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Abstract: Due to the development of information and network technologies, idle computers all over the world can 
be organized and utilized to enhance the overall computation performance. Grid computing refers to the 
combination of computer resources from multiple administrative domains used to reach a common goal. Grids offer 
a way of using the information technology resources optimally inside an organization. As the grid environments 
facilitate distributed computation, the scheduling of grid jobs has become an important issue. This study introduces a 
novel approach based on Biogeography Based Optimization algorithm (BBO) for scheduling jobs on computational 
grid. The proposed approach generates an optimal schedule so as to complete the jobs within a minimum period of 
time. The performance of the proposed algorithm has been evaluated with Genetic Algorithm (GA), Differential 
Evolution algorithm (DE), Ant Colony Optimization algorithm (ACO) and Particle Swarm Optimization algorithm 
(PSO). 
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INTRODUCTION 

 
Grid computing is a form of distributed computing 

that involves coordinating and sharing computing, 
application, data and storage or network resources 
across dynamic and geographically dispersed 
organization (Foster and Kesselmann, 2004). Grid 
technologies promise to change the way organizations 
tackle complex computational problems. Grid 
computing is an evolving area of computing where 
standards and technology are still being developed to 
enable this new paradigm. 

Users can share grid resources by submitting 
computing tasks to grid system. The resources of 
computational grid are dynamic and it belongs to 
different administrative domains. The participation of 
resources may be active or inactive within the grid. 
Hence it is impossible for anyone to manually assign 
jobs to computing resources in grids. Therefore grid job 
scheduling is one of the challenging issues in grid 
computing. Grid scheduling system selects the resources 
and allocates the user submitted jobs to appropriate 
resources in such a way that the user and application 
requirements are met. 

To achieve the promising potentials of tremendous 
distributed resources, effective and efficient scheduling 
algorithms are fundamentally important. In grid 

computing, as resources are distributed in multiple 
domains in the Internet, the computational and storage 
nodes and the underlying networks connecting them are 
heterogeneous. Thus the heterogeneity results in 
different capabilities for job processing and data access. 
In a Grid, resources are usually autonomous and the grid 
schedulers do not have full control of the resources. The 
autonomy results in the diversity in local resource 
management and access control policies and hence grid 
scheduler is required to be adaptive to different local 
policies. Grid schedulers work in a dynamic 
environment where the performance of available 
resources is constantly changing. A feasible scheduling 
algorithm should be able to be adaptive to dynamic 
behaviors. As grid consists of a large number of 
heterogeneous computing and storage sites connected 
via wide area networks, grid scheduler has to select the 
computation sites of an application according to 
resource status and performance models. Hence the 
unique characteristics of grid computing such as 
heterogeneity and autonomy, performance dynamism 
and resource selection make the design of scheduling 
algorithms more challenging. 

There are many research efforts aiming at job 
scheduling on the grid. Scheduling m jobs to n resources 
with an objective to minimize the total execution time 
had been shown to be NP-complete (Ibarra and Ki, 
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1977). Therefore the use of heuristics is the defacto 
approach in order to cope in practice with its difficulty. 
Krauter et al. (2002) provided a useful survey on grid 
resource management systems, in which most of the grid 
schedulers such as AppLes, Condor, Globus, Legion, 
Netsolve, Ninf and Nimrod use simple batch scheduling 
heuristics. Jarvis et al. (2003) proposed the scheduling 
algorithm using metaheuristics and compared First 
Come First Serve heuristic with genetic algorithm to 
minimize the makespan and it was found that 
metaheuristics generate good quality schedules than 
batch scheduling heuristics. Braun et al. (2001) studied 
the comparison of the performance of batch queuing 
heuristics, tabu search, genetic algorithm and simulated 
annealing to minimize the makespan. The results 
revealed that genetic algorithm achieved the best results 
compared with batch queuing heuristics. Liu et al. 
(2010) proposed a fuzzy Particle Swarm Optimization 
algorithm for scheduling jobs on computational grid 
with the minimization of makespan as the main 
criterion. They empirically showed that their method 
outperforms the genetic algorithm and simulated 
annealing approach. The results revealed that the PSO 
algorithm has an advantage of high speed of 
convergence and the ability to obtain faster and feasible 
schedules. In this study we introduce a novel approach 
based on Biogeography Based optimization for 
scheduling jobs on computational grid. 

