
Research Journal of Applied Sciences, Engineering and Technology 8(4): 556-564, 2014

DOI:10.19026/rjaset.8.1005

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2014 Maxwell Scientific Publication Corp.

Submitted: April 22, 2014 Accepted: July 01, 2014 Published: July 25, 2014

Corresponding Author: G. Gayathri Devi, Department of Computer Science, SDNB Vaishnav College for Women, Chennai,

Tamil Nadu, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

556

Research Article
Separation of Text Components from Complex Colored Images

G. Gayathri Devi and C.P. Sumathi
Department of Computer Science, SDNB Vaishnav College for Women, Chennai, Tamil Nadu, India

Abstract: The objective of this study is to project a new methodology for text separation in an image. Gamma
Correction Method is applied as a preprocess technique to suppress non text regions and retain text regions. Text
Segmentation is achieved by applying Positional Connected Component Labeling, Text Region Extraction, Text
Line Separation, Separation of Touching Text and Separation of Text Components algorithms. At last, the details of
each word’s and the line’s starting text component position are stored in a text file. Experiments are conducted on
various images from the datasets collected and tagged by the ICDAR Robust Reading Dataset Collection Team. It is
observed that the proposed method has an average recall rate of 97.5% on separation of text components in an
image.

Keywords: Connected components, gamma correction method, segmentation, text extraction, text line, text

separation, thinning

INTRODUCTION

Rapid development of digital technology has

resulted in digitization of all categories of materials.
Text data present in images and video contain useful
information for detection of vehicle license plate, name
plates, keyword based image search, content based
retrieval, text based video indexing, video content
analysis, document retrieving, address block location
etc. Recognition of the text data in document images
depends on the efficient separation of text. Many
methods have been proposed for text separation in
images and videos. It is not easy to describe a unified
method as there are low-contrast or complex images,
text with variations in font size, style, color, orientation
and alignment etc.

LITERATURE REVIEW

Chethan and Kumar (2010) proposed an algorithm
to remove graphics from the document and correct
skew for the documents captured using cellular phone.
The basic process of this approach consists of three
steps: First, a vertical and horizontal projection was
used to remove graphics from images. Second, dilation
operation was applied to the binary Images and the
dilated Image was thinned. At last Hough transform
was applied to skew angle.

A new text line location and separation algorithm
for complex handwritten documents was proposed by
Shi and Govindaraju (2004). The method used a
concept of fuzzy directional run length which imitated

an extended running path through a pixel of a
document. The method partitioned the complex
documents to separate the content of the document to
texts in terms of text words or text lines and to other
graphic areas.

Peng et al. (2013) projected a method to classify
machine printed text, handwritten text and overlapped
text. Three different classes were initially identified
using G-means based classification followed by a
Markov Random Field (MRF) based relabeling
procedure. A MRF based classification approach was
then used to separate overlapped text into machine
printed text and handwritten text using pixel level
features.

Patil and Begum (2012) presented a method for

discriminating handwritten and printed text from

document images based on shape features. K-nearest

neighbor based on minimum distance was used to

classify the handwritten and printed text words.

Yao et al. (2012) proposed a system which

detected texts of arbitrary orientations in natural

images. The proposed algorithm consists of four stages:

component extraction where image are grouped

together to form connected components using a simple

association rule, component analysis to remove non-

text parts, candidate linking to link the adjacent

character candidates into pairs and chain analysis to

discard the chains with low classification scores. Coates

et al. (2011) presented text detection and recognition

system based on scalable feature learning algorithm and

applied it to images of text in natural scenes.

Res. J. Appl. Sci. Eng. Technol., 8(4): 556-564, 2014

557

A new method to locate text in images with
complex background had been presented by Gonzalez

et al. (2012). The method combined efficiently MSER
and a locally adaptive thresholding method. The

method mainly composed of three main stages: a
segmentation stage to find character candidates, a
connected component analysis based on fast-to-
compute but robust features to accept characters and
discard non-text objects and finally a text line classifier
based on gradient features and support vector machines.

