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Abstract: Modern power systems are large and interconnected with growing trends to integrate wind energy to the 
power system and meet the ever rising energy demand in an economical manner. The penetration of wind energy has 
motivated power engineers and researchers to investigate the dynamic participation of Doubly Fed Induction 
Generators (DFIG) based wind turbines in Automatic Generation Control (AGC) services. However, with dynamic 
participation of DFIG, the AGC problem becomes more complex and under these conditions classical AGC are not 
suitable. Therefore, a new non-linear Least Squares Support Vector Machines (LS-SVM) based regulator for 
solution of AGC problem is proposed in this study. The proposed AGC regulator is trained for a wide range of 
operating conditions and load changes using an off-line data set generated from the robust control technique. A two-
area power system connected via parallel AC/DC tie-lines with DFIG based wind turbines in each area is considered 
to demonstrate the effectiveness of the proposed AGC regulator and compared with results obtained using Multi-
Layer Perceptron (MLP) neural networks and conventional PI regulators under various operating conditions and 
load changes. 
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INTRODUCTION 

 
There is a worldwide trend toward cheaper and 

cleaner sources of the energy in the generation mix to 
meet ever rising energy demand in an economical 
manner. Among various sources of energy, wind is one 
of the most important and promising source of 
renewable energy. With increasing wind energy 
penetrations to the modern power system, it is essential 
to explore the possibility of wind turbines such as 
DFIGs in frequency control besides conventional 
generators. Considering this aspect, few studies have 
been presented by Keung et al. (2009) and Morren et al. 
(2006). AGC is one of the most important issues in 
electric power system design and operation. The main 
objective of AGC is to maintain the nominal frequency 
and to keep tie-line power close to the scheduled values 
by adjusting the MW outputs the AGC generators so as 
to accommodate the change in load demands. Extensive 
researches have been made in the design and 
development of AGC using different control 
techniques. The power systems are highly non-linear 
systems and contain different kinds of uncertainties due 
to changes in system parameters, error in modeling and 
load variations. Further, operating points of system 
change very much randomly during daily cycle and 
therefore, fixed controllers based on classical theory is 

unsuitable  for  AGC  problem  as  presented  by  Cavin 
et al. (1971). Many advanced control techniques have 
been developed for AGC problem of modern power 
systems and some of them are presented by Demiroren 
and Yesil (2004) and Mohamed et al. (2011). The 
robust control techniques for solution of AGC problem 
have been presented by some of the authors i.e., Wang 
et al. (1993) and Shayeghi and Shayanfar (2002). 
However, these controllers are linear and fixed 
therefore, cannot take into the large parametric 
variations and disturbances due to diverse operating 
conditions of practical power systems. 

In recent years applications of ANN have been 
widely explored to design AGC regulators as reported 
by Ahamed et al. (2006). The ANN overcomes the 
drawbacks of insufficient data availability in real time 
and improves power system dynamic performance over 
a wide range of operating conditions. The success of 
ANN based regulators depends on the type, structure 
and training algorithm besides reliable training data. 
Support Vector Machines (SVMs) is another class of 
machine learning techniques which has excellent 
function approximation and classification capabilities 
as reported by Vapnik (1998). The SVM has better 
generalization capability than the conventional neural 
networks. Basically this network uses a kernel to map 
the data in the input space to a high dimensional feature 
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space in which the problem becomes linearly separable. LS-SVM is an advancement of traditional SVMs and
has high precision and fast convergence as compared to 
traditional SVMs as reported by Boolchandani et al. 
(2011). In the view of above discussion, a new non-
linear LS-SVM regulator has been designed for solution 
of AGC problem of an interconnected power system. 
The proposed AGC regulator is trained for a wide range 

of operating conditions and load changes using an off-
line    data    set   generated   from   the   robust   control  
technique. The motivation of using robust technique for 
training of the proposed AGC regulator is to consider 
the large parametric uncertainties and modeling error 
into account. To improve the dynamic performance of

 

 
 