Biogeography Based Optimization (Simon, 2008) is 
a new evolutionary algorithm for global optimization 
that was introduced in 2008. BBO is an application of 
biogeography to evolutionary algorithms. Biogeography 
is the study of the distribution of biodiversity over space 
and time. It aims to analyze where organisms live and in 
what abundance. Biogeography not only gives a 
description of species distributions, but also a 
geographical explanation. Biogeography is modeled in 
terms of such factors as habitat area, immigration rate 
and emigration rate and describes the evolution, 
extinction and migration of species. BBO has certain 
features in common with other population-based 
optimization methods. Like GA and PSO, BBO can 
share information between solutions. This makes BBO 
applicable to many of the same types of problems that 
GA and PSO are used for, including unimodal, 
multimodal and deceptive functions. One distinctive 
feature of BBO is that the original population is not 
discarded after each generation (Simon, 2008). It is 
rather modified by migration. Another distinctive 
feature is that, for each generation, BBO uses the fitness 
of each solution to determine its immigration and 
emigration rate. BBO has also demonstrated good 
performance on various unconstrained bench mark 
functions (Du et al., 2009; Ma et al., 2009; Simon, 
2008). It has also been applied to real-world 
optimization problems, including sensor selection 
(Simon, 2008), economic load dispatch problem 

(Bhattacharya and Chattopadhyay, 2010), satellite image 
classification (Panchal et al., 2009), rectangular micro 
strip antenna design (Lohokare et al., 2009), design of 
Yagi-Uda Antenna (Singh et al., 2010), traveling 
salesman problem (Song et al., 2010) and robot 
controller tuning (Lozovyy et al., 2011). This is a 
pioneer effort in the research area of Grid scheduling, 
which makes use of Biogeography Based optimization 
technique to dynamically generate an optimum schedule 
so as to complete the tasks within a minimum period of 
time as well as utilizing the resources in an efficient 
way. 

 
METHODOLOGY 

 
The grid job scheduling problem: A computational 
grid is a hardware and software infrastructure that 
provides dependable, consistent pervasive and 
inexpensive access to high end computational 
capabilities (Foster and Kesselmann, 2004). It is a shared 
environment implemented via the deployment of a 
persistent, standards-based service infrastructure that 
supports the creation of and resource sharing within, 
distributed communities. Resources can be computers, 
storage space, instruments, software applications and 
data, all connected through the Internet and a 
middleware layer that provides basic services for 
security, monitoring, resource management and so forth. 
Resources owned by various administrative 
organizations are shared under locally defined policies 
that specify what is shared, who is allowed to access 
what and under what conditions (Foster and Iamnitchi, 
2003). The real and specific problem that underlies the 
grid concept is coordinated resource sharing and 
problem solving in dynamic, multi-institutional virtual 
organizations (Foster et al., 2001). For clarity, some key 
terminologies (Dong and Akl, 2006) are defined as 
follows. 
 

Grid node: A grid node is an autonomous entity 
composed of one or multiple resources. The 
computational capacity of the node depends on its 
number of CPUs, amount of memory, basic storage 
space and other specifications. In other words, each 
node has its own processing speed, which can be 
expressed in number of Cycles per Unit Time (CPUT). 
 

Jobs and operations: A job is considered as a single 
set of multiple atomic operations/tasks. Each operation 
is typically allocated to execute on one single node 
without pre-emption. It has input and output data and 
processing requirements in order to complete its task. 
The operation has a processing length expressed in 
number of cycles. 
 

Task scheduling: A task scheduling is the mapping of 
tasks to a selected group of resources which may be 
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Fig. 1: A logical grid scheduling architecture 

 
distributed in multiple administrative domains. A 
scheduling problem is specified by a set of machines, a 
set of jobs/operations, optionality criteria, 
environmental specifications and by other constraints. 
 

The grid scheduling process and components: The 
grid scheduling process can be generalized into three 
stages: resource discovering and filtering, resource 
selecting and scheduling according to certain objectives 
and job submission (Schopf, 2001). Figure 1 depicts a 
model of grid scheduling system in which functional 
components are connected by two types of data flow: 
resource or application information flow and task or 
task scheduling command flow. 

A Grid Scheduler (GS) receives applications from 
grid users, selects feasible resources for these 
applications according to acquired information from the 
Grid Information Service (GIS) module and finally 
generates application-to-resource mappings, based on 
certain objective functions and predicted resource 
performance. Grid schedulers usually cannot control 
grid resources directly. But they work like brokers or 
agents (Berman et al., 2003), or even tightly coupled 
with the applications as the application-level scheduling 
scheme proposes (Berman et al., 1996; Sun and Ming, 
2003). They are not necessarily located in the same 
domain with the resources which are visible to them. 
Figure 1 shows only one grid scheduler, but in reality 
multiple schedulers might be deployed and organized to 
form different structures (centralized, hierarchical and 
decentralized (Hamscher et al., 2000) according to 

different concern, such as performance or scalability. 
Grid level scheduler is referred as Meta scheduler in the 
literature (Mateescu, 2003) and which is not an 
indispensible component in the Grid infrastructure. 

