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Abstract: Low illumination environment in Fluorescence microscopy, create arbitrary variations in the photon 

emission and detection process that manifest as Poisson noise in the captured images. Therefore study the effect of 

Standard denoising algorithms wherein the noise is either transformed to Gaussian or the denoising is done on the 

Poisson noise itself. In the first strategy the noise is Gaussianized by applying the Anscombe root transformation to 

the data, to produce a signal in which the noise can be treated as additive Gaussian and then the consequential image 

is denoised using conservative denoising algorithms for additive white Gaussian noise such as BLS_GSM and 

OWT_SURELET and finally the inverse transformation is done on the denoised image. The choice of the proper 

inverse transformation is vital for fluorescence images in order to reduce the bias error which arises when the 

nonlinear forward transformation is applied. The Latter strategy considers PURELET technique where the denoising 

process is a Linear Expansion of Thresholds (LET) that optimize results by depending on a purely data-adaptive 

unbiased estimate of the Mean-Squared Error (MSE), derived in a non-Bayesian framework (PURE: Poisson-

Gaussian unbiased risk estimate). Experimental results are compared with exisitng work on how the ISNR changes 

with the change in algorithms for fluorescence images. 

 
Keywords: Anscombe transformation, fluorescence, mixed-poisson-gaussian, poisson-gaussian unbiased risk 

estimate 

 
INTRODUCTION 

 
Fluorescence microscopy is a popular live imaging 

practice, used to image biological specimens. This 
technique has rigid constraints for parameters like 
acquisition-time and photo toxicity. Low illumination 
conditions generate arbitrary variations in the photon 
emission and detection process that manifest as Poisson 
noise in the captured images (Sampath and Arun, 
2012). Successful denoising algorithms are 
consequently indispensable before visualization and 
analysis of these images. 

In this study main aim of the work is to establish 
the impact of various standards denoising strategies on 
fluorescence images (Sampath and Arun, 2013). Photon 
and camera readout noises in general degrade 
fluorescence images. Thus the stochastic data 
representation is a Mixed-Poisson-Gaussian (MPG) 
procedure. Therefore consider strategies which 
moreover work on the Poisson noise or Gaussianize the 
Poisson process and then denoise the Gaussianized 
image (Luisier et al., 2010). 

For Gaussianizing the images were carriedout to 

Variance  Stabilizing  Transform  (VST)  and applied to  

Anscombe root transformation �: � → 2�� + �	  to the 

data which determination of Gaussianize the noise 

which is then removed using a conventional denoising 

algorithm for additive white Gaussian noise ,which in 

our case is OWT_SURELET and BLS_GSM 

algorithms. An inverse transformation is used to 

estimate the signal of interest for denoised signal. 

Proper inverse transformation is primary in order to 

reduce the bias error which prone position when the 

nonlinear forward transformation is performed 

(Fryzlewicz and Nason, 2004). Anscombe (1948) 

developed an algebraic inverse and the asymptotically 

unbiased inverse that together show the way to a 

substantial bias at low counts. 

In this study also study the result of the PURELET 

algorithm whereas PURE algorithm unbiased results are 

estimated by using Haar wavelet domain, of the mean-

squared error among the original image and the 

estimated image (Portilla et al., 2003). PURE-LET 

estimates the original image from the noisy image by 

estimation of PURE results with less MSE. 
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THEORY 
 

Poisson noise: Image acquisition step observes the 
original pixel values and it is defined as z i , i = 1,… …, 
N. Where each and every zi to be an self-determining 
random Poisson variable whose mean yi ≥ 0 is the 
fundamental intensity value to be estimated (Kolaczyk 
and Dixon, 2000). Clearly, the discrete Poisson 
probability of each zi is: 
 ���
��
� = 

����������!                 (1) 

 

The mean Poisson variable zi and variance of 
parameter yi is defined as follow: 
 ���
��
� = �
 = �����
��
�                            (2) 
 
Poisson noise can be formally defined as: 
  �
 = �
 − ���
��
�                                           (3) 
 

Thus, trivially have ���
��
� = 0 and �����
��
� = �����
��
� = �
. Because possion noise 
variance results purely depends on the result of original 
intensity value. More purposely, the standard deviation 

of the noise �
 equals√�
. Outstanding the result of 
Poisson noise increases accordingly the signal-to-noise 
ratio decreases as the intensity value decreases (Willett 
and Nowak, 2003; Willett, 2006). 
 