Fig. 1: Transfer function model of a two-area interconnected power system with DFIG based wind turbines considering parallel 
AC/DC tie-lines 
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the power system, the LS-SVM based AGC regulator 
has been reconstructed with applying the robust control 
technique to power system in the different operating 
points under various load disturbances by using the 
learning capability of LS-SVM network. This newly 
developed regulator combines the advantages of the 
LS-SVM and robust control techniques to achieve the 
desired level of robust performance for all uncertainties, 
load disturbance and wide operating conditions of the 
real world complex power systems. The designed LS-
SVM based AGC regulators are tested on a two-area 
power system connected via parallel AC/DC tie-lines 
with dynamic participation from DFIG based wind 
turbines in each area. A performance comparison 
between LS-SVM, MLP NNs and conventional PI 
based AGC regulators are carried out to show the 
superiority of the proposed control strategy for different 
cases of the plant parameter changes under various area 
load disturbances.  
 

METHODOLOGY 

 

Power system model under investigation: The study 

has been carried out considering the following power 

system models.  

 

Power system model-1: The Two-Area Interconnected 

Power System (TAIPS) is consisting of identical 

thermal power plants with non-reheat turbines 

interconnected via AC transmission line. The governor 

dead-band non-linearity is also considered in the 

dynamic model of the power system. 

 

Power system model-2: The TAIPS is consisting of 

identical plants with non-reheat thermal turbines and 

DFIG based wind turbines in each area. The parallel 

AC/DC tie-lines are used as an area interconnection 

between two control areas. The governor dead-band 

effects are also considered in the modeling of the power 

system. The transfer function model of the power 

system is shown in Fig. 1. 

 

DFIG modeling: The development of transfer function 

model of DFIG based wind turbines when participating 

in AGC in the wake of load disturbance is described in 

(Morren et al., 2006). 

 

Dynamical model of the system under investigation: 

The state variables and control inputs of the LS-SVM 

based AGC regulators are as follows. 

 

Power system model-1: 
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Table 1: Parametric uncertainties of the system 

 Lower bound 

parameters 

Nominal 

parameters 

Upper bound 

parameters 

1/TPi 0.02500 0.05000 0.0750 

KPi/TPi 4.80000 6 7.2000 

1/Tti 1.60000 2 2.4000 

1/RiThi 0.83330 1.04170 1.2500 

1/Thi 2 2.50000 3.0000 

T12 0.27250 0.54500 0.8175 

bi 0.34000 0.42500 0.5100 

1/Tri 8 10 12 

1/Twi 0.13328 0.16660 0.1999 

1/Tai 4 5 6 

1/2Hei 0.11428 0.14285 0.1714 

 

Power system model-2: 

 

[ ] [ ]2 1 1 2 2 12 1 2       ,
T

h h tie dc d dX F P F P P P P P= ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

[ ] [ ]2 1 .u u=
 

 

Design of robust controller: The design of robust 

controller is available in Wang et al. (1993). Table 1 

shows the parametric uncertainties of the system with 

their nominal, lower bound and upper bound values 

respectively. The range of system parameter variations 

are obtained by simultaneously changing of TP, T12 by 

50% and all other parameters by 20% from their 

original values. 

 

LS-SVM regulator design for AGC: The SVMs are 

the advanced class of NNs. SVMs is a class of 

supervised learning model with associated learning 

algorithm that analyzes data and recognizes patterns. It 

has excellent pattern recognition and function 

estimation capabilities. In LS-SVM, the training data 

are mapped from the input space into the higher 

dimensional feature space via kernel function in which 

the problem can be implemented in the linear form. 

There are many kinds of kernels that can be used, such 

as polynomial and Radial Basis Function (RBF) 

kernels. The least square loss function is used in LS-

SVM to construct the optimization problem based on 

equality constraints. This function requires only the 

solution of linear equation set instead of long and 

computationally hard quadratic programming as in case 

of traditional SVMs.  

