
Research Journal of Applied Sciences, Engineering and Technology 8(8): 919-928, 2014

DOI:10.19026/rjaset.8.1054

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2014 Maxwell Scientific Publication Corp.

Submitted: February 22, 2014 Accepted: March 20, 2014 Published: August 25, 2014

Corresponding Author: Haneen Hijazi, Department of Software Engineering, Hashemite University, Zarqa, Jordan
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

919

Research Article
A Framework for Integrating Risk Management into the Software Development Process

1
Haneen Hijazi,

2
Shihadeh Alqrainy,

2
Hasan Muaidi and

2
Thair Khdour

1
Department of Software Engineering, Hashemite University, Zarqa, Jordan

2
Albalqa Applied University, Salt, Jordan

Abstract: Software development projects still of high failure rates. Different risk management approaches are
recommended by researchers and followed by organizations in order to control this failure rate. Current research is
focused towards preventive risk management approach that improves the development process. In this study, we
introduce a framework that enhances this approach. This framework describes a systematic method towards
enhancing preventive risk management throughout the software development process. In this study, we devised sets
of risk management strategies and controls that aim at mitigating each of the identified risks in the adapted list.
These strategies besides the identified risk factors are utilized and embedded in the right corresponding Software
Development Life Cycle phase to construct our preventive framework.

Keywords: Preventive risk management, risk, risk factor, strategy

INTRODUCTION

Software development process or the Software

Development Life Cycle (SDLC) is a structure imposed

on the development of a software system. According to

this structure the software development process

involves five different phases: Requirements Analysis

and Definition, Design, Implementation and Unit

Testing, Integration and System Testing and the

Operation and Maintenance phase (Khdour and Hijazi,

2012).

Risk factors involved in each of these phases

threaten project success. This raises question about new

improved risk management mechanisms.

Many definitions, approaches and frameworks

exist for software project risk management in the

literature. Most lead to the application of the set of

principles, practices, procedures, methodologies and

tools aimed at identifying, analyzing and handling risk

factors through the SDLC before they evolve into actual

problems that negatively affect the project development

process and hinder the successful completion of the

project.
Risk management can be either reactive or

proactive. In the reactive approaches, risks are not
mitigated till their occurrence, while in the proactive we
try to avoid the occurrence of risks. Clearly, it is better
to avoid risks rather than repairing from their
consequences (Singh and Goel, 2007).

A preventive risk management strategy means to
proceed into the development process activities and the
SDLC phases and risk control strategies with an eye

towards the identified risks and preventing them from
being materialized.

A risk management strategy is a control activity
that aims at dealing with a specific risk factor(s). Not
all risk factors are controllable (Zardari, 2009), some
factors might be out of project manager’s control. Any
software risk factor can be either avoidable or non-
avoidable. For the avoidable risk factors, mitigation
strategies are devised and proposed to deal with risks
before they mature into real problems. Else, if the risks
are non-avoidable, or if the risks have matured into real
problems, then contingency plans have to take place in
order to repair from the occurrence of these risks. A
mitigation strategy aims at either avoiding the
occurrence of a risk, or reducing its effects in case of
occurrence. This reduction can be achieved by reducing
either the severity of the risk or its likelihood.

Either the mitigation strategies or the contingency

plans must be planned in advance (Shahzad and Safvi,

2008). In other words, we must not wait till the

occurrence of the risks then start to think of and design

strategies. Clearly, applying a mitigation strategy is

better than conducting a contingency plan, since it is

cheaper and easier than repairing from risk.
A risk management strategy can control more than

one risk factor. The occurrence of a risk might be as a
consequence of another risk, thus, mitigating the cause
may also mitigate the consequence.

In this study, we propose sets of mitigation
strategies and contingency plans for a highly technical
set of risk factors. A first pass review of the strategies,
the reader will notice that most strategies are mitigation
strategies (avoidance), rather than contingency plans.

Res. J. App. Sci. Eng. Technol., 8(8): 919-928, 2014

920

Indeed these avoiding strategies will form the basis for
the preventive risk management framework introduced
in this study. These strategies are integrated into each of
the five phases of the SDLC phases.

LITERATURE REVIEW

Despite the fact that the current attitude to risk

management is a preventive approach, little research
has already been conducted regarding the integration
between risk management and the software

development process. In the following, we highlight
several important studies around this issue.