The role of GIS is to provide information about the 
status of available resources to grid schedulers. GIS is 
responsible for collecting and predicting the resource 
state information, such as CPU capacity, memory size, 
network bandwidth, software availabilities and load of a 
site in a particular period. Application Profiling (AP) is 
used to extract properties of applications. Analogical 
Bench marking (AB) provides a measure of how well a 
resource  can  perform  a  given  type  of  job (Khokhar 
et al., 1993; Siegel et al., 1996). On the basis of 
knowledge from AP and AB and following a certain 
performance model (Berman, 1998), cost estimation 
computes the cost of candidate schedules, from which 
the scheduler chooses those that can optimize the 
objective functions. 

The Launching and Monitoring (LM) module is 
known as the ‘binder’ which implements a finally 
determined schedule by submitting applications to 
selected resources, staging input data and executables 
and monitoring the execution of the applications. 

A Local Resource Manager (LRM) is mainly 
responsible for local scheduling inside a resource 
domain   and   reporting   resource   information   to 
GIS. 

 
Scheduling problem formulation: The objective of 
the proposed job scheduling algorithm is to minimize 
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the completion time and to utilize the nodes effectively. 
Any job Jj has to be processed in one of the Grid nodes 
Ri until completion. Since all nodes at each stage are 
identical and pre-emption is not allowed, to define a 
schedule it suffices to specify the completion time for 
all tasks. 

The grid job scheduling problem consists of 
scheduling m jobs with given processing time on n 
resources. Let Jj be the independent user  jobs,  j = {1, 
2, 3, … m}. Let Ri  be  the  heterogeneous  grid  nodes,  
i = {1, 2, 3, .., n}. The speed of each resource is 
expressed in number of Cycles per Unit Time (CPUT). 
The length of each job is expressed in number of 
cycles. The information related to job length and speed 
of the resource is assumed to be known based on user 
supplied information, experimental data and application 
profiling or other techniques (Garg et al., 2010). 

Let Cij (i є {1, 2, ….n}, j є {1, 2, ….m}) be the 
completion time that the grid node Ri finishes the job Jj, 
∑ Ci represents the time that the resource Ri finishes all 
the jobs scheduled for itself. Makespan is a measure of 
the throughput of the heterogeneous computing system. 
Makespan is defined as: 

 
��������, 	
�� = max (� 	�)                         (1) 
 
For example thirteen jobs with job length 6, 12, 16, 

20, 24, 28, 30, 36, 40, 42, 48, 52 and 60 number of 
cycles, respectively, which are allocated to three grid 
nodes with speed 5, 3 and 2 CPUT, respectively. The 
completion time of a particular job is its job length 
divided by the speed of the grid node for which it has 
been allocated. 

The schedule solution with the mapping of jobs 
with grid nodes is as follows. 

J3, J4, J5, J9, J11 and J13, respectively are mapped to 
grid node 1. J7, J10 and J12, respectively are mapped to 
grid node 2. 

J1, J2, J6 and J8, respectively are mapped to grid 
node 3. The completion time for individual node is 
given below: 
 

∑ C1 = C1,3 +  C1,4 + C1,5 + C1,9 + C1,11 + C1,13 = 41.6 
∑C2 = C2,7 + C2,10 + C2,12 = 41.3333 
∑C3 = C3,1 + C3,2 + C3,6 + C3,8 = 41 
�������� =  	
�� = ���(� 	�) = 41.6  

 
BBO ALGORITHM FOR SCHEDULING JOBS 

ON COMPUTATIONAL GRID 
 
This section describes the biogeography based 

optimization technique and the different steps involved 
therein. Methodology of application of BBO technique 
to different cases of Grid Job Scheduling problem has 
also been presented in this section. 
 