Phan et al. (2012) proposed novel symmetry
features for text detection in natural scene images.
Within a text line, the intra-character symmetry
captured the correspondence between the inner contour
and the outer contour of a character while the inter-
character symmetry helped to extract information from
the gap region between two consecutive characters. A
formulation based on Gradient Vector Flow was used to
detect both types of symmetry points. These points
were then grouped into text lines using the consistency
in sizes, colors and stroke and gap thickness.

A real-time scene text localization and recognition

method was presented by Neumann and Matas (2012)

The probability of each of Extremal Regions (ER) was

estimated using novel features calculated with O (1)

complexity and only ERs with locally maximal

probability are selected to classify into character and

non-character classes using SVM classifier with the

RBF kernel.

A top-down, projection-profile based algorithm to

separate text blocks from image blocks in a Devanagari

document was proposed by Khedekar et al. (2003).

They analyzed the pattern produced by Devanagari text

in the horizontal corresponding to a text block

possesses certain regularity in frequency, orientation

and shows spatial cohesion.

PROPOSED METHODOLOGY

The aim of the proposed work is to separate the
text component from the input Image. The work flow of
the system is shown in the Fig. 1. The input image of
the proposed system has a complex background with
text in it. The first stage is pre-processing that
suppresses the non-text background details from the
image by applying appropriate gamma value. Otsu’s
thresholding algorithm is used to calculate the threshold
value and applied to this image to create an output
binary image.

The output may contain white and black text region
and some noises. In next stage of Text Region
Extraction algorithm, white text and black text region
are extracted from the binary image and those text
regions are stored as white foreground in black
background. Also, the algorithm removes very small
and large non text regions from the image.

In next stage the binary text image is used to create
text row images. Adjacent Text component in Text
Row image may touch each other and overlap or
touching of text components of consecutive row images
may exist. The Separation of Text Row (STR)
Algorithm is used to break the text binary image in to
row text images and solve the problem of touching
components of consecutive row images. The separation
of the touching component of same text row image is
done by applying Detect and Split Touching Text
(DSTT) Algorithm.

The aim of next stage is used to determine the

individual text component, words and lines of a text

row image. Sequence Separation of Text Components

(SSTC) Algorithm is used to separate the individual

text component from the row Images. Text position

Details Algorithm saves the details of the Text Position

of each Text Components, Row Line and Words are

stored in text files. Positional Connected Component

Labeling (PCCL) algorithm which finds the connected

component is used in stages of text separation.

Preprocess technique by using Gamma Correction

Method (GCM): The Gamma Correction method

proposed by Sumathi and Devi (2014) suppresses the

non-text background details from the image by

applying appropriate gamma value and to remove non

text region. The algorithm estimated the Gamma Value

(GV) without any prior details of the imaging device by

using texture measures. By applying this estimated

gamma value to an input image (Fig 2a, c, e), the

background suppressed image (Fig. 2b, d, f) will be

achieved. Otsu’s thresholding algorithm is used to

calculate the threshold value and applied to this image

to create an output binary image (Fig. 3a, 4a, 5a). This

binary Image (I) will be the input of the Extraction of

Text algorithm.

Fig. 1: Work flow of text separation from image

Res. J. Appl. Sci. Eng. Technol., 8(4): 556-564, 2014

558

 (a) (b) (c) (d) (e) (f)

Fig. 2: (a) Image 1, (b) gamma corrected image of Fig. 1a (GV = 0.7), (c) image 2, (d) gamma corrected image Fig. 1c (GV = 7),

(e) image 3, (f) gamma corrected image Fig. 1e (GV = 5.5)

 (a) (b) (c) (d) (e) (f) (g)

Fig. 3: (a) Input image (I), (b) White connected components of I, (c) Reversed Image (RI), (d) white components of reversed

image, (e) white text components of I, (f) black text components of I, (g) output

 (a) (b) (c) (d) (e) (f) (g)

Fig. 4: (a) Input image (I), (b) white connected components of I, (c) Reversed Image (RI), (d) white components of reversed

image, (e) white text components of I, (f) black text components of I, (g) output

(a) (b) (c) (d) (e) (f) (g)

Fig. 5: (a) Input image (I), (b) white connected components of I, (c) Reversed Image (RI), (d) white components of reversed

image, (e) white text components of I, (f) black text components of I, (g) output

Positional connected component labeling algorithm:
A set of pixels in which each pixel is connected to all
other pixels is called a connected Component. A
component labeling algorithm finds all connected
components in an image and assigns a unique label to
all points in the same component. The Positional
Connected Component Labeling (PCCL) algorithm
proposed by Devi and Sumathi (2014) is based on 8-
connectivity to find all connected components in an
image, assigns an unique label to all points in the same
component and find number of components present in
the image. The algorithm for PCCL is based on the
position of the white pixels in the image.

