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Research Article 

Quartic Non-polynomial Spline Solution of a Third Order Singularly Perturbed  
Boundary Value Problem 

 

Ghazala Akram and Imran Talib 
Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan 

 

Abstract: In this study, the non-polynomial spline function is used to find the numerical solution of the third order 

singularly perturbed boundary value problems. The convergence analysis is discussed and the method is shown to 

have second order convergence. The order of convergence is improved up to fourth order using the improved end 

conditions. Numerical results are given to describe the efficiency of the method and compared with the method 

developed by Akram (2012), which shows that the present method is better. 
 
Keywords: Boundary layers, monotone matrices, quartic non-polynomial spline, singularly perturbed boundary 

value problems, uniform convergence 

 
INTRODUCTION 

 
The purpose of the study is to develop a new spline 

method for the solution of third order singularly 
perturbed boundary value problem. The method 
depends on a non-polynomial spline function which has 
a trigonometric part and a polynomial part. The 
following third order self adjoint singularly perturbed 
boundary value problem is considered, as: 
 

( )( ) ( ) ( )(3)

(1)
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ε
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
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ε
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− + = ≥ 

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  (2) 
 
where, α0, α1, α2 and α3 

are constants and ε is a small 
positive parameter (0<ε<<1), also f (x) and p (x) are 
smooth functions and p (x) = p = constant. The spline 
function has the form Tn = {1, x, x

2
, cos (kx), (kx), sin 

(kx)} It is to be noted that k can be real or imaginary. 
The theory of singularly perturbed problems frequently 
occur in many branches of engineering and applied 
sciences, for instance in geophysics, fluid dynamics, 
Newtonian fluid mechanics, quantum mechanics, gas 
dynamics, chemical reactions, optimal control theory 
etc. The numerical treatment of singularly perturbation 
problems yields major computational difficulties and 
the usual numerical methods fail to produce accurate 
results for all independent values of x when ε is very 

small, owing to the multi-scale character of the solution 
of singularly perturbation problems. That is there are 
thin transition layers, where the solution varies  rapidly, 
while away from the layers the solution behaves 
frequently and varies slowly. Three principle 
approaches are frequently used to solve such kind of 
problems numerically, namely the finite difference 
methods, the finite element methods and spline 
approximation methods. In this study the third one, 
namely, the spline approximation method is used. 

Howers (1976), Kelevedjiev (2002) and Roos et al. 
(1996) discussed the existence and uniqueness of 
singularly perturbed Boundary Value Problems (BVPs). 
Lie (2008) constructed a computational method for 
singularly perturbed two point BVP in the form of 
series in reproducing Kernel space. Rashidinia and 
Mahmoodi (2007) developed the classes of methods for 
the numerical solution of singularly perturbed two point 
BVP using non polynomial cubic spline and the method 
is  second  order as well as fourth order accurate. Khan 
et al. (2006) used sextic spline to solve second order 
singularly perturbed BVP and the method is fifth order 
accurate. Yao and Cui (2007) developed a new 
algorithm for a class of singularly BVPs in the 
reproducing Kernel space. Akram (2012) presented a 
quartic spline solution of a third order singularly 
perturbed BVP and the method is second order 
accurate. Akram and Mehak (2012) proposed a quintic 
spline technique to solve fourth order singularly 
perturbed BVP. 
 
Consistency relations: To develop the consistency 

relations the following fourth degree non polynomial 

spline is considered: 
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( ) cos ( ) sin ( ) ( ) ( ) 2.3
i i i i i i i i i i

Q x a k x x b k x x c x x d x x e= − + − + − + − +  

2( ) cos ( ) sin ( ) ( ) ( ) 2.3i i i i i i i i i iQ x a k x x b k x x c x x d x x e= − + − + − + − +                           (3) 

 
Defined on [a, b], where �ϵ��� , ����� with equally 

spaced knots,  xi = a + ih, i = 0, 1, …, n
 
and ℎ =  

�
�

�
.  