BBO algorithm: Biogeography describes how species 
migrate from one island to another, how new species 
arise and how species become extinct. An island is any 
habitat  that  is  geographically  isolated   from  other  

habitats. Geographical areas that are well suited as 
residences for biological species are said to have a high 
Habitat Suitability Index (HSI). The variables that 
characterize habitability are called Suitability Index 
Variables (SIVs). Habitats with a high HSI tend to have 
large number of species, while those with a low HSI 
have a small number of species. Habitats with a high 
HSI have many species that migrate to nearby habitats, 
simply by virtue of the large number of species that 
they host. Migration of some species from one habitat 
to other habitat is known as emigration process. When 
some species enter into one habitat from any other 
outside habitat, it is known as immigration process. 
Habitats with a high HSI have a low species 
immigration rate because they are already nearly 
saturated with species. By the same token, high HSI 
habitats have a high emigration rate. Habitats with a 
low HSI have a high species immigration rate because 
of their sparse populations. This immigration of new 
species to low HSI habitats may raise the HSI of that 
habitat, because the suitability of a habitat is 
proportional to its biological diversity. In BBO, each 
individual has its own immigration rate λ and 
emigration rate µ. A good solution has higher µ and 
lower λ, vice versa. The immigration rate and the 
emigration rate are functions of the number of species 
in the habitat. They can be calculated using (2) and (3): 

 

n

Ek
k =µ                                                          (2) 
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                                                       (3) 
 
where, I is the maximum possible immigration rate, E is 
the maximum possible emigration rate, k is the number 
of species of the kth individual and n is the maximum 
number of species. Equation (2) and (3) are just one 
method for calculating λ and µ. There are other 
different options to assign them based on different 
specie models (Simon, 2008). 

BBO concept is based on the two major steps, 
migration and mutation. Mathematically the concept of 
emigration and immigration can be represented by a 
probabilistic model. Let us consider the probability Ps 

that the habitat contains exactly S species at time t. Ps 
changes from time t to time t+∆t as follows: 
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where, λs and µs are the immigration and emigration 
rates when there are S species in the habitat. If time ∆t 
is small enough so that the probability of more than one 
immigration or emigration can be ignored then taking 
the limit of (4) as ∆t →0 gives (5). 

Mutation rate of each set of solution can be 
calculated in terms of species count probability using 
the Eq. (6): 
 


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
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
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1
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P

P
mSm s                         (6) 

 
where, mmax is the maximum mutation rate and Pmax is 
the maximum probability. The pseudo code for BBO 
algorithm is illustrated in Algorithm 1. 
 

Solution representation: The solution for the job 
scheduling problem is used to represent individual 
habitat. The complete habitat set (population) with size 
N is represented in (7): 
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Algorithm 1 biogeography based optimization 

algorithm: 

Initialize the BBO parameters 
Create a random set of habitats (population) H1, H2, .., 
Hn. 
Compute HSI values; 
while the halting criterion is not satisfied do 
    Compute immigration rate λ and emigration rate µ 
for each      
     habitat based on HSI; 

     for each habitat (solution) 
          for each SIV (solution feature) 

              /* Migration process */ 
           Select habitat Hi with probability α λi     
            if Hi is selected then 
                 Select Hj with probability α µj     
                     if Hj is selected then 
                          Hi (SIV) ←  Hj (SIV) 
                     end if 
                end if  

              /* Mutation process */ 
   Select Hi (SIV) based   on  mutation  

probability  mi; 

Table 1: Representation of solution, (a) job-to-resource 
representation for the grid job scheduling problem, (b) 
mapping of jobs with grid resource 

(a) 
2 1 2 3 1 2 3 1 2 3 2 1 1 
(b) 
Grid resource 1 J2 J5 J8 J12 J13 
Grid resource 2 J1 J3 J6 J9 J11 
Grid resource 3 J4 J7 J10   

 
            if Hi (SIV) is selected then   

   Replace Hi (SIV) with a randomly  
generated SIV; 

            end if   
           next for   
               Recompute HSI values; 
      next for  

 end while 
 
where i = 1, 2, ….. N, j = 1, 2, 3, ……n and 1≤SIV≤m 
(n is the number of jobs, m is the number of Grid nodes 
and SIV is the Suitability Index Variable). Here Hi is the 
position vector of the habitat i. Each habitat 
(chromosome) is one of the possible solutions for the 
job scheduling problem. The element Hij of Hi is the jth 
position component of habitat i or in other words Hij is 
the jth SIV of the ith habitat. All SIVs in each habitat are 
represented as integers. 

 The solution is represented as an array of length 
equal to the number of jobs. The value corresponding to 
each position j in the array represents the SIV in a 
habitat which is actually the resource to which job j was 
allocated. Table 1 illustrates the representation of the 
SIV for the job resource pair (13, 3). The first element 
of the array denotes the first job (J1) which is assigned 
to the Grid resource 2; the second element denotes the 
second job (J2) which is assigned to the Grid resource 1 
and so on. 
 