Positional Connected Component Labeling (PCCL)

algorithm:

Input: Binary Image Matrix (I)

Output: Connected Component Labeled Matrix (L),

Numbers_of_Components

Step 1: Find the foreground (white) pixel and record

the foreground column position of the binary

matrix image in a matrix (Position Matrix).

Step 2: Unmark all the cells of the Position Matrix

(PM).

Res. J. Appl. Sci. Eng. Technol., 8(4): 556-564, 2014

559

Step 3: Find the minimum position value (MinPos)

and maximum position value (MaxPos) from

the Position Matrix.

Step 4: Set the value of LABEL to 1. Current Row

(CR) to 1.AV [] = {}, PV [] = {}

Step 5: Get the first unmarked value (umv) from the

Position Matrix (PV [] = umv). Set CR to the

Row Number of umv. FLAG =

NOTPREVMARKED and L = LABEL. If no

unmarked cell found, then go to step 15.

Step 6: Find out the adjacent value (AV []) of the

position values (PV []) from PM. The adjacent

values are P-1, P and P+1 for a value P. If P is

to be MinPos, then the adjacent values are P

and P+1. If P is to be MaxPos, then the

adjacent values are P-1 and P.

Step 7: Search for the AV [] in the CR, CR-1 and

CR+1. Mark the corresponding cell If any of

these cells are already Labeled by the previous

pass, change the FLAG = PREVMARKED,

L = Label assigned to the already Labeled cell.

(Do not include CR-1 for the first row and

CR+1 for the last row).

Step 8: Increment CR by one.
Step 9: Scan CR and find the adjacent values (AV [])

of cells marked by step 7 in the row CR.
Step 10: PV [] = AV []. Go to step 6 if AV [] = Ø or

CR>LAST ROW.
Step 11: Assign L value for the corresponding cells

marked during this pass in the Input Image (I).
Step 12: If FLAG IS NOTPREVMARKED then

increment LABEL value by one.
Step 13: If any unmarked cells found go to step 5.
Step 14: Number_of_Components = LABEL - 1.
Step 15: Stop the procedure.

Text Region Extraction (ETR) algorithm: The
Binary image obtained by previous phase may contain
white and black text region. In Text Region Extraction
algorithm white text region in black background and
black text region in white background are extracted
from the binary image and those text regions are stored
as white foreground in black background. The
algorithm uses PCCL Algorithm to find connected
components. Also, the algorithm removes very small
and large components from the image.

The algorithm for extraction of text region is
presented as follows:

Input: Binary Image Matrix I

Output: Text Image Matrix L, No_of_Text_

Components

Step 1: Apply PCCL Algorithm for the Input Image I

to produce Image L1. This algorithm treat
white pixel as foreground (Region of Interest).

Step 2: Find the size of each component and remove
very small and large component from the

Image L1. (White Text Components of I are
extracted).

Step 3: Reverse the Image I (Change the white pixel to

black pixel and black pixel to white pixel).

RI = ~I.

Step 4: Apply PCCL Algorithm for the Reversed

Image RI to produce Image L2.

Step 5: Find the size of each component and remove

very small and large Component from the

Image L2. (Black Text Components of I are

extracted.)

Step 6: Find all the Components (RCs) of L1 that fit

inside the components of L2. Remove RCs

from the image L1.

Step 7: Find all the Components (RCs) of L2 that fit

inside the component of L1. Remove RCs

from the image L2.

Step 8: Assign 1 to the pixel value greater than zero

for the image L1 and L2. (L1 = (L1>0),

L2 = (L2>0)).