Murthi (2002) proposed a preventive risk
management model in software projects. Using his
model, software project is divided into sub-projects and
each sub-project is assigned to iteration. Singh and
Goel (2007) proposed a preventive maintenance model.
Their model was based on the three popular software
maintenance classifications (i.e., preventive corrective,
preventive adaptive and perfective maintenance) and
outlined on the basis of the development cycle. Shahzad

Table 1: Software projects risk factors

Index Risk factor Index Risk factor

Phase 1: requirements analysis and definition 51 Inexperienced programmers

1 Inadequate estimation of project time, cost, scope and

other resources

52 Too many syntax errors

2 Unrealistic schedule 53 Technology change

3 Unrealistic budget 54 High fault rate in newly designed components
4 Unclear project scope 55 Code is not understandable by reviewers

5 Insufficient resources 56 Lack of complete automated testing tools

6 Unclear requirements 57 Testing is monotonous, boring and repetitive
7 Incomplete requirements 58 Informal and ill-understood testing process

8 Inaccurate requirements 59 Not all faults are discovered in unit testing

9 Ignoring the non-functional requirements 60 Poor documentation of test cases
10 Conflicting user requirements 61 Data needed by modules other than the under testing one

11 Unclear description of the real environment 62 Coding drivers and stubs

12 Gold plating 63 Poor regression testing
13 Non-verifiable requirements Phase 4: integration and system testing

14 Infeasible requirements 64 Difficulties in ordering components’ integration

15 Inconsistent requirements 65 Integrate the wrong version of components

16 Non-traceable requirements 66 Omissions or oversights

17 Unrealistic requirements 67 A lot of bugs emerged during the integration

18 Misunderstood domain-specific terminology 68 Data loss across an interface

19 Mis-expressing user requirements in natural language 69 Integration may not produce the desired functionality

20 Inconsistent requirements data and RD 70 Difficulties in localizing errors

21 Non-modifiable RD 71 Difficulties in repairing errors

Phase 2: design 72 Unqualified testing team

22 RD is not clear for developers 73 Limiting testing resources

23 Improper AD method choice 74 Inability to test in the operational environment

24 Improper choice of the PL 75 Impossible complete testing (coverage problem)

25 Too much complex system 76 Testers rely on process myths

26 Complicated design 77 Testing cannot cope with requirements change

27 Large size components 78 Wasting time in building testing

28 Unavailable expertise for reusability 79 The system being tested is not testable enough

29 Less reusable components than expected Phase 5: operation and maintenance

30 Difficulties in verifying design to requirements 80 Problems in installation

31 Many feasible solutions 81 The effect on the environment

32 Incorrect design 82 Change in environment

33 Difficulties in allocating functions to components 83 New requirements emerge

34 Extensive specification 84 Difficulties in using the system

35 Omitting data processing functions 85 User resistance to change

36 Large amount of tramp data 86 Missing capabilities

37 Incomplete DD 87 Too many software faults

38 Large DD 88 Testers does not perform well

39 Unclear DD 89 Suspension and resumption problems

40 Inconsistent DD 90 Insufficient data handling

Phase 3: implementation and unit testing 91 The software engineer cannot reproduce the problem

41 Non-readable DD 92 Problems in maintainability

42 Programmers cannot work independently 93 Budget not enough for maintenance activities

43 Developing the wrong user functions and properties Risks common to all SDLC phases

44 Developing the wrong user interface 94 Continually changing requirements

45 PL does not support architectural design 95 Project funding loss

46 Modules are developed by different programmers 96 Team turnover

47 Complex, ambiguous, inconsistent code 97 Data loss

48 Different versions for the same component 98 Time contention

49 Developing components from scratch 99 Miscommunication

50 Large amount of repetitive code 100 Budget contention

Res. J. App. Sci. Eng. Technol., 8(8): 919-928, 2014

921

and Safvi (2008) proposed sets of mitigation strategies
and contingency plans for each software risk
factor identified previously by Shahzad and Iqbal
(2007).

Nyfjord and Kajko-Mattsson (2008) investigated
the state of practice of integrating risk management
with the development process in different software
organizations. They found that this type of integration
still in its infancy. Shahzad et al. (2010) utilized an
already defined set of risk factors that might be faced
during software development and proposed different
strategies to mitigate each of the identified risks.
Shahzad and Al-Mudimigh (2010) proposed a model
that aims at handling risks in software development
environment, it is called RIMAM. Recently, Khdour
and Hijazi (2012) proposed a preventive risk
management model that integrates risk management
with the software development process.

PROPOSED METHODOLOGY

The framework introduced in this study is built on

top of the model proposed by Khdour and Hijazi
(2012). In their model, they suggest that most potential
risk factors must be identified early in the development
process. Regarding the risk factors, herein, we adapt a
detailed set of risk factors (Hijazi et al., 2014). This list
of risk factors is summarized in Table 1. In their work,
they proposed a preventive risk management model that
integrates risk management into the SDLC. This
framework guarantees this integration. To achieve it,
this framework suggests developers to take the potential
risk factors into their consideration while developing
the software system and to devise and corporate
mitigation strategies throughout the entire life cycle of
the software development process. This framework
embeds risk management strategies into the SDLC and
assigns the right strategies to the right development
phase in which it should be conducted in order to avoid
the occurrence of the target risks. This framework
considers the most frequent avoidable risks which lie
under the control of the project manager and the
development team. In this framework, risk management
strategies take place during the development process
while developing the system. It shows the sequence of
these phases, activities and strategies that manage
software risks effectively.