Using the following notations: 
 

1 1

(3) (3)

1 1

(1)

( ) , ( ) ,
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The coefficients in (3) are determined as: 
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Applying the first and second derivative continuity 

at knots, that is, ( ) ( )
1 ( ) ( ),i i i iQ x Q x

µ µ
− =  for µ = 1, 2, the 

following relations are derived: 
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which leads the following consistency relation in terms 
of  Ti and yi: 
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Equation (5) can also be written, as: 
 

3 3 3 3

1 1 2 1 1 -23 3

2,3,..., 1. 2.6

i i i i i i i iy y y y h T h T h T h T

i n
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 (6) 

 
where,  
 

3

cos 1 1

sin 2 sin

θ
α

θ θ θ θ
− = + 

   

and,  

3

1 cos 1 2 cos
.

sin 2 sin

θ θ
β

θ θ θ θ
− − = + 

   
 

It is to be noted that, if α = 0
 
and � =  

�

�
 then the 

truncation error of the above equations is − 
�

���
 ℎ���

�.  

Using Eq. (1) and (6) can be rewritten as: 

 

 

( )

3 3 3 3

1 1 -2

3

1 1 -2

(-   ) (3   ) - (3  - ) (  )
 2.7

   ,    2,3,..., -1.

i i i i
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                                             (7) 

 

End conditions: The system Eq. (7) consists of (n-2) 

equations with (n-1) unknowns, so one more equation is 

required. Following Akram and Siddiqi (2006), the 

required end condition can be written as: 

 
4

(1)

0 1 1 2 2 3 0 03
0

1
, 3.8i i

i

T a T a T T b y c hy
h =

 
+ + + = + 

 
∑

    

(8) 

 

where, a1, a2, c0 and bi, i = 0, 1, 2, 3 are arbitrary 

parameters which are to be calculated using method of 

undetermined coefficients. The end condition of O (h
5
) 

can be calculated, as: 

 

( )1

0 1 2 3 0 1 2 3 03

1 2 7
3 6 2 , 3.9

3 3
T T T T y y y y hy

h

 + + + = + − + +      

(9) 

 

Using Eq. (1), Eq. (9) can be rewritten as: 

 
33 3 3 (1)
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Similarly the end condition of O (h
5
) for the system 

(2) can be calculated, as: 
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h
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Using Eq. (2), Eq. (11) can be rewritten as: 
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11 11 11
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(12) 

 

The order of truncation error of end conditions can 

be improved. Following Akram and Siddiqi (2006), the 
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improved end conditions of O (h
8
) for the system (1) 

can be determined, as: 
 

( )1

0 1 2 3 0 1 2 3 4 03

97 69 1 99 176 309 96 7
15 , 3.13

7 7 28 7 7 7 4
T T T T y y y y y hy

h
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(13) 

Using Eq. (1), Eq. (13) can be rewritten as: 
 

3
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Similarly end condition of O (h
8
) for the system (2) 

can be calculated, as: 
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(15) 
 

Using Eq. (2), Eq. (15) can be rewritten as: 
 

33 3

1 2 3

3 3 2 (2)
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      − − + + =            

 

(16) 
 

CONVERGENCE OF THE METHOD 
 

The system of Eq. (7) and (14) provides the 
required quartic non polynomial spline solution of the 
BVP (1), which can be written in matrix form, as: 

 
3 , 4.17AY h DF C− =

                                               
(17) 

 

where, A = (aij) is a tetradiagonal matrix of order n-1: 
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Also, 
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If [ ]1 2 2 1( ), ( ),..., ( ), ( )
T

N NY y x y x y x y x− −=  denotes 

the exact solution of BVP (1) and Y be the approximate 

solution then, Eq. (17) can be written, as: 

 
3 , 4.18AY h DF T C− = +

                                           
(18) 

 

where 
1 2 1( , ,..., )T

nT t t t −=
 
with: 
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1 1 0 1 4
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23
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840
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1
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240
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


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From Eq. (17) and (18), it follows that: 

  

( ) , 4.20A Y Y A E T− = =
                                        (20) 

 

1 2 1( , ,..., ) . 4.21T

NE Y Y e e e −= − =
             (21) 

 

To determine the error bound the row sums S1, S2, 

Sn-1 
of matrix A are calculated, as: 
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    (22) 