Step 9: L = L1+L2. Apply PCCL Algorithm for the L

to assign the label value.

Step 10: No_of_Text_ Component = No_of_

Components.

Step 11: Stop the procedure.

To illustrate the method Fig. 3a is taken. Region of

Interests are G, O (white pixel) T, e, s, c, o, D, i, e, t, s,

l, o, s, e, a, s, t, o, n, e, i, n, 8, w, e, e, k, s (Black pixel).

The output after step 2 of ETR algorithm is shown in

Fig. 3b. As per step 3, Fig. 3a is reversed (Fig. 3c) to

find out whether there is any black region of interest

component. There are 6 components which looks like

filled ‘o’ in Fig. 3c and one component look like filled

‘o’ near right bottom corner in Fig. 3d. White pixels

inside the letter ‘e’ in Tesco, letters ‘o’ in lose, ‘a’,

letter ‘o’ in stone and digit ‘8’ are treated as

components by Positional Connected Component

Algorithm. However the white pixel inside the letter ‘e’

is also a component. But, according to step 2 of ETR

algorithm, it is treated as very small component and it

has been removed. These 6 components appeared in

Fig. 3b and one component in Fig. 3d, 4d and 5d is

removed after step 6 and 7 of ETR algorithm. The

output of step 6 of ETR is Fig. 3e, 4e and 5e and the

output of step 7 is Fig. 3f. Merge the output of step 6

and 7 of ETR algorithm to get the output image L

(Fig. 3g). Figure 4b, f and Fig. 5b, f are the stages

involved when the algorithm is applied for the Fig. 4a

and c, respectively.

Separation of Text Row (STR) algorithm: The aim of
this algorithm is to break the image in to row images by
using maximum and minimum row position of the text
components.

Separation of text line extraction method consists
of the following steps:

Res. J. Appl. Sci. Eng. Technol., 8(4): 556-564, 2014

560

 (a) (b) (c) (d) (e) (f)

 (g) (h) (i) (j) (k) (l)

 Fig. 6: (a) Temp row 1, (b) row 1, (c) temp row 2, (d) row 2, (e) temp row 3, (f) row 3, (g) temp row 4, (h) row 4, (i) temp row

5, (j) row 5, (k) temp row 6, (l) row 6

Fig. 7: Row 1 of Fig. 4g

Input: Labeled Text Image L, No_of_Text

Components

Ouput: Row Images R [], No_of_Row

Step 1: Extract each component and store it in

CompDet []
Step 2: Reassign the label of Text Components in

Image L in the sequence order according to
Top Row Pixel Position of each component

Step 3: StartLabel = 1, End Label = No_Of_
Text_Components, No_Of_Row = 0

Step 4: While StartLabel< = EndLabel

i. Find the Minimum Row Position (MinRowPos)

and Maximum Row Position (MaxRowPos) of the

Component Labeled as StartLabel

ii. Components lies between (1, MinRowPos,

MaxCol, MaxRowpos) in image L forms a text

Row images TempRow

iii. EndLabel = Max Label of TempRow image

iv. Store Minimum Row Position of the component

among the components of Temp Row in to MinY

v. Store Maximum Row Position of the component

among the components of Temp Row in to MaxY

vi. RI = L (1, MinY, MaxCol, MaxY)

vii. RI = 0 for the values other than (RI> = StartLabel

and RI< = EndLabel)

viii. R [++No_Of_Row] = RI

ix. StartLabel = EndLabel+1

Step 5: Stop the Procedure

To illustrate the STR algorithm, Fig. 3g, 4g and 5g
is taken. The output of step 4 (ii) of STR algorithm is
shown in the Fig. 6a, c, e, g, i and k. In Fig. 6g the
component ‘e’ in word ‘stone’ is the StartLabel as the
TopRowPosition is greater than the other component.
The exact row height of component ‘e’ from column 1
to maximum column of image is examined. Some
partial part of l, o, s, e, a, s, t components are found in
Fig. 6g and decided that those components are also
belongs to the same row. Figure 6h is obtained after
step 4 (vi) of ETL is applied. The Output Rows R [] are

shown in Fig. 6b, d, f, h, j and i. In Fig. 6i a part of ‘l’,
’o’, ‘s’ components appears, but those components will
not be taken in to consideration in creation of new row
as those components already been found in previous
row (Step 5 (vii) of STR) (Fig. 7).