Initialization of SIV: Each element of the habitat 
matrix, i.e., each SIV of a given habitat set H, is 
initialized randomly with the value satisfying the 
resources limit Rj, where, j = 1, 2,… m (Table 1). 

Now the steps of algorithm to solve grid job 
scheduling are given below: 
 
1. For initialization, choose the number of jobs i.e., 

number of SIV is n, size of habitat is N. Initialize 
total number of resources and jobs. Also initialize 
the BBO parameters like habitat modification 
probability Pmod, mutation probability, maximum 
mutation rate mmax, Maximum immigration rate I, 
Maximum emigration rate E, lower and upper 
bound for immigration probability per gene, λlower 

and λupper, step size for numerical integration dt, 
elitism parameter P, etc. Set maximum number of 
iteration. 

2. Each SIV of a given habitat of H matrix is 
initialized using the concept mentioned in 
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“Initialization of SIV”. Each habitat represents a 
potential solution to the given problem.  

3. Calculate HSI for each habitat set of the total 
habitat set for given emigration rate µ and im-
migration rate λ using Eq. (2) and (3). 

4. Based on the makespan value, elite habitats are 
identified. Here elite terms are used to indicate 
those habitat sets which give minimum fitness 
value. Top “P” habitat sets are kept as it is after 
individual iteration without making any 
modification on it. Valid species S in grid job 
scheduling problem is identified by considering 
finite fitness values of habitats. 

5. Perform migration operation on those SIVs of each 
non-elite habitat, selected for migration. Algorithm 
2 describes the migration operation of BBO based 
grid job scheduling problem. 

6. For each habitat, update the probability of its 
species count using Eq. (5). Then, mutate each 
non-elite habitat based on its  probability  using  
Eq. (6) and recalculate the fitness values.  

7. Go to step 4 for the next iteration. This loop can be 
terminated after a predefined number of iterations. 

 
Algorithm 2 Habitat migration for grid job 
scheduling: 
/* To calculate species count */ 
for  i = 1 to N 

if  fitness of habitat set i<∞  
       Speciescount of habitat i = N-i; 
else  
       Speciescount of habitat i = 0; 
end if 

end for 
/* calculate value of λ and µ for each habitat set */ 
for i = 1 to N 

λ (i) = I * (1-Speciescount of habitat i/N); 
µ (i) = E * (Speciescount of habitat i/N); 

end for 
λmin = min (λ);  λmax = max (λ);   
/ * To select habitat and SIV for generating new habitat 
after migration */ 
for k = 1 to N 
     if a randomly generated number<Pmod    
            /* To normalize the immigration rate */ 
     λscale  =  λlower + (λupper - λlower) * (λ (k) -λmin) 
/ (λmax - λmin) 

/* To pick up a habitat from which to obtain a 
feature */ 

           for  j = 1 to n 
            if a randomly generated number<λscale 
           RandomNum = rand * sum (µ); 
           Select = µ (1); 
                     SelectIndex = 1; 

while (RandomNum>Select) and 
(SelectIndex<N) 

                   SelectIndex = SelectIndex+1; 
                                 Select = Select + µ (SelectIndex); 
                               endwhile 

Newly generated habitat (k, j) = Old habitat 
(Selectindex, j); 

                    /* To check the feasibility of new habitat */ 
                     for z = 1 to n  
                      if Newly generated  habitat  (k, z) ≠ Ri,  

(i = 1, 2, … m) 
Repeat the procedure for generating new 
habitat 

                               end if 
                     end for 
               else 

Newly generated habitat (k, j) = Old habitat 
(k. j); 

    end if 
            end for  
         end if 
    end for 

 

SIMULATION ON BBO BASED GRID JOB 

SCHEDULING ALGORITHM 

 
Proposed BBO algorithm has been applied to grid 

job scheduling problem in four different test cases for 
verifying its feasibility. These are a (3, 13) -resource 
job pair, a (5, 100) -resource job pair, a (8, 60) -
resource job pair and a (10, 50) -resource job pair. The 
numerical simulations are carried out with the dataset 
used and tested in the study (Liu et al., 2010).The 
performance of the proposed algorithm is compared 
with ACO, PSO, DE and GA. Specific parameter 
settings of all the considered algorithms after 
performing the extensive experiments are described in 
Table 2. The adopted procedure for the determination 
of the parameters of the proposed algorithm is detailed 
in this study. 
 
