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Abstract: The main aim of this study is to control a multivariable coupled system by choosing sliding mode 
switching function. A Sliding mode control approach is developed to control a three phase three wire voltage source 
inverter operating as a shunt active power filter. Hence, no need to divide the system model developed in the 
synchronous ‘dq’ reference frame into two separate loops. Furthermore, the proposed control strategy allows a better 
stability and robustness over a wide range of operation. When sine PWM is used for generation of pulses for the 
switches, a variable switching nature is exhibited. The pulses for the active filter are fed by a Space Vector 
Modulation in order to have a constant switching of converter switches. But, the conventional space vector 
modulation, if implemented practically, needs a complicated algorithm which uses the trigonometric functions such 
as arctan, Sine and Cosine functions which in turn needs look up tables to store the pre-calculated trigonometric 
values. In this study, a very simplified algorithm is proposed for generating Space vector modulated pulse for all six 
switches without the use of look up tables and only by sensing the voltages and currents of the voltage source 
inverter acting as shunt active filter. The simulation using PSIM and MATLAB software verifies the results very 
well. 
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INTRODUCTION 

 
With the widely used single-phase electric devices 

and increased high power electric appliance, it becomes 
more and more obvious that the quality of power supply 
drops and power factor reduces because of nonlinear 
factors. Since power electronic device and nonlinear 
load seriously damage the power quality, they have 
become the main harmonic pollution source of power 
network. APF could compensate the harmonics 
generated by the load current through injecting 
compensation current to the grid, having the advantages 
of high controllability and fast response. It not only can 
compensate harmonics, but also can inhibit the flicker 
and compensate reactive power; therefore, it is an 
effective approach to suppress the harmonic pollution. 

In recent years, the research and design of APF 
have made great progress and a large number of 
successful APF products have been put into market. 
Along with the rapid development of precision, the 
speed and reliability in hardware equipment, high 
performance algorithm and real time control can be 
realized. The models of APF (The Matlab Mathworks, 
2000),   have been established using various methods 
and the behavior of reference signal tracking has been 

improved using advanced control approaches. Rahmani 
et al. (2010) presented a nonlinear control technique 
with experimental design and single phase shunt active 
filter was designed by Komucugil and Kukrer (2006) 
for three-phase shunt APF. Singh et al. (2007) and 
Elangovan et al. (2005, 2006) designed a simple fuzzy 
logic-based robust APF and design of sliding mode 
controller and intelligent controller to minimize the 
harmonics for wide range of variation of load current 
under stochastic conditions respectively. Bhende et al. 
(2006) proposed TS-fuzzy controlled APF for load 
compensation. Montero et al. (2007) compared some 
control strategies for shunt APFs in three-phase four-
wire systems. Matas et al. (2008) and Ramos-Carranza 
et al. (2008), succeeded in linearizing the mathematical 
model of APF with feedback linearization method. Hua 
et al. (2009) and Komucugil and Kukrer (2006) used 
Lyapunov function to design some new control 
strategies for single-phase shunt APFs. Chang and Shee 
(2004) proposed novel reference compensation current 
strategy for shunt APF control. Pereira et al. (2011) 
derived new strategies with adaptive filters in APFs. 
Marconi et al. (2007) proposed robust nonlinear control 
of shunt active filters for harmonic current 
compensation. 
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Fig. 1: Generalized shunt active power filter scheme 

 
The concept of using active power filters in order to 
compensate harmonic currents Jou et al. (2005) and 
reactive power of the locally connected nonlinear loads 
has been so far investigated and shown to be a viable 
solution for power quality improvement (Akagi, 1994; 
Singh et al., 1999). Furthermore, the time-varying 
topology of an active filter makes it suitable to be 
controlled by a variable structure approach  such as  the 
sliding mode one (Sabanovic-Behlilovic et al., 1993). 
In addition, the robustness characteristic and the 
simplicity of the implementation make the sliding mode 
control particularly attractive (Utkin and Li, 1992) and 
Robust Adaptive control was presented by Ioannou and 
Sun (1995), Ribeiro et al. (2012)  and Valdez et al. 
(2009) and Model reference adaptive shunt active filter 
was presented by Shyu et al. (2008). 