Detect and Split Touching Text (DSTT) algorithm:

This algorithm uses component width size, Outlier

algorithm to detect the touching components. The

separation of the touching component is done by using

morphological thinning and lightly populated area

algorithm.

The DSTT algorithm is presented by the following

steps.

Input: Row Images R [], No_Of_Row
Output: Corrected Row Images R []

Step 1: Repeat step 2 to step 5 For i = 1 to

No_OF_Rows

Step 2: Find the component width size of each

component of row R [i] and store it in CWS []

Step 3: Find the outlier value (s) of CWS []

Step 4: Calculate the average value (avg) of CWS []

except outlier values (s) (Number greater than

Q3+1.5×IQR is an Outlier. Q3 Third Quartile,

Q = First Quartile, IQR = Q3 - Q1)

Step 5: Excepted_Component_size = avg+avg/6

Step 6: For N = 1 to No_of_Components of R [i]

a. If (CWS (N) > = Excepted_Component_size)

i. Morphological Thinning Algorithm is applied on

Text Component

ii. Check for the Component Width Size of new ones

iii. If it does not lie below ECS then

1. Find the Junction Point [] of the lightly populated

white pixels approximately around ECS

2. Split the component in to n component at the

Junction Point []

Step 7: Stop the Procedure

To illustrate the DSTT algorithm, Fig. 7 is taken as

the input. CsWS [] = {51, 165, 44, 57, 44, 54, 50, 59,

Res. J. Appl. Sci. Eng. Technol., 8(4): 556-564, 2014

561

 (a) (b) (c) (d) (e) (f) (g)

Fig. 8: Detect and split of touching component 1

 (a) (b) (c) (d) (e)

Fig. 9: Detect and split of touching component 2

 (a) (b) (c) (d) (e) (f) (g)

Fig. 10: Detect and split of touching component 3

Fig. 11: Corrected row 1 of Fig. 4g

53, 49, 51, 122, 161} is obtained after step 2 is
executed. The outliers values calculated as per
algorithm are 161 and 166. The average (avg) value of
all CWS [] except Outlier Value (s) is 57.63. The
Expected Component Size ECS is 69. The size of the
component of Fig. 8a is 165 and it is greater than 69.
So, Step 6 (i) is executed. The output Fig. 8b is shown
after Morphological Thinning is applied. The two new
components are shown in Fig. 8c and d. The size of
component in Fig. 8c is greater than Excepted_
Component_size. So, the Component is split at the
calculated junction points (Fig. 8f). Now, the
Component is split in to 2 components (Fig. 8g and d).
Figure 8 to 10 are obtained on 2

st
, 3

nd
, 4

th
 iteration of

step 6, respectively. The output of the algorithm is
shown in Fig. 11. The algorithm is insensitive to the
size of the Text as Component Width Size is calculated
for each row.

Sequence Separation of Text Components (SSTC)
algorithm: This algorithm is used to separate the
individual text component from the row Images.
Components of each text line obtained by text row
algorithm are sorted in ascending order according to the
left most column position of the component. The
components are extracted one by one according to the
sequence order. The SSTC algorithm is formulated by
the following steps.

Input: Row Images R []
Output: Corrected Row Images R []-Label is assigned
sequentially from the first component of first Row to
the Last Component of Last Row, NewLineNo [],
Total_No_of_Component, TextComponents []

Step 1: StartLabel = 1
Step 2: Repeat Step 3 to 7 for i =1 to No_of_Row

Step 3: PCCL Algorithm is applied on R [i] as there
may be an increase of number of components
due to detect and Split Touching Text
Algorithm

Step 4: Reassign the label of Text Components in
Row R [i] in the sequence order starting from
StartLabel according to Left Column Pixel
Position of each component

Step 5: NewLineNo [i] = MinLabel assigned in the
Row R [i]

Step 6: Total_No_of_Component = MaxLabel
assigned in the Row R [i]

Step 7: For j = StartLabel to Total_No_of_Component

i. [r c] = find (R [i] = = j)
ii. TextComponents [j] = R [j] (min (c), min (r): max

(c), max (r))

Step 8: StartLabel = maxLabel assigned in the Row R

[i] +1
Step 9: Stop the Procedure

According to step 4 of SSTC Algorithm,
Components of each text Row R [] obtained are sorted
in ascending order according to the left most column
position of the component in the sequence order. Text
Components are shown in Fig. 12a to c. The array
NewLineNo [] contains the starting text component
numbers of each Row.

