
Research Journal of Applied Sciences, Engineering and Technology 7(23): 5063-5067, 2014

DOI:10.19026/rjaset.7.900

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2014 Maxwell Scientific Publication Corp.

Submitted: February 22, 2014 Accepted: April 09, 2014 Published: June 20, 2014

Corresponding Author: K. Geetha Rani, Department of Computer Science and Engineering, Vel. Tech. Dr. RR and Dr. SR

Technical University, Chennai, Tamil Nadu, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

5063

Research Article
Expertised String Mining in Outsized Databases and Hefty Files

K. Geetha Rani, Shobhanjaly P. Nair, P. Visu and S. Koteeswaran
Department of Computer Science and Engineering, Vel Tech. Dr. RR and Dr. SR Technical University,

Chennai, Tamil Nadu, India

Abstract: In the last few decades data mining is one of the important research areas in data maintenance of
computing. In computing world, plentiful algorithms are proposed for mining. The few applications of data mining
are web mining, video mining, knowledge mining and string mining. In these applications, string mining is focused
and concentrated to overcome the space allocation process. To overcome the drawback suffered by the space
allocation process Efficient String Mining (ESM) algorithm is proposed. The ESM algorithm performs operation
faster, helps in reducing the space allocation, which in turn improves the performance of string mining and it is also
possible to locate patterns that recurrent in the string database or file with a given support.

Keywords: Data mining, string mining, suffix array, suffix tree, text mining

INTRODUCTION

Knowledge Engineering is a production restraint

which involves desegregating knowledge into computer
system so as to unravel advanced issues which normally
requires a high level of creature capability. At present,
it refers to the building, maintaining and extension of
knowledge-based systems. It has an immense
convention in common with software engineering and
is employed in several computing engineering domains
such as artificial intelligence, including databases, data
mining, skilled systems, decision support systems and
geographic data systems. Knowledge engineering is
additionally associated to mathematical logic, further as
robustly concerned in scientific discipline.

Data Mining is extortion of data or information
from a data set and converts it into a clear structure for
future use and it is a dominant innovative expertise,
with immense effect to assist companies, focus on the
most significant information in their data warehouse
(Koteeswaran et al., 2012a). Data mining tools predict
upcoming trends and behaviors, permitting businesses
to create sensible, knowledge-driven decisions. The
mechanized, prospective analyses offered by data
mining move beyond the analyses of past measures
provided by demonstration tools typical of decision
support systems.

Text Mining is intermittently and alternately
cited as text data mining, approximately similar to text
analytics and refers to the method of etymologizing
premium information from text (Koteeswaran et al.,
2012b). High-quality data is naturally derived by
making of patterns and propensity such as statistical

pattern knowledge. Text mining typically involves the
process of configuration the input text, routinely
parsing, besides the addition of some derived linguistic
options and also removal of others and later insertion
into a data set (Koteeswaran and Kannan, 2013).

The study explains ESM algorithm that helps in
overcoming the space allocation problem by using less
space while maintaining runtime efficiency similar to
fastest available algorithms. Also spectacularly less
memory is utilized than the other algorithms.

MATERIALS AND METHODS

Jasbir et al. (2012a) have proposed rising substring
patterns from databases of string that have been
exposed, which pass through an enhanced suffix array
data structure. The data mining algorithms are usually
lounged at efficiency spectrum at its extreme end; they
are either fast and utilize massive amount of space or
compact and orders of size slower. This study
introduces an algorithm that achieves the best of both
these boundaries, having runtime equivalent to the
fastest available algorithms while using less space than
the most space efficient ones. While we use
spectacularly less memory than the other algorithms the
same may be accepted and utilized worldwide.

Yun et al. (2003) have proposed a tree structures
that are used extensively in domains such as
computational biology, pattern recognition, computer
networks and so on. The study present indexing
technique for free trees and apply this indexing
technique to the problem of mining frequent sub trees.
They first define a new representation, the canonical

Res. J. Appl. Sci. Eng. Technol., 7(23): 5063-5067, 2014

5064

form, for rooted trees and extend the definition to free
trees. They also introduce another concept, the
canonical string, as a simpler representation for free
trees in their canonical forms. They then apply their tree
indexing technique to the frequent sub tree mining
problem and present Free Tree Miner, a
computationally efficient algorithm that discovers all
frequently occurring sub trees in a database of free
trees. They performed and the scalability of their
algorithms through extensive experiments based on
both synthetic data and datasets from two real
applications: a dataset of chemical compounds and a
dataset of Internet multicast trees.

Hiroki et al. (1998) have discussed about study of

data mining problem in a large collection of in

structured texts based on association rules over sub

words of texts. A two-word association rule is an

expression such as (TATA, 30, AGGAGGT)) C that

expresses a rule that if a text contains a sub word

followed by another sub word with distance no more

than k then a condition C will holds with a probability.