Table 2: Parameter settings for the algorithms  

Algorithm Parameter name 
Parameter 
value 

GA Size of the population  125 
 Probability of crossover  1 
 Probability of mutation 0.100 
PSO Size of the population  125 
 Particle swarm neighbourhood size   0 
 Inertial constant 0.800 
 Social coefficient 1.490 
 Inertia weight 1.490 
BBO Habitat size 125 
 habitat modification probability 1.000 
 Immigration probability bounds per gene [0, 1] 
 Step size for numerical integration 0.200 
 Maximum immigration and emigration 

rate for each island 
1.000 

 Mutation probability 0.005 
DE Size of the population  125 
 Cross over factor 0.500 
 Scaling factor 0.500 
ACO Size of the population  125 
 Pheromone update constant 20 
 Exploration constant 1 
 Pheromone sensitivity 1 
 Visibility sensitivity 5 
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Table 3: Influence of parameters on BBO performance for job scheduling problem (5, 100) 

Case dt 

With mutation  
-------------------------------------------------------------------------------------------------------------------- 

Without mutation 
------------------------------------ 

0.005 
----------------------------------- 

0.05 
------------------------------------ 

0.5 
------------------------------------ 

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. 
1 0.1 85.447 85.549 85.480 85.463 85.921 85.523 85.454 85.683 85.511 85.450 85.736 85.521 
2 0.2 85.443 85.543 85.410 85.472 85.893 85.536 85.450 85.643 85.508 85.453 85.986 85.745 
3 0.4 85.449 85.765 85.537 85.454 85.562 85.505 85.448 85.651 85.513 85.469 85.741 85.652 
4 0.5 85.463 85.603 85.540 85.457 85.573 85.504 85.467 85.643 85.512 85.456 85.741 85.642 
5 0.8 85.464 85.545 85.514 85.448 85.603 85.511 85.448 85.621 85.509 85.468 85.663 85.556 
6 1.0 85.448 85.643 85.682 85.450 85.582 85.504 85.460 85.730 85.528 85.445 85.718 85.657 
7 1.2 85.454 85.822 85.520 85.468 85.637 85.522 85.452 85.645 85.498 85.476 85.685 85.533 
8 1.3 85.456 85.958 85.738 85.451 85.711 85.516 85.465 85.621 85.518 85.454 85.759 85.550 
9 1.5 85.458 85.582 85.499 85.453 85.676 85.520 85.456 85.579 85.503 85.455 85.677 85.613 
10 2.0 85.447 85.615 85.512 85.446 85.711 85.499 85.499 85.754 85.618 85.465 85.813 85.673 
Min.: Minimum; Max.: Maximum; Avg.: Average 

 
Table 4: Effect of habitat size on results of job scheduling problem 

(5, 100) 

Habitat 
size 

No. of hits 
to 85.4000 
- 85.5999 

Min. 
makespan 

Max. 
makespan 

Avg. 
makespan 

20 13 85.467 85.572 85.576 
50 14 85.443 85.543 85.420 
75 16 85.500 85.722 85.610 
100 14 85.504 85.707 85.626 
125 20 85.440 85.540 85.413 
150 12 85.520 86.053 85.650 
Min.: Minimum; Max.: Maximum; Avg.: Average 

 

Determination of parameters for BBO algorithm: To 
get optimal solution using the BBO algorithm, the 
suitable value of the parameters like mutation 
probability, step of integration dt and habitat size N 
have to be determined. As the job scheduling problem 
(5.100) is a large scale problem, (5.100) has been 
chosen to determine the various parameters of BBO 
algorithm. To find optimum values for “step size of 
integration dt” and “mutation probability”, the 
following procedures have been adopted: 
 

• The habitat size is fixed at 50. 

• Step of integration is increased from 0.1 to 2 in 
suitable steps as shown in Table 1 and mutation 
probability is changed to three different values of 
0.005, 0.05 and 0.5, respectively. Performance of 
BBO algorithm in grid job scheduling system for 
the resource job pair (5, 100) is calculated for all 
the above mentioned combinations. For each 
combination, 50 independent trails have been made 
with 500 iterations per trail. 

• Step of integration is again increased from 0.1 to 2 
in same steps for the same problem as mentioned 
above and mutation probability is not considered in 
this case. 

• In case of BBO algorithm, based on simulation 
results obtained for different combination of 
parameters given in Table 3, step size of integration 
dt 0.2 and mutation probability 0.005 gave better 
makespan more consistently. The obtained 
minimum makespan 85.443 is also less when 
compared to the remaining cases.  