In addition, a set of mitigation strategies was
defined for each risk factor to help developers and
projects managers deal with these risks. By introducing
these sets of mitigation strategies we significantly raise
baselines for our preventive risk management
framework in which these strategies constitute the main
building blocks.

Herein, we use process flowcharts to visualize the
proposed framework. These Fig. 1 to 5 show the
sequential execution of the software development
process activities supported by different strategies that
aim at handling specific risk factors. Hence, the
software development process operation is represented

by a set of boxes of different types connected by arrows
that represent the flow of control.

The main building blocks: The main building blocks
of these Fig. 1 to 5 involve the following components.

The activity: Indicates a development process step
represented by a rectangle.

The strategy: Indicates a risk handling mechanism
represented by a rounded rectangle.

The factor: Indicates the item that may cause risk,
represented by an index contained in a square bracket
and attached to the end of the risk strategy statement in
order to relate the source of risk to the mitigation
strategy that is proposed to handle it. For instance, to
reference the factor numbered 12 in our list we attach
“[F12]”.

Decision to be made or condition to be tested:
Represented by diamond with two coming out arrows
labeled by (Yes/No or True/False).

Iterative process (loop): Wherein an arrow points to
another arrow, represented by black blob.

Start/end of the process: Represented using the
start/end symbol.

A document: A data file the might act as an input to or
output from a specific phase or activity represented by a
wavy-base rectangle.

Input/output: Each phase has its inputs and outputs;
the output of a phase is usually the input of the next
phase, represented using parallelograms.

The flow of control: Represented by arrows that shows
either the moves between two activities, between the
activity and its (input/output), or the embedded
strategies into the activity.

As foreshadowed above, we can notice that the
SDLC comprises five phases, each phase involves a set
of activities and each activity underlies different
strategies that aim at mitigating risks. Moreover, some
activities can be themselves considered as mitigation
strategies to specific factors if they were performed
properly. Each strategy may address one or more risk
factor and each of the identified risk factors can be
mitigated by one or more strategy. These strategies may
involve tools, techniques and behavioral aspects.

Requirements analysis and definition phase is a
system engineering activity that aims at extracting what
the system should do and how from the users’ needs. It
was found that most of the high level risks lie in the
early phases of the software development process
(Abdullah et al., 2010). Moreover, it was found that
risks in this phase greatly affect the cost and schedule
of the project (Abdullah et al., 2010).

Res. J. App. Sci. Eng. Technol., 8(8): 919-928, 2014

922

Fig. 1: Requirements analysis and definition phase

Res. J. App. Sci. Eng. Technol., 8(8): 919-928, 2014

923

Fig. 2: Design phase

Res. J. App. Sci. Eng. Technol., 8(8): 919-928, 2014

924

Fig. 3: Implementation and unit testing phase

Res. J. App. Sci. Eng. Technol., 8(8): 919-928, 2014

925

Fig. 4: Integration and system testing phase

Res. J. App. Sci. Eng. Technol., 8(8): 919-928, 2014

926

Fig. 5: Operation and maintenance phase

Res. J. App. Sci. Eng. Technol., 8(8): 919-928, 2014

927

The detailed integration of risk management into

the requirements analysis and definition phases is

illustrated in Fig. 1 of the model. The main input to this

phase is the Business Requirements in which the users’

needs from the new system are stated from the business

point of view. The main output is the Requirement

Document (RD) which specifies and documents what

the users expect from the software system under

construction. This document is the main input to the

next phase (design phase) and to the testing phase

(mainly the acceptance testing). As it is obvious from

the figure; the requirements analysis and definition

phase consists of five main activities involving

feasibility study, requirements elicitation, requirements

analysis, requirements validation and requirements

documentation. During each activity; different risk

mitigation strategies could be developed in order to

avoid specific risk factors.

Design phase is critical. The majority of risk

factors in this phase are consequences from the

increased design complexity, which makes it very

expensive to resolve any fault in the design later on.

The detailed integration of risk management into the

design phase is illustrated in Fig. 2 of the model. The

main input is to this phase is the "Approved

Requirements Document", the main output is the

"Detailed Design Document". Design phase consists of

four major activities: construct the physical model,

verify design, specify design and document design,

beside several strategies involved in order to handle

specific risk factors.

In the coding and unit testing phase, wherein the

actual implementation of the system is carried on, the

majority of risks are related to the programmers

themselves (Khdour and Hijazi, 2012); their different

customs, their natural tendencies and their relationships,

etc.