In this study the active filter’s internal dynamics 
are used to obtain the desired closed loop dynamics and 
to select the switching states. The sliding mode 
switching functions are chosen in such a way that 
multivariable coupled system is controlled as a whole 
with no need of divide it into separated loops (DeCarlo 
et al., 1988). Further, the proposed control law has a 
discontinuous component forcing the system's 
trajectory to the sliding surface and a continuous 
component namely the equivalent control which is valid 
on the sliding surface. The active filter performance is 
tested when compensating for nonlinear load current 
harmonics and unbalances (Mendalek and Al-Haddad, 
2000). 

This study also proposes a new simplified 
algorithm for the solution of the space vector PWM 
(Ma et al., 2004; Zhang and Xu, 2001) to the least 
degree by avoiding finding the solutions of the 
trigonometric functions and is easy to implement 
practically. In this study, a very simplified algorithm is 
proposed for generating Space vector modulated pulse 
for all six switches without the use of look tables and 
by only by sensing the voltages and currents of the 
voltage  source  inverter  acting  as  shunt active filter 

METHODOLOGY 
 
System modelling: The considered shunt active filter is 
a 3-phase 3-wire inverter (Fig. 1). When this type of 
converter is controlled into the 'dq' reference-frame 
rotating at the supply fundamental frequency, the 
positive-sequence components at this frequency 
become constant and the effect of the interaction 
between the three phases is avoided at the switching 
state decision level. 

The reference transformation of the model to the 
synchronous frame is given by: 
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The model (1) is a multivariable nonlinear, namely 
bilinear system. It exhibits multiplication terms 
between the state variables {id, iq, vdc} and the inputs 
{u1, u2}. However the model is time invariant during a 
given switching state. It can be written into the 
following general form: 

 

          )( GuXBAXX ++=                              (2) 

 
Sliding mode controller: 
General: The model's state variables {id, iq, vdc} are 
the d-axis and the q-axis AC currents and the DC 
voltage respectively. Each of the two currents has to 
track its harmonic reference and the DC voltage has to 
be regulated at a fixed set point.  

Therefore, in order to apply the proposed control 
law, the load currents are measured and their harmonic 
components are extracted and transformed to the 'dq' 
frame to be used as the current harmonic references. 
The convergence rate of the state variables can be fixed 
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arbitrarily by suitable selection of the sliding mode 
parameters. The sliding mode switching functions are 
chosen to be: 
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where X* is the reference state variable vector. 

These sliding mode switching functions represent 
the references to be tracked by the system's state 
variables. 
The proposed control law is (Singh et al., 1999): 
 

     uu Nequ +=  

                     (4) 
 

In this control law the equivalent control part ueq is 
valid only on the sliding mode surface and the second 
part uN assures the existence of the sliding mode. The 
latter is given by the following: 

 

���� = ���	(��) �� ≠ 0
0 �� = 0�  

 
and, 

 

���� = ���	(��) �� ≠ 0
0 �� = 0�                               (5) 

 
where sgn (X) is the sign function. 

In sliding mode the trajectory of the state variables 

follows the switching surface dσ/dt = 0. 

 

Sliding mode stability: Given the Lyapnov’s function: 

� = 1 2� ��� in order to obtain a sufficient condition 

for the stability in the sliding mode operation, we must 

have: � = 1 2� ��� < 0 when � ≠ 0. 

In fact, this condition represents the sufficient 
condition for the existence of the sliding mode and 
assures the trajectory attraction toward the switching 
surface. Thus, the expression of dσ/dt is: 
 

��
�� = � ��� + �(�) ���� + ��	(�) + ! −
��# ∗ = ��(�). ��	(�)                            (6) 

 
Thus, the stability condition can be written as: 
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Which may be transformed into the following 
inequality: 
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The appropriate values of k1, k2 and k3 are 
selected such that the condition (8) holds true. 

 

 
 

Fig. 2: Shunt active power filter with sliding mode control
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Existence of the equivalent control: The existence of 

the equivalent control of the sliding mode is obtained 

by setting σ = 0, which gives: 
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The coordinates of the equivalent control are thus 

obtained as: 
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The implementation of the sliding mode control 

strategy is simple. The closed loop scheme is illustrated 

in Fig. 2. 