Effect of habitat size and maximum number of 
iteration on BBO algorithm: Change in habitat size 
affects the performance of BBO algorithm. Large or a 
small habitat size may not be capable of searching for 
the minimum, particularly in complex multimodal 
problems. The optimum habitat size is found to be 
related to the problem dimension and complexity.  
Table 4 shows the performance of the BBO algorithm 
for different habitat size of 20, 50, 75, 100, 125 and 
150, respectively for the resource job pair (5, 100) of 
Grid job scheduling system. 

A habitat size of 125 resulted in achieving global 
solutions more consistently for the test system. From 
Table 4, it is found that the habitat size 125 recorded 
the best result compared with other habitat sizes. 
Increasing the habitat size beyond this value did not 
produce any significant improvement; rather it 
increases the simulation time which is not desirable in 
real-time problems. 

The nature of convergence of BBO algorithm had 
been observed for all kind of problems by few tests. 
After that, the number of iterations had been fixed as 
100. In the proposed algorithm, the parameters are set 
as specified in Table 2. 
 
Comparative study: All the jobs and the nodes were 
submitted at one time. Each experiment (for each 
algorithm) was repeated 25 times with different random 
seeds. Each trail had a fixed number of 100 iterations. 
The makespan values of the best solutions throughout 
the optimization run were recorded and the averages 
and the standard deviations were calculated from the 25 
different trails. The grid scheduling algorithm should 
generate the schedules as fast as possible in a grid 
environment. So the completion time is used as one of 
the criteria for improving their performance. 
 
Solution quality: Table 5 shows the performance 
comparison of BBO algorithm with ACO, PSO, GA 
and DE. Figure 2 illustrates the performance for the pair 
(3, 13). As the performance plot of PSO had many 
fluctuations, it average makespan and the standard 
deviation are recorded by both GA and BBO. It is 
noticed that all algorithms except PSO allocate the jobs 
evenly for all grid nodes from Fig. 3. 
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Table 5: Performance comparison between ACO, BBO, GA, DE and PSO 

Algorithm Item 

Instance 
-------------------------------------------------------------------------------------------------- 
(3, 13) (5, 100) (8, 60) (10, 50) 

ACO Average makespan 41.68 104.08 67.67 51.10 
 Standard deviation ±0.16 ±5.71 ±7.25 ±2.36 
 Time 3.96 7.90 11.83 10.02 
BBO Average makespan 41.64 85.47 43.01 37.46 
 Standard deviation ±0.12 ±0.02 ±0.42 ±0.68 
 Time 2.73 8.73 6.16 5.40 
DE Average makespan 41.68 88.05 47.10 42.08 
 Standard deviation ±0.16 ±0.70 ±1.18 ±0.93 
 Time 3.47 11.66 8.29 7.60 
GA Average makespan 41.64 86.02 43.23 37.90 
 Standard deviation ±0.12 ±0.23 ±0.54 ±0.68 
 Time 3.70 9.41 7.09 6.50 
PSO Average makespan 49.06 105.76 49.95 49.75 
 Standard deviation ±3.65 ±3.26 ±2.00 ±1.67 
 Time 5.17 10.79 8.30 7.89 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Performance for job scheduling (3, 13) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Resource allocation for job scheduling (3, 13)     
 
Figure 4 illustrates the performance for GA, ACO, 
BBO and DE algorithms during the search process for 
(5, 100). For this case, the BBO algorithm yields the 
minimum average makespan and the standard 
deviation. 

Individual node flow time of best run is found to be 
{85.22, 84.76, 85.66, 85.67, 85.51} for BBO. GA 
produces the flowtime as {85.26, 85.55, 84.68, 85.76, 
85.64}. The result for DE is {85.24, 86.73, 87.50, 
84.97, 84.11}. ACO reports {76.71, 84.26, 83.15, 
89.30, 91.93} and PSO yields {83.39, 96.8, 74.04, 
79.87, 97.24}.  It  is  realized  that  the  performance  of 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Performance for job scheduling (5, 100) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Resource allocation for job scheduling (5, 100) 
 
BBO and GA is good when compared with other 
algorithms from Fig. 5 and 6. The average makespan 
for (8, 60) is found to be 43.01 for BBO which is the 
minimum value as evident from the Table 5. Individual 
node flow time for this case is illustrated in Fig. 7. This 
reveals that BBO is better than other algorithms. 

