‘n’ acts as input for 

this algorithm. The initial ‘k’ value or partition 

boundary  is  calculated based on the erasure block size.  
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Fig. 4: System configuration CSWLRU is applied to the host 

file system 

 

This indicates the number of cluster means production 

which translates to the number of clustered writes on 

SSD. In each and every iteration, the continuous k-

mean algorithm examines only a random sample of data 

points where as CSWLRU examines all data points in 

sequence. The algorithm is in following flow: 

 

• One dimensional pages of length ‘n’ is the input 

and ‘k’ indicates the number of cluster means 

produced. 

• Choose ‘k’ values from the ‘n’ dirty pages with the 

block boundary heuristic mentioned above. 

Ordering and selecting the initial k values shorten 

the conversion time. 

• As these values are potential means they are named 

as k-means. 

• Further, using square distance method each block 
is grouped with the nearest mean value. 

• By the end of this step, all the data points belong to 
potential mean group. 

• At this iteration, the new mean is derived by 
calculating the average of all data points. 

• The process is repeated until no change is observed 

in the centroid.  

 

After a few number of iterations, the squared error 

stops to decrease prominently or is unchanged. Below 

is the example: 

 

Input values {1, 3, 5, 12, 52, 25, 13, 571, 834, 432, 
489, 8, 45, 60, 2, 11} 
k = 2→ {432, 489, 571, 834}, {1, 2, 3, 5, 8, 11, 12, 
13, 25, 45, 52, 60}  
k = 3→ {834}, {432, 489, 571}, {1, 2, 3, 5, 8, 11, 
12, 13, 25, 45, 52, 60} 

 
Clustering the dirty pages increases the probability 

of switch merges. CSWLRU uses the k-means 
algorithm by examining all dirty pages and produces 
the dirty page clusters. 

 
 

Fig. 5: An example of read ahead cache. The clean pages C3 

and C6 are read from SSD to form a sequential write.  

C-clean page D-dirty page 

 

CSWLRU-read ahead write cache: K-means 
clustering produces clusters of dirty pages and most of 
the time the clustered pages are not continuous. For 
accelerating the switch merges count, the pages should 
be adjoining and arrayed with SSD erasure block 
borders. For the formation of continuous writes, the 
clean pages are brought into cache after reading from 
SSD. Or else, relatively expensive full merge or partial 
occurs instead of a switch merge. As the pages are read 
and cached for write it is named as read ahead write 
cache or enlarged writes. Page cache algorithm is also 
implemented by FTL for detecting the scope of erasure 
block cache based on few set of rules for example last 
page write in the erasure block or sequential write 
operations. These set of rules helps in determining the 
life time of erasure pages cache. Based on cluster 
density the decision of reading the pages from SSD is 
determined for a cluster sequential write formation.  

In the Fig. 5, since the clustering of dirty pages 
does not contain the clean pages therefore the c3 and c6 
pages are read from SSD to form a sequential write. 
Though pages c3 and c6 are clean, these pages are once 
again written into SSD along with neighboring dirty 
pages. The write time is optimized to best by bringing 
the clean pages from SSD, resulting in switch merge 
increase. As the switch merge count increases there 
would be increase in endurance, performance and 
reliability of the device. Few FTL algorithms decide the 
switch merge by comparing the clean to dirty page ratio 
along with the weal level information such as erase 
latency or erase count which is stored on a different 
erasure block. If the clean page falls on the adjacent 
erase block, FTL can choose to compare the hash code 
of the existing page and the incoming page (Chen et al., 
2011) to decide on the write. 

Similarly, there is another method called as block 
padding (Kim and Ahn, 2008) for improving the block 
utilization was proposed. All the pages in buffer cache 
are managed by block padding by using block level 
LRU policy in FTL. The block which was not accessed 
since long time was chosen as victim block. Through 
block padding BPLRU invokes switch merge. On the 
other hand, page recency is the problem of BPLRU. In 
this  instance  if  one  of  the  pages  in  a block has high  
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Fig. 6: An example of distance based eviction. For the clean 

page eviction, the distance is calculated on both 

directions to find the victim page  

 

 
 

Fig. 7: CSWLRU: frequency based clean page eviction. In 

LRU based eviction clean page C9 is evicted. In 

CSWLRU based eviction clean page C50 is evicted 

because the write count is less compared to other 

pages 

 
percentage of recency the other pages tend to stay in the 

buffer cache even though the pages were not used 

recently. This occupies the buffer cache space. Though 

BPLRU increases the switch merge, the scope is 

determined by the FTL buffer size. The FTL buffer 

management are influenced by the host file system 

during frequent flush command. In enlarged write the 

cache buffer size is huge compared to the cache buffer 

inside the SSD. And the clean page padding is done on 

individual clusters. On individual clusters the clean 

page padding is performed. Only on high density 

clusters the enlarged write through read ahead write 

cache gets activated. This assures for less read count 

although the price of random read is low on SSD. 