The detailed integration of risk management into

the coding and unit testing phase is illustrated in Fig. 3

of the model. The main input to this phase is the

"Detailed Design Document", the main output is the

"Compiled Modules". This figure shows that coding

and unit testing phase involves three main activities:

developing UI, coding modules and unit testing.

In the integration and system testing phase,

potential risks will set off to show their powers here,

thus, it is the most risky phase (Khdour and Hijazi,

2012). To reduce this, risks should be avoided early in

the development process. Most risk factors in this phase

are related to testers, the followed testing techniques

and the boring nature of the testing process itself

(Khdour and Hijazi, 2012).

A detailed integration of risk management into the

integration and testing phase is illustrated in Fig. 4 of

the model. The main input is to this phase is the "Unit

Tested Modules", the main output is the "Tested

System". This phase consists mainly of three activities:

integration, integration testing and system testing.

Integration and integration testing are done

incrementally for each program module; that is why the

loop exists in the same figure.
When developing the system is finished and is put

into actual use, few risks could be avoided. The
majority of the faults appear in the operation and
maintenance phase are consequences from the non-
mitigated risks appeared in earlier phases. The detailed
integration of risk management into the operation and
maintenance phases is illustrated in Fig. 5. The main
input to this phase is the "Tested System" and then the
system goes to a never ending maintenance phase till
the final acceptance of the system.

We have proposed a set of mitigation strategies
that aim at mitigating each of the risk factors identified
in the previous chapter. These strategies help
developers and projects managers deal with these risks.
By introducing these sets of mitigation strategies we
significantly raise baselines for our preventive risk
management model in which these strategies constitute
the main building blocks. Then, a preventive risk
management model is proposed; this model integrates
risk management into the software development
process. It utilizes the set of risk factors listed in the
previous sections that threaten the software
development process and embeds their mitigation
strategies through the different phases of the SDLC.
The model proposed by this section represents the third
step of our proposed strategy.

CONCLUSION AND RECOMMENDATIONS

In this study, we introduced a framework to
integrate risk management into the software
development process. Risk management strategies are
proposed and integrated into the different phases of the
SDLC as process activities in order to avoid/mitigate
the one hundred risk factors identified early in this
since most of its strategies are avoidance ones that aim
at handling risks before they materialize.

REFERENCES

Abdullah, T., A. Mateen, A. Sattar and T. Mustafa,

2010. Risk analysis of various phases of software

development models. Eur. J. Sci. Res., 40(3):

369-376.

Hijazi, H., S. Alqrainy, H. Muaidi and T. Khdour, 2014.

Risk factors in software development phases. Eur.

Sci. J., 10(3): 213-132.

Khdour, T. and H. Hijazi, 2012. A step towards

preventive risk management in software projects.

Proceeding of the 2012 4th International

Conference on Software Technology and

Engineering. Phuket, Thailand, September 1-2, pp:

471-478.

Res. J. App. Sci. Eng. Technol., 8(8): 919-928, 2014

928

Murthi, S., 2002. Preventive risk management software

for software projects. IT Prof., 4(5): 9-15.

Nyfjord, J. and M. Kajko-Mattsson, 2008. Outlining a

model integrating risk management and agile

software development. Proceeding of the 34th

Euromicro Conference on Software Engineering

and Advanced Applications. Parma, Italy,

September 1-5, pp: 476-483.

Shahzad, B. and S. Iqbal, 2007. Software risk

management-prioritization of frequently occurring

risks in software development phases. Using

relative impact risk model. Proceeding of the 2nd

International Conference on Information and

Communication Technology. Dhaka, Bangladesh,

March 8-9, pp: 110-115.

Shahzad, B. and S. Safvi, 2008. Effective risk

mitigation: A user prospective. Int. J. Math.

Comput. Simulat., 2(1): 70-80.

Shahzad, B. and A. Al-Mudimigh, 2010. Risk

identification, mitigation and avoidance model for

handling software risk. Proceeding of the 2nd

International Conference on Computational

Intelligence, Communication Systems and

Networks. Liverpool, United Kingdom, July 28-30,

pp: 191-196.

Shahzad, B., A. Al-Mudimigh and Z. Ullah, 2010. Risk

identification and preemptive scheduling in

software development life cycle. Glob. J. Comput.

Sci. Technol., 10(2): 55-63.

Singh, Y. and B. Goel, 2007. A step towards software

preventive maintenance. ACM SIGSOFT, 32(4),

Article No. 10.

Zardari, S., 2009. Software risk management.

Proceeding of the 3rd International Symposium on

Empirical Software Engineering and Measurement.

FL, USA, October 15-16, pp: 375-379.