They present an efficient algorithm for computing

frequent patterns that optimizes the confidence with

respect to a given collection of texts. The algorithm

runs in time O (mn 2 log 2 n) and in space O (km n log

n), where m and n are the number and the total length

of classification examples, respectively and k is a small

constant around 30-50. The algorithm employs the

suffix tree data structure from string pattern matching

and the orthogonal range query techniques from

computational geometry. They also give a faster version

that runs in time and in space.
David and Marcel (2008) have proposed that a

general approach for frequency based string mining,
which has many applications, e.g., in contrast data
mining. Their contribution is a novel algorithm based
on a deferred data structure. Despite its simplicity, their
approach is up to 4 times faster and uses about half the
memory compared to the best-known algorithm of
Fischer et al. (2006). Applications in various string
domains, e.g., natural language, DNA or protein
sequences, demonstrate the improvement of our
algorithm.

Johannes et al. (2005) have explained about

Mining frequent strings in databases that has many

interesting applications, e.g., in computational biology.

They focus on a special kind of constraint-based

frequent string mining, namely computing all strings

that are frequent in one database and infrequent in

another. They also present a method to find such strings

by using the suffix-and LCP-arrays, which can be

computed extremely fast and space efficiently and

further exhibit a good locality performance. They tested

their method on several biologically relevant data sets

and demonstrated that it outperforms existing methods

in terms of time and space.

Mocian (2012) have focused on the algorithms and

data structures used in string mining and their

applications in bioinformatics, text mining and

information retrieval. More specific, it studies the use

of suffix trees and suffix arrays for biological sequence

analysis and the algorithms used for approximate string

matching, both general ones and specialized ones used

in bioinformatics, like the BLAST algorithm and PAM

substitution matrix. Also, an attempt is made to apply

these structures and algorithms for text mining and

information retrieval.
Existing algorithms are making two passes from

start to finish of the LCP array to calculate the support
of all substrings in the database (Jasbir et al., 2012b).
The primary pass computes and stores substrings and
repeats it within a single string. Theoretical and
Practical Performance of Previous String Mining
Algorithms, Theoretical space is in bits, practical space
is in bytes and also practical time is given relative to the
original frequent linear algorithm are all completely
existing. They build the Suffix Array for multiple
databases in a similar way by concatenating the string
for each database. We have a tendency to call these
correction factors and store them in an array C. The
second pass then computes how often all substrings
occur within the whole database. By subtracting the
correction factor from this number, you get the support
for each substring.

Adrian and Enno (2008) contribution helps in
enhancing the existing linear-time algorithm for
frequency constraint in such a way that the maximum
memory utilization is a constant factor of the size of the
largest database of strings. Also an algorithm based on
two suffix arrays to calculate the intersection of the
results of different databases are proposed. According
to Zhan et al. (2010), databases of strings are used to
find all strings that fulfill certain constraints of all string
databases. A suffix and LCP table are constructed
which can reduce the total space consumption of string
mining efficiently.

Proposed algorithm and approaches: In this proposed
research study we are planning to present a innovative
algorithm and approach for mining substrings from a
information or file of strings that’s going to be very
efficient. While we use outstandingly less memory than
the other algorithms the same may be measured and
utilized internationally. We are planning to use the
following techniques and methods Auxiliary Reducing
Space, Civilizing Runtime, Parallelization and Multi
Course of Accomplishment and also Resilient
Processing. ESM Longest Common String and Longest
Repeated string algorithms are successfully
implemented and achieved the effective results.

Algorithm 1: ESM-longest repeated string:
package project.sm;

public class LongRS extends Base {

public void fLRS ()

{

String input = readInputFile ();

Res. J. Appl. Sci. Eng. Technol., 7(23): 5063-5067, 2014

5065

input = input.replaceAll ("\\s+", " ");

SuffixArray ss = new SuffixArray (input);

int saLen = ss.length ();
long sTime = System.currentTimeMillis ();
String lrs = "";
for (int i = 1; i<saLen; i++)
{
 int length = ss.lcp (i);
 if (length>lrs.length ())
 lrs = ss.select (i) .substring (0, length);
}
long eTime = System.currentTimeMillis ();
System.out.println ("LongRS : " + lrs);
System.out.println ("Time Taken (ms): "+ (eTime -
sTime));
System.out.println ("Memory (bytes): "+saLen);
 }
public static void main (String [] args)
{
 LongRS lrs = new LongRS ();
 lrs.fLRS ();
}
}

The Efficient String Mining (ESM) algorithm one

and two are effectively analyzed, designed,
implemented and tested to get the efficient string
mining in the large database or large files.

Algorithm 2: ESM-longest common string:
package project.s.m;

 for (int i = 1; i<saLen; i++)

 {

if (sa.select (i) .length () < = N2 && sa.select

(i-1) .length () < = N2) continue;

 if (sa.select (i) .length () >N2+1 && sa.select (i-1)

.length () >N2+1)

 continue;

 int length = sa.lcp (i);

 if (length>substring.length ())

 substring = sa.select (i) .substring (0, length);

 }

 long endTime = System.currentTimeMillis ();

 System.out.println ("LongCS: "+substring);

 System.out.println ("TimeTaken (ms): "+ (eTime-

sTime));

 System.out.println ("Memory (bytes): "+saLen);

 }

 public static void main (String [] args){

 LongCS lcs = new LCS ();

 lcs.fs ();

 }

 }

The final results achieved through the proposed

algorithms are very much important and so much in

demand.