 

Since the matrix A is observed to be irreducible and 

monotone, A
-1

 exists and its elements are non negative, 

therefore from Eq. (20), it can be written as: 

 

( )1E A T−=                                                        (23) 

 

Also, from the theory of matrices it can be written as: 

 
1

1

,

1

1 1 , 2 ,..., 1, 4.24
N

k i i

i

a S k N
−

−

=

= = −∑
              

(24) 

 

where ��,�

�

 
is the (k, i)

th

 
element of the matrix A

-1
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From Eq. (22), it follows that: 
 

0

1
1

, 3
1

1 1

min ( )

n

k i

i i i

a
S h B

−
−

=

≤ =∑
                                  

(25) 

 
where, 
 

0 3

1
min 0 4.26i iB S

h
= >                                          (26) 

 
For some i0 

between 1 and n-1. 
From Eq. (23) it can be written as: 
 

1
1

,

1

, 1, 2,..., 1. 4.27
n

k k i i

i

e a T k n
−

−

=

= = −∑             (27) 

 
Using Eq. (19) in (27), the following result is 

obtained: 
 

0

4 / , 1, 2, ..., 1, 4.28k ie lh B k n≤ = −
                

(28) 

 
where, l is a constant independent of h. From Eq. (28), 
it follows that: 
 

4( ).E O h=  

 
Similarly, it can be proved that ��� = ��ℎ�� for 

the solution of BVP (2) given by Eq. (7) and (16). 
These results are summarized in the following 
theorems. 
 
Theorem 1: The method given by Eq. (7) and (14) for 
solving the boundary value problem (1) for sufficiently 
small h gives a fourth order convergent solution. 
 
Theorem 2: The method given by Eq. (7) and (16) for 
solving the boundary value problem (2) for sufficiently 
small h gives a fourth order convergent solution. 

On  the  same  fashion,  truncation  errors of the 
Eq. (10) and (7) are calculated as: 
 

5 (5)

1 1 0 1 4

7 (7)

2 1

37
( ), ( )

20

and 4.30

1
( ), ( ) , 2,3,..., 1.

240
i i i i i

t h y x x

t h y x x i n

ε ξ ξ

ε ξ ξ− +

= − < < 



= − < < = −
  

(29) 

 
Using Eq. (29) in (27), the following result is 

obtained: 
 

2

0
/ , 1, 2, ..., 1, 4.31k ie lh B k n≤ = −             (30) 

 
where, l is a constant independent of h From Eq. (30), it 
follows that: 
 

2( ). 4.32E O h=
                                               

(31) 

Similarly, it can be proved that ��� = ��ℎ��  for 
the solution of BVP (2) given by Eq. (7) and (12). 
These results are summarized in the following 
theorems. 
 
Theorem 3: The method given by Eq. (7) and (10) for 
solving the boundary value problem (1) for sufficiently 
small h gives a second order convergent solution. 
 
Theorem 4: The method given by Eq. (7) and (12) for 
solving the boundary value problem (2) for sufficiently 
small h gives a second order convergent solution. 

To illustrate the implementation of the method and 
error analysis of the BVP (1) and (2), two examples are 
discussed in the following section. 
 

NUMERICAL EXAMPLES 
 
Example 1: Consider the following boundary value 

problem: 
 

( ) ( )
( )

(3) 2

(1)

( ) ( ) 81 cos 3 3 sin 3 ,

(0) 0, (0) 9 , (1) 3 sin 3 ,

y x y x x x

y y y

ε ε ε

ε ε

− + = + 


= = =      

(32) 

 
and, 
 

( ) ( )
( )

(3) 2

(2)

( ) ( ) 81 cos 3 3 sin 3 ,

(0) 0 , (0) 9 , (1) 3 sin 3 ,

y x y x x x

y y y

ε ε ε

ε ε

− + = + 


= = =       

(33) 

 
The analytical solution of system (32) and (33) is: 
 

 ( ) ( )3 sin 3y x xε=  

 

The observed maximum errors (in absolute values) 
associated with yi, for the problem (32) and (33) 

corresponding to different values of � =  
�

��
,

�

 �
,

�

��
  are 

summarized in Table 1 and 2, respectively. Similarly, 
the observed maximum errors (in absolute values) 
associated with yi, for the problem (32) and (33) 
corresponding to improved end conditions are 
summarized in Table 3 and 4, respectively. 