Text position details algorithm: The Details of the
Text Position of each Text Components, Row Line and
Words are stored in text files. The starting text
component numbers of each Row is already obtained by
the Sequence Separation of Text Components algorithm
and those details are stored in ‘newlinedet.txt’. Space
Details of each text component are calculated to frame

Res. J. Appl. Sci. Eng. Technol.,

 (a)

Fig. 12: (a) Text separation 1, (b) text separation

Table 1: Text row start position of Fig. 2c

Row start position 1

words. The algorithm of Text Position Detail (TPD) is

given below (Table 1).

Input: Row Images R [], NewLineNo [], No_Of_Row

Output: Text Position Details

Step 1: File Open to save details of Text position

a. fidsp = fopen ('spacedet.txt','wt')

b. fidword = fopen ('worddet.txt','wt')

c. fidnl = fopen ('newlinedet.txt', 'wt')

Step 2: Starting position of component of each row are

stored in newlinedet.txt using NewLineNo []

Step 3: Repeat Step 4 to Step 6 for

No_Of_Row

Step 4: Space Gap between each successive

component are calculated and stored in sp

and in 'spacedet.txt'. (SpaceGap =

the first character of each row.)
Step 5: Outlier Value (s) of sp [] are calculated

(exclude SpaceGap of -1000)
Step 6: Outlier space gaps are treated as a delimiter of

a word. These details are stored in worddet.txt
Step 7: Stop the Procedure

To illustrate the example the image in Fig. 2c is
taken. In step 2 of TPD algorithm, the starting text
position calculated in NewLineNo
algorithm is saved in ‘newlinedet.txt’ and the
component Position, left most column position of
component, right most column position of component,
width size of component and the gap of 2 adjacent Text
Components (Gap as -1000 for the first character of
new row) are stored in ‘spacedet.txt’. To Find the
starting position of each word, sp [] (Gap of 2 adjacent
text component) for each row calculated is examined.
Here the outlier of sp [] for each row is calculated and
the text position whose gaps are outliers (

Res. J. Appl. Sci. Eng. Technol., 8(4): 556-564, 2014

562

(a) (b) (c)

separation 2, (c) text separation 3

20 31

The algorithm of Text Position Detail (TPD) is

, NewLineNo [], No_Of_Row

File Open to save details of Text position

('newlinedet.txt', 'wt')

Starting position of component of each row are

stored in newlinedet.txt using NewLineNo []

Repeat Step 4 to Step 6 for i = 1 to

Space Gap between each successive

component are calculated and stored in sp []

'spacedet.txt'. (SpaceGap = -1000 for

the first character of each row.)
[] are calculated

Outlier space gaps are treated as a delimiter of
a word. These details are stored in worddet.txt

To illustrate the example the image in Fig. 2c is
taken. In step 2 of TPD algorithm, the starting text

 [] by SSTC
algorithm is saved in ‘newlinedet.txt’ and the

column position of
component, right most column position of component,
width size of component and the gap of 2 adjacent Text

1000 for the first character of
new row) are stored in ‘spacedet.txt’. To Find the

ord, sp [] (Gap of 2 adjacent
text component) for each row calculated is examined.
Here the outlier of sp [] for each row is calculated and
the text position whose gaps are outliers (marked in red

color in Table 2 to 5 and 8) or -1000 are saved as word
gap in ‘worddet.txt.’

Description of C1, C2, C3, C4,
Table 2 to 9 are given below.

C1-Text Position, C2-Min Column position of
Current Text, C3-Max Column of Previous Text, C4
Text Width, C5-Gap between 2 adjacent Text (C2
N = -1000.