Variance stabilization and the Anscombe 
transformation: The rationale following for applying a 
variance-stabilizing transformation is to eliminate noise 
variance from data dependence, thus it becomes 
constant throughout the whole data �
, 
 = 1, … … , &. 
Moreover if the variance-stabilizing transformation is 
performed and then next predictable denoising method 
was designed for estimation of intensity values with a 
white Gaussian noise (Anscombe, 1948; Portilla et al., 
2003). Exact stabilization or exact normalization based 
methods are possible to estimate the result of 
asymptotical. One of the important methods to analysis 
the result of asymptotical using variance-stabilizing 
transformations  is  the  Anscombe  transformation  (Bo 
et al., 2008): 
 �: � → 2�� + �	                                             (4) 

 

Applying Eq. (4) results the asymptotically 
additive standard normal noise with Poisson distributed 
data. The denoising signal of �(�) produces a signal D 
which is measured as an estimation of ���(�)���. 
 
Denoising: 

• Gaussian Denoisin 

• Gaussian Denoising-BLS-GSM 
 

Gaussian denoising BLS-GSM method is based on 
a numerical model of the coefficients and is used for 

removing noise data from digital images. In this 
statically model the coefficient of Neighborhoods at 
neighboring positions and their corresponding scales 
are modeled by making combination of two 
independent arbitrary variables that is a Gaussian vector 
and a hidden positive scalar multiplier. In this model 
each and every coefficient of Neighborhoods error 
values are estimated using Bayesian least square 
estimation in Eq. (8) and thus decreases the weighted 
average values of the local linear, it evaluates the 
overall probable result of hidden multiplier variable. 
Top level structure based procedure followed for image 
denoising: 

 

• Decompose the image into pyramid sub bands at 
diverse scales and orientations 

• Denoise every subband, excluding for the low pass 
residual band 

• Reverse the pyramid transform, achieving the 
result of denoised image  

 

Phyramid representation of the vector y defines the 
values for neighborhood of observed coefficients x and 
it can be expressed as: 
 � = * + + = √�, + +                             (5) 
 

In the Eq. (4) coefficient of neighborhood together 
with the combination of three independent additives 
Gaussian noises shown in Eq. (5). Together u and w are 
zero-mean Gaussian vectors, with related covariance 
matrices Cu and Cw. The density of the experimental 
neighborhood coefficient vector y conditioned with a 
zero-mean Gaussian value, with covariance: 

 -(���) = �-, + -+ 

.(���) = /*. 0 123(456758)�92:�(:;)< = �>?@A?B�=
C               (6) 

 

The neighborhood noise covariance Cw, is 
obtained by decomposing a delta function DE&�&*F(G, H) into pyramid sub bands, where (&�, &*) are the image dimensions. Elements of Cw 
computed by using as sample covariance (Thierry and 
Florian, 2007). This procedure is simply widespread for 
nonwhite noise, by changing the delta function with the 
inverse Fourier transform by taking square root value 
for noise power spectral density. Known Cw values are 
computed from the observation covariance matrix Cy. 
Then calculate from -(���) by taking expectations over 
z: 
 -(�) = ����-, + -+ 
 

Without loss of generality by setting ���� = 1, 

resulting in: 

 -, = -� − -+                                            (7) 
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Bayes least squares estimator: For every 

neighborhood least square estimation first need to 

calculate the reference coefficient *I, that is closer to 

middle neighborhood coefficient observed from set of 

noisy coefficients. The Bayes least squares (BLS) 

estimate is just the conditional mean: 

 ��*I��� = J *I.(*I��) K*I   = J J *I.(*I , ���)∞L K�K*I   = J J *I.(*I��, �).(���)∞L K�K*I  = J .(���)∞L ��*I��, ��K�                             (8) 

 

where, each has unspecified still convergence in order 

to swap the order of integration. Now describing the 

each of these individual components. 