 
Remark: The comparison of Table 1 and 3 with 5 
shows that the errors in absolute are better than that 
developed by Akram (2012), corresponding to the 
problem (32). Similarly, the comparison of Table 2 and 
4 with 6 shows that the errors in absolute are better than 
that developed by Akram (2012), corresponding to the 
problem (33). 
 

Example 2: 

 

                          (34) 

 

where, 
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Table 1: Maximum absolute errors for problem (32) in yi 

ε  N = 10
 

N = 20
 

N = 40
 

1

16
 

 7.39×10-4 5.09×10-5 3.26×10-6 

1

32
 

 3.16×10-4 2.16×10-5 1.39×10-6 

1

64
 

 1.30×10-4 8.77×10-6 5.60×10-7 

 
Table 2: Maximum absolute errors for problem (33) in yi 

ε N = 10
 

N = 20
 

N = 40
 

1

16
 

1.02×10-2 1.40×10-3 1.73×10-4 

1

32
 

3.80×10-3 4.84×10-4 6.15×10-5 

1

64
 

1.40×10-3 1.00×10-4 2.00×10-5 

 
Table 3: Maximum absolute errors for problem (32) in yi

 corresponding to improved end condition 

ε N = 10
 

N = 20
 

N = 40
 

1

16
 

5.70×10-7 5.97×10-8 4.14×10-9 

1

32
 

2.49×10-7 2.52×10-8 1.75×10-9 

1

64
 

1.00×10-7 9.90×10-9 6.81×10-10 

 
Table 4: Maximum absolute errors for problem (33) in yi

 corresponding to improved end condition 

ε N = 10
 

N = 20
 

N = 40
 

1

16
 

3.54×10-6 2.94×10-8 6.57×10-9 

1

32
 

1.28×10-6 1.27×10-8 2.41×10-9 

1

64
 

4.25×10-7 5.33×10-9 8.04×10-10 

 
Table 5: Maximum absolute errors for problem (32) in yi

 
developed 

by Akram (2012) 

ε N = 10
 

N = 20
 

N = 40
 

1

16
 

6.9×10-5 3.1×10-5 5.4×10-6 

1

32
 

3.1×10-5 1.8×10-5 2.8×10-6 

1

64
 

4.9×10-5 9.9×10-6 1.4×10-7 

 

Table 6: Maximum absolute errors for problem (33) in yi
 
developed 

by Akram (2012) 

ε N = 10
 

N = 20
 

N = 40
 

1

16
 

2.5×10-3 1.9×10-4 1.4×10-5 

1

32
 

6.8×10-4 5.7×10-5 5.0×10-6 

1

64
 

1.2×10-4 1.3×10-5 1.6×10-6 

 

Table 7: Maximum absolute errors for problem (34) in yi
 corresponding to improved end condition 

ε N = 10
 

N = 20
 

N = 40
 

1

16
 

2.18×10-12 3.65×10-15 4.62×10-18 

1

32
 

1.09×10-12 1.83×10-15 2.31×10-18 

1

64
 

5.45×10-13 9.13×10-16 1.16×10-18 

 

  
 
The analytical solution of the above problem is: 

( ) ( ) ( ) ( )10 9
1 sin .y x x x xε= −  

 
The observed maximum errors (in absolute values) 

associated with yi, for the problem (34) corresponding 

to different values of � =  
�

��
,

�

 �
,

�

��
  are summarized in 

Table 7. 
 

CONCLUSION 
 

Quartic non polynomial spline function is used to 
develop a numerical method for solving third order 
singularly perturbed boundary value problem. The 
method is second order convergent and fourth order 
convergent as well using the improved end conditions. 
The numerical illustration shows that the developed 
method maintains a very remarkable high accuracy that 
makes it very encouraging for dealing with the solution 
of singularly perturbed boundary value problems. 
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