 

CSWLRU-distance based clean page eviction: LRU 

policy is not very effective for sequential writes. 

Adaptive replacement cache algorithms (Megiddo and 

Modha, 2003) respond dynamically to the changing 

access patterns based on frequency and recency. These 

replacement algorithms replace the clean pages based 

on the usage pattern. For instance MRU based 

algorithm replace the new page while LRU based 

algorithm replaces the older one. CSWLRU avoids 

certain clean page eviction to compensate for the 

enlarged writes. Depending on the distance from the 

dirty page the clean pages are evicted. If a clean page 

stays within the erasure block from any dirty page, then 

the clean page is retained or else it is evicted. For 

decision making on page eviction, the basic SSD 

erasure block size is necessary. 
In the above example (Fig. 6), it is considered that 

SSD erasure block comprises of ten pages. Although 
the clean page c9 is on top of the eviction list, it is 
retained because the dirty page d4 lies under the erasure 
block by keeping the clean page as centroid. In the 
same way page c30 is also retained as the dirty page 
d35 falls under the erasure block boundary for page c30 
as a centroid. Clean pages c20 and c50 are considered 
as victim pages and they are evicted. Through the 
property of avoiding clean page eviction, the SSD 
random writes are converted into sequential writes by 
writing the clean pages along with dirty pages. This 
result in conversion of partial merges into switch 
merges in FTL. 
 
CSWLRU-frequency based clean page eviction: The 
write frequency of the clean page is monitored at times 
when write enlargement writes clean pages along with 
dirty pages. More frequently written clean pages are 
retained in contrast to the distance based eviction. It is 
expected that the adjacent pages would become dirty 
soon. This retention property addresses the clean page 
management for slow sequential writes. 

In the Fig. 7, LRU based eviction the clean page c9 

is evicted whereas in CSWLRU the clean page c50 is 

evicted because it has less write count when compared 

with other clean pages. 

 

PROTOTYPE IMPLEMENTATION AND 

EXPERIMENT RESULTS 

 

Thus far, we have discussed the CSWLRU 

algorithm in abstract terms. This section evaluates the 

performance of the proposed CSWLRU algorithm in a 

trace driven simulation environment. In this section the 

performance of proposed CSWLRU algorithm is 

evaluated in a trace driven simulation environment. For 

the comparison, we have evaluated the LRU, CFLRU, 

CFDC, FAB with the proposed CSWLRU algorithm. 

 

Experimental setup: For evaluating the performance 

characteristics of CSWLRU algorithms, a trace driven 

simulation environment is constructed. The goal of this 

stimulator is to evaluate the performance of CSWLRU 

write back caching algorithm on SSD for several 

random workload traces. In C language on the Linux 

platform the page cache simulator is implemented as a 

separate tool. This stimulator accepts the trace file as 

input and produces series of write/read requests. The 

I/O requests are represented in pair of values by trace 

file. The configuration value for total number of pages 

is taken up by the page cache simulator. On arrival of 

new page write, the LRU procedure removes the least 

recently used frame when cache is filled. For the 

implementation of LRU cache two data structures are 

used. Utilizing a doubly linked list a queue is 
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Fig. 8: Simulation framework 

 

 
 

Fig. 9: P2P file sharing trace collection 

 

implemented. The utmost size of the queue would be 

equal to the total number of available frames (Fig. 8). 

For SSD simulation environment, the DiskSim 

(Microsoft, 2010) Microsoft® Research SSD extension 

was used. DiskSim is well modularized and establishes 

the major components of FTL such as indirect mapping, 

garbage collection and wear leveling strategies. In order 

to provide accurate timings for the handling of storage 

I/O requests, the DiskSim-SSD is incorporated into a 

full system level simulator. As the DiskSim extension 

does not contain inherent cache support, on receiving 

the write request it is immediately written into SSD.  

Write trace collection: The first trace is acquired using 

DiskMon (Russinovich, 2006). The trace file obtained 

from DiskMon is not applicable directly to CSWLRU 

algorithm because the program’s output has several 

features which are not necessary for the simulator. The 

raw outcome of DiskMon gives offset of a file but not 

actual sector address of the file. Current application 

consults Master File Table in NTFS for locating the 

sector address of the file. Cache manager reads the IO 

trace file and optimizes several cache algorithms in 

order to provide insights in designing cache policies for 

SSD bases storage. Peer-to-peer file sharing generates 

random write traffic to storage due to the nature of 

swarming. We collected disk accesses on Windows 7 

with Diskmon while downloading a 739 MB movie file 

using µTorrent, a P2P file sharing program. Small parts 

of the file are written randomly to the storage because 

the peer-to-peer program downloads different parts 

concurrently from numerous peers (Fig. 9). We used an 

empty E drive while Windows 7 was installed on C 

drive to filter out unrelated disk accesses to our test. 