EXPERIMENTAL RESULTS AND

DISCUSSION

Harware’s Used: CPU: Intel i5, RAM: 4 GB RAM,

Memory: 8 MB L3 Cache, 500 GB Hard Disk.

Software Used: Java. When used the suffix array, to

find LCS (Longest Common String) and LRS (Longest

Repeated String) achieved the following (Fig. 1 to 3):

Fig. 1: ESM-LRS implementation result

Res. J. Appl. Sci. Eng. Technol., 7(23): 5063-5067, 2014

5066

Fig. 2: ESM-LCS implementation result

Fig. 3: ESM-SM implementation result

Res. J. Appl. Sci. Eng. Technol., 7(23): 5063-5067, 2014

5067

Table 1: Time

Tested input Derived output

Time_Taken (msec) Time_Taken (msec)

1-3 msec 7-10 msec

2-5 msec 0.5-1 sec

Table 2: Space

Tested input Derived output

String_Size String_Size

1-3 KB 10 KB

3-6 KB 1 MB

Better results could be achieved when multiple

cores and high RAM configuration are used. The time

taken to repossess data would be in Micro

Seconds/Nano Seconds. As we have used to JAVA

which is high level language, it takes some memory to

load the runtime classes so the memory taken by overall

process is more. If we use low level languages (like C,

Pascal), the memory usage of the overall process will

be less. Storing the suffix array of large data in RAM

would be memory consuming job. Instead we can use

the other algorithms like (LRU-Least Recently Used,

LCU-Less Commonly Used, LFU-Less frequently

used), to store the data in second level cache. The

second level cache shall be disk or database. So with

multiple cores, data reclamation shall be made better

and with our proposed algorithms and approach the

memory usage also shall be optimized.

CONCLUSION

In this research study we achieved very measurable

results in string mining through ESM algorithm and this

could be updated and enhanced with more advanced

techniques to deliver extra fast and to use less amount

of space. The Time and Space efficiently notated

through the Mille Seconds and Kilo bytes respectively

are mentioned in Table 1 and 2. The same work should

be proceeded to achieve a better efficient string mining.

REFERENCES

Adrian, K. and O. Enno, 2008. A space efficient

solution to the frequent string mining problem for

many databases. Data Min. Knowl. Disc., 17(1):

24-38.

David, W. and H.S. Marcel, 2008. Efficient string
mining under constraints via the deferred
frequency index. Proceedings of the 8th Industrial
Conference on Advances in Data Mining: Medical
Applications, E-Commerce, Marketing and
Theoretical Aspects (ICDM ’08), pp: 374-388.

Fischer, J., V. Huen and S. Kramer, 2006. Optimal
string mining under frequency constraints.
Proceeding of the European Conference on
Principles and Practice of Knowledge Discovery in
Databases (PKDD), 4213: 139-150.

Hiroki, A., W. Atsushi, F. Ryoichi and A. Setsuo, 1998.
An efficient algorithm for text data mining with
optimal string patterns. Proceeding of the ALT’98,
LNAI, Vol. 247.

Jasbir, D., J.P. Simon and T. Andrew, 2012a. Practical
efficient string mining. IEEE T. Knowl. Data En.,
24(4).

Jasbir, D., J.P. Simon and T. Andrew, 2012b. Trends in
suffix sorting: A survey of low memory
algorithms. Proceedings of the 35th Australasian
Computer Science Conference (ACSC'12).

Johannes, F., H. Volker and K. Stefan, 2005. Fast

frequent string mining using suffix arrays.

Proceedings of the 5th IEEE International

Conference on Data Mining (ICDM '05), pp:

609-612.

Koteeswaran, S. and E. Kannan, 2013. Analysis of

Bilateral Intelligence (ABI) for textual pattern

learning. Inform. Technol. J., 12(4): 867-870.

Koteeswaran, S., P. Visu and J. Janet, 2012a. A review

on clustering and outlier analysis techniques in data

mining. Am. J. Appl. Sci., 9(2): 254-258.

Koteeswaran, S., J. Janet and E. Kannan, 2012b.

Significant term list based metadata conceptual

mining model for effective text clustering.

J. Comput. Sci., 8(10): 1660-1666.

Mocian, H., 2012. Applications of string mining

techniques in text analysis. Sci. Bull. Petru Maior

Univ., Targu Mures, 9(1): 5.

Yun, C., Y. Yirong and R.R. Muntz, 2003.

Indexing and mining free trees. Proceeding of the

3rd IEEE International Conference on Data Mining

(ICDM, 2003), pp: 509-512.

Zhan, X.G., X.M. Zhi, S.X. Yu and L. Li, 2010. An

Optimized LCP table based algorithm for frequent

string mining. Appl. Mech. Mater., 20-23:

653-658.