 

SIMPLIFIED ALGORITHM OF SPACE  

VECTOR PWM 

 

The two key problems with the algorithm of space 

vector PWM are: 

 

• To determine the sector that reference vector 

located  

• Solutions of T1, T2, T0 

 

Sector selection: By conducting research on Va, Vb and 

Vc as well as the characteristics of line voltages Vab, Vbc 

and Vca, which are determined by three phase voltages. 

For the first sector: 

 

3/
)Re(V

)Im(V
  tan30/0

r

r1- ππθ <<<<                         (11) 

 

From the above the solution can be obtained as: 
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So, if Vr falls into other sectors, further research 

verifies similar conclusions, which are arranged and 

collected in Table 1. 

 

Solutions of T1, T2 and T0: Conventionaly, the 

solutions T1, T2 and T0 are: 

Table 1: Solutions of T1, T2 and T0 

Sectors ( )CABCAB VVV ,,min  

1 -VCA 

2  VBC 

3 -VAB 

4  VCA 

5 -VBC 

6  VAB 
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For avoiding the trigonometric functions, the new 

solutions can be written as. 

For the first sector: 
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If Vr fall into other sectors, we may through 

analyses, get similar results, which are arranged and 

collected into Table 2. As can be seen from this table, if 

the sector that Vr falls in is known, we can find the 

solutions of T1, T2 and T0 conveniently. 

 

RESULTS AND DISCUSSION 

 

In order to validate the accuracy of the proposed 

controller, the system was simulated using the “Power 

System Blockset” in MATLAB/SIMULINK 

environment (Hua et al., 2009). The parameters used 

are shown in Table 3. 
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Table 3: Simulation parameters 

System parameter Value 

Supply Voltage (Vs) 230V (rms) /P 
Frequency (f) 50 Hz 
Inductance (Lc) 4.5 mH 
Resistance (Rc) 0.1 ohms 
DC Capacitance (C) 1000 µF 
K1, k2 and k3 0.8, 0.4 and 0.1 

The power circuit of the system is simulated using 
PSIM software. The control circuit of the system is 
simulated using MATLAB/SIMULINK. For the 
selection of sectors and the instantaneous calculation of 
T1, T2, T0 MATLAB coding was used.  

We used the simcoupler module of PSIM software 
for the data sharing between MATLAB and PSIM

 

 
 

Fig. 3: Simulation of the overall system 

 

 
 

Fig. 4: Non linear load current
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Fig. 5: Supply current after compensation 
 

 
 

Fig. 6: Supply voltage 
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software. The power circuit simulated is shown in the 
Fig. 3. 

The goal of the simulation is to examine the 
capability of the controller to fulfill the following three 
different aspects: 

 

• Current harmonic compensation 

• Dynamic response performance 

• Load unbalance compensation 
 
Current harmonic compensation: Figure 4 shows the 
non-linear load current waveforms in steady state 
operation. The load consists of a three-phase thyristor 
bridge feeding an inductive load. The ac supply 
currents after compensation are illustrated in Fig. 5. The 
phase-1 current harmonic spectrums are  depicted  in 
Fig. 6. It results that the active filter decreases the Total 
Harmonic Distortion (THD) in the supply currents from 
26.6% THD of load currents to 3.1%. 
 
Dynamic response performance: In order to examine 
the dynamic behavior of the system a 100% step 
variation of the non-linear load  is  performed  at  time  
t = 110 msec. The load and the supply currents into 
phases 1 and 2 as well as the active filter dc voltage are 
depicted in Fig. 6. 
 

CONCLUSION 
 

It is found that the shunt active power filter 
controlled with sliding mode-strategy is effective to 
eliminate the current harmonics, to produce the reactive 
power and to compensate for unbalances of nonlinear 
loads. Both the current errors elimination and the dc 
voltage regulation are solved together in-order to obtain 
the switching functions of the active filter. Simulation 
results presented support to theoretical predictions. 

This study will also give a better solution for the 
implementation of space vector modulator in a very 
simplified manner if it is implemented using DSP or 
FPGA without the use of look up tables. So, this study 
paves the way for a System on chip solution for any 
complicated control of motor control applications. 
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