 

Local wiener estimate: The major advantage of this 

methods is that the coefficient of neighborhood vector x 

is conditioned with a zero-mean Gaussian value z. This 

information, coupled with the supposition of additive 

Gaussian noise in Eq. (8) basically a local linear 

(Wiener) estimate. Writing this for the full 

neighborhood vector: 

 ��*��, �� = �-6(�-6 + -8) 1M �               (9) 

 

Solving the above equation and now it is changed as: 

 ��*I��, �� = N 4OPQRQSQ4RQ7MTUVM                                (10) 

 

Posterior distribution of the multiplier: The other 

module of the solution given in (8) is the distribution of 

the multiplier, conditioned on the observed 

neighborhood values and the probability .(���) is 

calculated by using Bayes’ rule is defined as below: 

 .(���) = W(2�4)W>(4)J W(2�X)∞Y W>(X)ZX                           (11) 

 

Summarizing our denoising algorithm: 

 

1) Decompose the image into sub bands. 

2) For each sub band excluding the low pass residual: 

a) Compute neighborhood noise covariance, -8, 

from the image-domain noise covariance  -S. 

b) Estimate noisy neighborhood covariance, -2 

c) Estimate -6 from -8 and -2 using (7). 

d) Compute Λ and M 

e) For each neighborhood: 

f) For each value z in the integration range: 

g) Compute ��*I��, �� using (10). 

h) Compute .(���) 

i) Compute.(���) using (11) 

j) Compute ��*I��, � numerically using (8) 

3)  Reconstruct the denoised image from the processed 

sub bands and the low pass residual to get original 

image D. 

 
Gaussian denoising OWT_SURELET: In SURE, no 
a priori image representation is desired to optimize the 
denoising procedure, which then purely amounts to 
solving a linear scheme of equations in every wavelet 
sub band. General denoising approach includes the 
denoising expression of F(y), with linear expansion of 
threshold for known basic processes, Fk (y): 
  \(�) = N �]\](�)_̂VM               (12) 
 

Here, the unknown weights �] are precised by 

minimization of SURE error values the SURE. It is also 

probable to measure the performance of proposed work 

and compare experimental result with MSE. 
The linearity of the expansion (12) is a critical 

benefit for solving the minimization problem MSE, 

since the SURE is quadratic in \(�).The coefficients �] are, thus, the explanation of a linear system of 
equations: 

 N `_(2)3abc9 `d(2)efg_,h  = 
`_(2)321i:ZjS�`_(2)�eIg_   

For k = 1, 2, … K                                          

Ma = c                                                                (13)                                                              

 

These approaches suggest choosing a group of 

different denoising algorithms preferably with 

balancing denoising behaviors and optimizing a 

weighting of these algorithms to obtain the greatest of 

them at once. 
In the remainder of this study, would focus on a 

point wise thresholding as an alternative of a specific 
algorithm. 
 
Point wise SURE-LET transform denoising: First 
describe a pair of linear transformations D-
decomposition and R-reconstruction such that RD = 
Identity: usually D is a bank of decimated or 
undecimated filters. Once the size of the input and 
output data are frozen, these linear operators are 
characterized by matrices, respectively k =(K
, l)j,m∈eM:og×eM:Tg and q = (�
, l)j,m∈eM:og×eM:Tg that 

satisfy the perfect reconstruction property qk = rk. 
Then, the entire denoising procedure boils down to the 
following steps. 
 

• Apply k to the noisy signal � = * + sto get the 

transformed noisy coefficients+ = k� =(+
)j∈eM:og. 
• Apply a point wise thresholding function (t
(+
))jueM:og 
• Revert to the original domain by applying R to the 

thresholded coefficientst(+), yielding the 

denoised estimate * v = R t(+). 
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This algorithm can be summarized as a function of 
the noisy input coefficients: 

  * v = F(y) = R t(k�)                                          (14) 
 
Expressing F as a linear expansion of denoising 

algorithms Fk, SURE-LET approch suggests the 
following equation: 

 

 
`(2)VN w_xy_(z2)a{c9|}(�)                                           (15) 

 
where, t](. ) are basic point wise thresholding 
functions. This linear parameterization doesn’t depend 
on a linear denoising; definitely, the thresholding 
functions can be selected as nonlinear. 