EXPERIMENTAL RESULTS

The performance of the proposed technique has

been evaluated based on Precision, Recall and F
Measure. Precision and Recall rates have been
computed based on the number of
characters (TP) in an image, in order
efficiency and robustness of the algorithm. The metrics
are as follows.

Definition 1: False Positives (FP) /False alarms are

those regions in the image which are actually not

characters of a text, but have been detected by the

algorithm as text.

Definition 2: False Negatives (FN)

regions in the image which are actually text characters,

but have not been detected by the algorithm.

Definition 3: Precision rate (P) is defined as the ratio of
correctly detected characters to the sum of correctly
detected characters plus false positives:

(Precision = TP/ (TP + FP) *100%)

Definition 4: Recall rate (R) is defined as the ratio of
the correctly detected characters to sum of correctly
detected characters plus false negatives

(Recall = TP/ (TP + FN) *100%)

Definition 5: F-Score is the harmonic mean of recall
and precision rates.

1000 are saved as word

C4, C5 and N of

Min Column position of
Max Column of Previous Text, C4-

Gap between 2 adjacent Text (C2-C3),

EXPERIMENTAL RESULTS

The performance of the proposed technique has
been evaluated based on Precision, Recall and F-Score
Measure. Precision and Recall rates have been
computed based on the number of correctly detected

(TP) in an image, in order to evaluate the
efficiency and robustness of the algorithm. The metrics

False Positives (FP) /False alarms are

those regions in the image which are actually not

characters of a text, but have been detected by the

False Negatives (FN) /Misses are those

regions in the image which are actually text characters,

but have not been detected by the algorithm.

Precision rate (P) is defined as the ratio of
to the sum of correctly

detected characters plus false positives:

FP) *100%)

Recall rate (R) is defined as the ratio of
the correctly detected characters to sum of correctly
detected characters plus false negatives:

*100%)

Score is the harmonic mean of recall

Res. J. Appl. Sci. Eng. Technol., 8(4): 556-564, 2014

563

Table 2: Text space detail of Fig. 2c

C1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C2 179 218 259 301 345 382 447 477 515 555 616 654 715 756 774 814

C3 217 258 300 341 378 424 479 516 552 599 655 691 753 773 816 846

C4 38 40 41 40 33 42 32 39 37 44 39 37 38 17 42 32

C5 N 1 1 1 4 4 23 -2 -1 3 17 -1 24 3 1 -2

C1 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C2 848 889 933 179 205 229 254 285 315 356 392 424 456 482 129

C3 887 931 969 203 228 256 284 312 338 388 420 453 479 508 174

C4 39 42 36 24 23 27 30 27 23 32 28 29 23 26 45

C5 2 2 2 N 2 1 -2 1 3 18 4 4 3 3 N

Table 3: Word start position of Fig. 2c

Word start position 1 7 11 13 20 26 31

Table 4: Text row start position of Fig. 2a

Row start position 1 6 11 12 22 30

Table 5: Text space detail of Fig. 2a

C1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C2 73 83 92 100 108 75 86 90 98 105 46 16 21 31 39 52

C3 81 89 97 105 114 82 87 96 103 110 56 18 28 37 46 58

C4 8 6 5 5 6 7 1 6 5 5 10 2 7 6 7 6

C5 N 2 3 3 3 N 4 3 2 2 N N 3 3 2 6

C1 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C2 64 71 79 89 99 17 22 34 46 60 69 78 87 112 119

C3 69 76 86 96 106 19 29 41 57 66 76 85 93 117 124

C4 5 5 7 7 7 2 7 7 11 6 7 7 6 5 5

C5 6 2 3 3 3 N 3 5 5 3 3 2 2 N 2

Table 6: Word start position of Fig. 2a

Word start position 1 6 11 12 16 17 22 24 25 30

Table 7: Text row start position of Fig. 2e

Row start position 1 13 22 29

Table 8: Text space detail of Fig. 2e

C1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C2 102 119 132 145 158 167 177 195 208 220 241 254 103 118 132