Figure 8 illustrates the performance for the pair 
(10, 50). The minimum average makespan is recorded 
by BBO as 37.46 and the standard deviation for BBO 
and GA is found to be the same for this case which is 
also the minimum value compared with others. It is 
noted that the resources are effectively utilized by BBO 
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Fig. 6: Performance for job scheduling (8, 60) 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
Fig. 7: Resource allocation for job scheduling (8, 60) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8: Performance for job scheduling (10, 50) 
 
algorithm than others when referring to Fig. 9. In 
general, it is found that the performance of BBO is 
better and competitive with GA while producing good 
quality schedules. Next DE places its remark and it is 
followed by PSO and ACO in producing quality 
schedules.  
 
Computational efficiency: In general, for large (R, J) 
pairs, the completion time is comparatively larger. BBO 
usually spent the least time for allocating all the jobs on 
the grid node, GA was the second. For large resource 
job pair, the completion time of PSO is competitive 
with DE as referred from Table 5. ACO had to spend 
more time to complete the  scheduling. It  is  noted  that  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9: Resource allocation for job scheduling (10, 50) 
 

 
 
Fig. 10: Pareto front obtained by three algorithms for (8, 60) 

 

 
 
Fig. 11: Pareto front obtained by three algorithms for (5, 100) 

 
BBO usually spends the shortest time to accomplish the 
various job scheduling tasks and produces the best 
results among all the five algorithms considered. 
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Fig. 12: Pareto front obtained by three algorithms for (10, 50) 
 

 
 
Fig. 13: IH¯ measure of three algorithms for (8, 60) 
 

 
 
Fig. 14: IH¯ measure of three algorithms for (5, 100) 

 
Performance assessment: From Table 5, it is found 
that BBO gives the best makespan value for all cases, 
then GA follows next and then DE in giving better 
results.  Hence  GA  and  DE  are taken  into  account to 

 
 

Fig. 15: IH¯ measure of three algorithms for (10, 50) 

 

assess the performance with BBO. In order to compare 
the performance of the proposed algorithm with other 
scheduling algorithms, it is necessary to examine the 
extent of minimization of the obtained non-dominated 
solutions produced by each algorithm for the 
considered objective and the spread of their solutions. 
Figure 10 to 12 show the non-dominated solutions 
obtained at the end of simulation trial (average over 25 
runs) for BBO, GA and DE algorithms for 3 different 
test cases. 

For all problems, the solution obtained by BBO is 
better than solutions found by GA and DE. In order to 
present a comprehensive comparison of the overall 
quality of these alternative approaches, the experiment 
for each algorithm was repeated 25 times with different 
random seeds for each resource job pair. The reference 
set, R had been constructed by merging all of the 
archival non-dominated solutions found by each of the 
algorithms for a given resource job pair across 25 runs. 
Then the hyper volume difference indicator IH¯ 
(Huband et al., 2006) had been used to measure the 
differences between non-dominated fronts generated by 
the algorithms and the reference set R. 

The objective values are normalized to find the 
hyper volume difference indicator (Huang et al., 2007). 
IH¯ measures the portion of the objective space that is 
dominated by R. The lower the value of IH¯, the better 
the algorithm performs. Box plots for different test 
cases clearly prove that BBO algorithm is better than 
GA and DE (Fig. 13 to 15). 

From the simulation result of BBO algorithm in 
solving grid job scheduling problems, it is seen that the 
performance of BBO algorithm is much better than 
other optimization techniques mentioned in this study. 

 

CONCLUSION 

 
In this study, we analyzed the job scheduling 

problems on computational grids. For scheduling 
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problems, we consider genetic algorithm, differential 
evolution algorithm, ant colony optimization, particle 
swarm optimization and BBO algorithm. 

This study presents a novel grid job scheduling 
approach based on BBO algorithm to optimize the 

makepan and flowtime. The BBO algorithm has an 

ability to find better quality solution and has better 
convergence characteristics and computational 

efficiency. It is clear from the results obtained by 
different trials that the proposed BBO method has good 

convergence property and it avoids the shortcoming of 

premature convergence of other optimization 
techniques to obtain better quality solution. As the 

status of resource is dynamic within the grid 

environment, it is necessary to produce the faster and 
feasible schedules. Simulation results show that BBO is 

capable of generating the solution within a minimum 
period of time. The comparative study demonstrates the 

efficiency and effectiveness of the proposed approach 

and the IH¯ indicator shows that BBO performs better 
than other algorithms. Hence BBO can be applied for 

grid job scheduling problems. In future work, we will 
develop adaptive BBO algorithm for multi-objective 

complex scheduling problems and stochastic scheduling 

problems. 
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