A point wise thresholding function is possible to be 
well-organized if it satisfies the following properties 
such as Differentiability, Anti-symmetry and Linear 
behavior for large coefficients. A good selection has 
been experimentally found to be of the type of: 
 t
(+) t
(+) = �
, 1~1(+) + �
, 2~2(+)  
 
where,  
 ~1(+) = + and ~2(+) = +(1 − /1( B��)� )         (16) 
 
in each band i.  
 
Summary of the algorithm: 
 
1) Perform a boundary extension on the noisy image. 
2) Perform an UWT on the extended noisy image. 
3) For i = 1….J (number of band pass subbands),  

For k = 1, 2: 
a. Apply the efficient point wise thresholding 

functions defined in (16) to the current subband wi. 
b. Reconstruct the processed subband by setting all 

the other subbands to zero to achieve Fi,k(y). 
c. Calculate the first derivative of tk for every 

coefficient of the current sub band wi and costruct 
the equivalent coordinate of c as exemplified by 
(13). 

    end. 
end. 
 
Poisson denoising: 
Poisson denoising PURELET: The basic theory 
behind this is to find a statistical approximation of the 
Mean Square Error (MSE) among unknown noiseless 
image and the known noisy image. Due to the Poisson 
noise theory referring the result of outcomes using 
PURE; it is compared to Stein’s Unbiased Risk 
Estimate (SURE) which holds for Gaussian 
information.  

The main aim of this study is to minimize the MSE 
to estimate the denoising result to discover the greatest 
one, in the sense of the Signal-to-Noise Ratio (SNR), 

which is a widespread quantifier of restoration quality. 
The effectiveness of the method stems beginning the 
use of a straightforward normalized Haar-wavelet 
transform and from the perception of Linear Expansion 
of Thresholds (LET) because the weight values are 
unknown. 

These weight values are calculated by minimizing 

the PURE, throughout the resolution of an easy linear 

system of equations. Since every one of the parameters 

in algorithm is adjusted completely by design, without 

any need of user. For each sub band, our restoration 

functions consist of several parameters with more 

flexibility than normal single-parameter thresholding 

functions. Significantly, the thresholds are modified to 

local estimates of the noise variance. 

Correspondingly our proposed schema for SURE-

based denoising method defines the thersholding 

parameter with linear expansion of thresholds (LET) 

defined as: 

 F(y) = N akRΘk(w, wˉ)�}VM   

 

where, 

 RΘk (w, wˉ) = Fk(y)                                        (17) 

 

It becomes more efficient than normal PURE 

becomes quadratic in theak’s. Consequently, the search 

for the best vector of parameters a = ea1, a2 … akg� 

boils down to the result of the follow system of linear 

equations:  

for k = 1..K: 

 N �](�)���=1 ��(�)�e�g],�  = 
(�)��]−(�)−D2K
���]−(�)�e�g]  

For k = 1, 2, …K 

Ma = c                                                                (18) 

 

While using the first-order Taylor-series 

approximation of PURE then obtain an equivalent 

system of linear equations given by: 

 �� = e��(�_(�) − ��_(�)) − D�K
���_(�) −��]�g ]∈1…�               (19) 

 

Inverse transformation: Inverse transformation 

function is applied to estimate the desired value of y. 

The direct algebraic inverse of (4) is: 

 r�(k) = �1M(k) = �z��� − �	                             (20) 

 

But the substantial estimate of y is biased, since the 

nonlinearity of the transformation f means generally 

have: 

  ���(�)��� ≠ �(������).              (21) 
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And, thus: 

 f 1M(E�f(z)�y�) ≠ E�z�y�                          (22) 

 
Another possibility is to use the adjusted inverse: 
  rs(k) = �z��� − M	                                              (23) 

 
This provides asymptotical unbiasedness for 

maximum counts. This is the inverse characteristically 

used in applications. 
While the asymptotically unbiased inverse (22) 

results provides efficient for high-count data, applying 
it to low-count data leads to a biased estimate. 