Before the movie file download, we formatted the ‘E’ 

drive with NTFS to get rid of disk aging effect. 

Second trace is acquired using Iometer Project 

(Year) (http://www.iometer.org.) on Linux Ext4file 

system for producing homogeneously distributed 

random access. It creates large file with complete 

partition size and then overwrites the sectors randomly. 

100% 4K write and 60% random workloads were 

created for this test. The Iometer access specification 

ensures the alignment of IO’s on a 4 K boundary. 

 

Work flow and performance evaluation: The 

performance results of CSWLRU algorithms were 

presented in this part. Initially, the workflow in the 

simulation environment and secondly evaluation results 

for identified workload traces were explained. 

The LRU cache manger was implemented using 

double linked list. Double linked list represents the
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Fig. 10: Iometer mixed workload 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11: Iometer sequential workload 

 

page cache lines sequence in an ascending order of their 

most recent access times. The head node represents the 

least recently accessed dirty cache lines while the tail 

node represents the most recent one. Each cache line 

comprises of an additional field for saving the pointer 

to corresponding node in the list to support the double 

linked list. Finally, the implementations such as 

clustering algorithm, Read Ahead Write (RAW) policy, 

Frequency and Distance based Eviction (FDE) took 

place. These clustered pages are inputted to the read 

ahead write policy to pad the clean pages from the SSD. 

The clean page padding from the SSD is decided 

by the cluster density. For padding the clean pages 

clusters of high density with multiples erasure block 

size are given preference. Calculation of cluster density 

is as follows: 

 

• Order the cluster elements 

• Computer the density using (last element-first 
element) /total elements 

• Clusters are ordered based on the density factors 

and average wait time  

 

We kept the page size of 4096 bytes of maximum 

cache size of 512 MB and simulated a 9.1 GB SSD. 

Parameter for the Seagate Cheetah9LP disk, which is of 

size 9.1 GB, is used as this is the  largest  disk  that  can 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 12: Iometer random workload 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13: P2P random workload 

 

currently be simulated by DiskSim. DiskSimSSD was 

driven by write request traces by the cache manager 

(Fig. 10 to 13). 
 

DISCUSSION 

 

The result of simulation performance shows the 

improved writes on the selected workload traces. From 

the performance it is obvious that the sequential 

workload performs good in majority of the previously 

proposed algorithms, however CSWLRU outperforms 

for mixed and random workload. In today application 

the disk scheduler and FTL reorders the request of 

random writes for write optimization. But the prediction 

of workload knowledge is limited and optimizations 

such as enlarged writes are not feasible. Hence the file 

system layer is more appropriate for random SSD write 

optimization to drive FTL away from full merge. At the 

time of FTL full merge the logical page offset would 

not be same as physical page offset. In partial and 

switch merge cases, the logical page offset is equal to 

that of physical page offset. The reason behind this is 

switch and partial merge does in place update. 

Generally in Meta data updates the page level mapping 

operation dominates. If the logical page number is not 

equal to that of physical, then proposed algorithm could 

not yield required result. Although the speed of random 

read is better in SSD, it is suggested for allocation of 
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user data pages in sequential manner in multiples of 

erasure blocks. This is done to deflect the full merge 

which is caused by random updates. Usually, the cluster 

page selection should be done based on the high 

priority pages, but for the sake of simplicity the dirty 

page priority was not factored.  
 

CONCLUSION 

 

Flash based storage devices were considered as an 

alternative to hard drives. Enhancing the performance 

of SSD is a challenging task with traditional file system 

which is not designed for SSD characteristics. For 

complete exploitation of performance benefits in SSD 

based storage system, there is necessity for a host based 

buffer replacement policy for asymmetric write 

workload. The buffer replacement algorithms like 

LIRS, ARC and LRU cannot deal effectively with the 

SSD random write requests. In SSD the read operation 

is faster when compared with write and erase operation. 

For the improvement of overall performance of a flash 

memory system, the random write workload should be 

reduced by the buffer replacement algorithms. 

This paper studies on cache policies for assisting 

the discussed write back design values. CSWLRU, a 

new host based page cache replacement algorithm was 

proposed for SSD. This algorithm assures the 

conversion of random writes into sequential writes for 

SSD. Using two kinds of traces, the trace-driven 

simulation was performed which represents the random 

write patterns. It was demonstrated that the SSD write 

performance is greatly enhanced by the proposed write 

cache policies in host file system. Based on the results 

of trace-driven simulation experiments, it was proved 

that CSWLRU algorithm improves the overall 

performance prominently when compared to the 

previously proposed algorithms. This was achieved by 

reducing the number of physical SSD writes and erases 

operations. 
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