C3 115 129 142 155 163 173 192 205 216 227 251 259 116 130 148

C4 13 10 10 10 5 6 15 10 8 7 10 1 13 12 16

C5 N 4 3 3 3 4 4 3 3 4 14 3 N 2 2

C1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C2 151 164 176 185 198 315 102 117 128 133 146 158 170 317 322

C3 161 173 183 195 203 330 114 126 130 143 155 168 179 331 328

C4 10 9 7 10 5 15 12 9 2 10 9 10 9 14 6

C5 3 3 3 2 3 112 N 3 2 3 3 3 2 N -9

Table 9: Word start position of Fig. 2e

Word Start Position 1 11 13 21 22 29

The experimentation of the algorithms

implemented in MATLAB Tool was carried out on the

ICDAR data set consisting of 100 different images and

as well as some images were taken from the WEB.

Some of the Experiments results have been shown in

Section above. The results in this research show that the

new proposed method separates the text component of

the image. The proposed method can separate most of

the text region successfully, including text with

different styles, size, font, orientations and color. This

approach resulted in an average precision rate of 88%,

recall rate of 97.5% and F-Score of 92.5%.

CONCLUSION AND RECOMMENDATIONS

The study presents a new algorithm for the

separation of text region information in an image. This
proposed method uses a positional connected
component labeling, text region extraction, text line
separation, separation of touching text and separation of
text components algorithms. The proposed technique is
an essential stage for most of the object recognition
method. The algorithm is applied on several images
with text of different styles, size, font, alignment and
complex backgrounds taken from ICDAR datasets and
shown promising results. The future work concentrates
on the next stage of developing a text recognition
algorithm from the output obtained by the newly
proposed text separation technique.

Res. J. Appl. Sci. Eng. Technol., 8(4): 556-564, 2014

564

REFERENCES

Chethan, H.K. and G.H. Kumar, 2010. Graphics

separation and skew correction for mobile captured
documents and comparative analysis with existing
methods. Int. J. Comput. Appl., 7(3): 42-47.

Coates, A., B. Carpenter, C. Case and S. Satheesh,
2011. Text detection and character recognition in
scene images with unsupervised feature learning.
Proceeding of International Conference on
Document Analysis and Recognition (ICDAR,
2011), pp: 440-445.

Devi, G.G. and C.P. Sumathi, 2014. Positional
connected component labeling algorithm. Indian
J. Sci. Technol., 7(3): 306-311.

Gonzalez, A., L.M. Bergasa, J.J. Yebes and S. Bronte,
2012. Text location in complex images. Proceeding
of 21st International Conference on Pattern
Recognition (ICPR, 2012). Tsukuba, Japan, pp:
617-620.

Khedekar, S., V. Ramanaprasad, S. Setlur and
V. Govindaraju, 2003. Text- image separation in
Devanagari documents. Proceeding of the 7th
International Conference on Document Analysis
and Recognition, pp: 1265-1269.

Neumann, L. and J. Matas, 2012. Real-time scene text

localization and recognition. Proceeding of IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR, 2012), pp: 3538-3545.

Patil, U. and M. Begum, 2012. Word level handwritten

and printed text separation based on shape features.

Int. J. Emerg. Technol. Adv. Eng., 2(4): 590-594.

Peng, X., S. Setlur, V. Govindaraju and R. Sitaram,

2013. Handwritten text separation from annotated

machine printed documents using Markov Random

Fields. Int. J. Doc. Anal. Recog., 16: 1-16, DOI

10.1007/s10032-011-0179.

Phan, T.Q., P. Shivakumara and C.L. Tan, 2012.

Detecting text in the real world. Proceeding of the

20th ACM International Conference on Multimedia

(MM '12), pp: 765-768.

Shi, Z. and V. Govindaraju, 2004. Line separation for

complex document images using fuzzy runlength.

Proceeding of 1st International Workshop on

Document Image Analysis for Libraries, pp:

306-312.

Sumathi, C.P. and G.G. Devi, 2014. Automatic text

extraction from complex colored images using

gamma correction method. J. Comput. Sci., 10(4):

706-715.

Yao, C., X. Bai, W. Liu, Y. Ma and Z. Tu, 2012.

Detecting texts of arbitrary orientations in natural

images. Proceeding of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR,

2012), pp: 1083-1090.