 

Exact unbiased inverse: Provided a well efficient 
denoising, i.e., D is treated as ���(�)��� , the accurate 
unbiased inverse of the Anscombe transformation, f is 
an inverse transformation that maps the values ���(�)��� to the desired values ������: 

 r�: ���(�)��� → ������                           (24) 

 

Because ������ = � for any given y, the hitch of 

finding the inverse r� reduces to calculating the values 
of ���(�)���, it is done by using arithmetical 
calculation of the integral equivalent to the expectation 
operator E: 

 ���(�)��� = J �(�).(���)∞1∞
K�             (25) 

 

where, .(���) is the generalized conditional probability 

density function of z on y. In this study use discrete 

Poisson probabilities .(���) so it can be replcae the 

integral part by summation: 
 ���(�)���=N �(�).(���)∞4VL                              (26) 

Further, because here �(�) is the forward 
Anscombe transformation then rewrite the above (25) 
equation as: 

  ���(�)��� = 2 N ��� + �	  . ������! �∞4VL                (27) 

 
Let us refer to that if the exact unbiased inverse 

value in (23) and it is directly applied to the denoised 
data D with a little error and then the estimation 
error �� = r�(k) can contain variance as well as bias 
components. In common, the unbiasedness of r� holds 
simply provided that k = ���(�)��� accurately, as it is 
unspecified. 
 

EXPERIMENTS 
 

All of our experiments consist of the both Gaussian 
based denoising strategies and Poisson based denoising 
strategy. Gaussian based denoising approach constitutes 
of the same three-step denoising forward Anscombe 
transformation (4) procedure to a noisy image after 
which denoising of the transformed image with 
OWT_SURELET (Thierry and Florian, 2007) 
BLS_GSM (Portilla et al., 2003) and finally apply an 
inverse transformation in order to get the final estimate.  
To apply the accurate unbiased inverse Ic, it is adequate 
to compute (26) for a restricted set of values y; for 
random values of y computed using linear interpolation 
values from (26) and for large values of y approximate 
Ic by Ib. It is also calculate the PURELET strategy for 
the equal images. The performances of these algorithms 
are evaluated by the peak signal-to-noise ratio (PSNR). 
The PSNR is calculated using the formula: 
 10 logML � Ow¡(2j):N ((2¢v12j):�T)� �                            (28) 

 
where, N is the total number of pixels in the image. 

 

 
Fig. 1a: Lung tissue of an adult female grey fox  
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Fig. 1b: Image of Phalloidin staining 

 

 
 

Fig. 1c: Embryonic Albino Swiss mouse fibroblast cells 

  

 
 

Fig. 1d: Transformed African green monkey kidney F broblast cells 
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Table 1: Test results using Bls-Gsm 

Images 

σ 

Figure 1a 

---------------------------------

Figure 1b 

------------------------------------------ 

 Figure 1c 

 ------------------------------------------

Figure 1d 

----------------------------------------

ISNR  

With 

Asymptotic 

Inverse  

ISNR 

with exact 

unbiased 

inverse   

ISNR  

with asymptotic 

inverse  

ISNR with 

exact unbiased 

inverse   

 ISNR   with  

 asymptotic   

 inverse 

 ISNR with   

 exact unbiased  

 inverse 

ISNR with  

asymptotic 

inverse   

ISNR with 

exact unbiased 

inverse 

1 18.3733 18.3788 37.928 37.928  20.8926  20.9045 21.0092 21.0103 

2 12.3533 12.3547 37.7762 37.7762  10.0408  10.0415 13.8841 13.8842 

5 8.7174 8.718 37.4882 37.4882  2.1305  2.1306 8.4743 8.4743 

10 6.3147 6.315 37.2215 37.2215  0.86797  0.86805 6.332 6.332 

15 4.8577 4.8579 37.011 37.011 -0.01025 -0.010188 5.2478 5.2478 

20 3.3614 3.3615 36.8504 36.8504 -1.052 -1.052 4.4453 4.4453 

25 1.9348 1.9349 36.6522 36.6522 -2.1395 -2.1395 3.5624 3.5624 

 

Table 2: Test results using Owt-Surelet 

 

Table 3: Test results using pure-let 

Images Figure 1a Figure 1b Figure 1c Figure 1d 

Σ UWT PURELET UWT PURELET UWT PURELET UWT PURELET 

1 36.6208 33.9654 43.3324 36.1422 

2 35.6699 33.3647 40.2298 35.2649 

5 32.1363 30.8332 33.7215 31.9019 

10 27.4721 26.8765 27.9898 27.3493 

15 24.2687 23.9201 24.5352 24.1935 

20 21.8901 21.6546 22.0610 21.8401 

25 12.9289 19.8365 20.1360 19.9752 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) 

Images 

σ 

 Figure 1a 

--------------------------------- 

Figure 1b 

--------------------------------------------

 Figure 1c 

------------------------------------------

Figure 1d 

----------------------------------------

 ISNR  

 with   

 asymptotic   

 inverse  

 ISNR  

 with exact  

 unbiased    

 inverse   

 ISNR  

 with asymptotic  

 inverse  

 ISNR with   

 exact unbiased  

 inverse   

 ISNR   with   

 asymptotic  

 inverse  

 ISNR with  

 exact unbiased  

 inverse  

ISNR with  

asymptotic 

inverse   

ISNR with 

exact unbiased 

inverse  

1  20.7809  20.7809  33.2325  33.2325  32.2628  32.2628 46.2268 46.2268 

2  7.2921  7.2921  21.1491  21.1491  21.8615  21.8615 41.1083 41.1083 

5 -19.8475 -19.8475  2.4624  2.4624 -0.7134 -0.7134 33.7373 33.7373 

10 -42.3704 -42.3704 -18.3072 -18.3072 -21.2937 -21.2937 27.9214 27.9214 

15 -55.5672 -55.5672 -32.1022 -32.1022 -34.4599 -34.4599 24.4688 24.4688 

20 -64.9806 -64.9806 -42.3147 -42.3147 -44.0059 -44.0059 22.0049 22.0049 

25 -71.9272 -71.9272 -50.4210 -50.4210 -51.4470 -51.4570 20.0877 20.0877 
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(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(d) 
 
Fig. 2: Comparison of various denoising algorithms with respect to sigma 
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In our experiments using the test images was 
shown in Fig. 1a to c and evaluates the performance in 
terms of PSNR. Using OWT-SURELET, BLS_GSM 
and PURELET for the denoising and the inversion is 
done with either the exact unbiased inverse or the 
asymptotically unbiased inverse.  

The denoising performance is evaluated in terms of 

PSNR and compares the results obtained with the 

results obtained in Sampath and Arun (2012, 2013). 

Table 1 present the results in Sampath and Arun (2012). 

Table 2 shows the in Sampath and Arun (2012) and 

Table 3 shows the results of PURELET. The plots of 

the PSNR values obtained using BLS_GSM, OWT 

SURELET and PURELET at a glance shows that 

PURELET outperforms the other two strategies in 

general for fluorescence image. 

 

RESULTS 

 

The four test images used in the experiment (Fig. 1). 

Plots of results (Fig. 2); Plots of results (Fig. 3 and 4). 

CONCLUSION  
 

Results from PURE-LET denoising shows great 

improvement in the ISNR value when compared to 

OWT SURELET denoising and BLS_GSM denoising 

strategies. Generally PURE-LET strategy out beats 

OWT_SURELET and BLS_GSM strategy, but shows a 

reduction in ISNR when compared to BLS_GSM only 

for low count image. A comparative study of 

BLS_GSM and OWT-SURELET strategies show that 

OWT provides higher ISNR when the sigma value is 

low. As the sigma value increases there is a steep fall in 

the signal to noise ratio. The BLS_GSM showed 

improvement when using the exact unbiased transform 

for low count images. Whereas for OWT-SURELET 

both asymptotic inverse transform and exact unbiased 

inverse transform produced the same results. The total 

comparison of results shows that the PURELET 

strategy is the better choice for fluorescence images and 

outperforms BLS_GSM and OWT_SURELET.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 (a)        (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(c)                                                                                 (d) 

 
Fig. 3: Comparison of exact and asymptotic inverse transforms using BLS_GSM 
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Fig. 4: Comparison of exact and asymptotic inverse transforms using OWT-SURELET 
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