The LS-SVM equation for function estimation can 

be written as (1) (Boolchandani et al., 2011): 

 

( ) ( )
1

,
N

k k

k

y x K x x bα
=

= +∑                (1)  

 

where, αk is the weigh factor, K (x, xk)
 
is the kernel 

mapping function between the training sample x and 

support vector xk, b represent bias and N represent the 

total number of training samples. The architecture of 

LS-SVM network is shown in Fig. 2. 



 

 

Res. J. Appl. Sci. Eng. Technol., 8(8): 1022-1028, 2014 

 

1025 

 
 

Fig. 2: The structure of LS-SVM network 

 

The RBF kernel is used for SVMs and can be 

written as (2): 
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SIMULATION RESULTS AND DISCUSSION 
 

In the present study, LS-SVM interfaced with 

standard MATLAB software is used for function 

estimation. During regression model generation, the 

LS-SVM accepts the training data set (i.e., 4500 

samples) which is generated from the robust control 

strategy in which the uncertainties are directly 

introduced in the power system model and provides the 

values of vector α and bias b as stated in (1). These 

values can be use to estimate the function using (1). 

The LS-SVM was trained using RBF kernel and the 

kernel should satisfy the Mercer’s condition which is 

necessary for the problem to be convex and provides 

unique and optimum solution. By proper selecting the 

two parameters, the kernel function variable σ and an 

adjustable constant γ, the desired level or the robust 

performance can be achieved. The parameter, γ 

determines the trade-off between the training error 

minimization and model complexity. On the other hand 

σ is kernel width parameter.  

The LS-SVM based AGC regulators are trained 

from an off-line data set generated by designing and 

implementing the robust controller for power system 

model in different operating points with various load 

disturbances to achieve the desired level of robust 

performance by using the learning capability of LS-

SVM network. A two-area power system with and 

without DFIG based wind turbines connected via 

parallel AC/DC tie-lines is considered to demonstrate 

the effectiveness of the proposed AGC regulator. 

Furthermore, the governor dead-band non-linearity is 

also considered in the power system models, so that the 

test system will be more close to the real power 

systems. The designed LS-SVM based AGC regulator 

is tested for nominal, upper bound and lower bound 

parameters under various area load disturbances and 

results are compared with that obtained using 

conventional PI and MLP based AGC regulators.  

 

Case 1: We will test the dynamic performance of both 

the power system models with nominal parameters as 

given in Table 1 and apply load changes of ∆Pd1 = 0.01 

p.u. MW in area-1. An investigation of time response 

plots of Fig. 3a and b reveal that the LS-SVM based 

AGC regulator is successful in providing the smooth 

settling of the system dynamic responses for both 

power system models. However, an incorporation of 

DFIG based wind turbines in a two-area power system 

with parallel AC/DC tie-lines offers fast and active 

power support proportional to frequency deviation. The 

dynamic responses are settling to zero steady state 

value within few seconds and peak of overshoot is of 

least magnitude as compared to results obtained without 

considering the dynamics of wind turbines and parallel 

AC/DC link in power system model. 

 

Case 2: The performance of the designed AGC 

regulator is evaluated for power system model-2 by 

applying  the  lower bound  parameters as given in 

Table 1 for  both  the  areas  with  load  changes  of  

∆Pd1 = 0.02 p.u. MW to area-1 and ∆Pd2 = 0.005 p.u. 

MW to area-2, respectively. An inspection of time 
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(a)          (b) 

 

Fig. 3: Response of ∆F1 (a) and ∆Ptie12 (b) for case 1 

 
 

                                                        (a)                                                                                                (b) 

 

Fig. 4: Response of ∆�� (a) and ∆������ (b) for case 2 

 

 
 

                                                       (a)                                                                                                  (b) 

 

Fig. 5: Response of ∆�� (a) and ∆������ (b) for case 3 

 
response plots of Fig. 4a and b reveal that the proposed 

AGC regulator has better performance in terms of all 

response qualities as compared to MLP and 

conventional PI based AGC regulators. 

 

Case 3: We choose the upper bound parameters from 

Table 1 and apply load changes of ∆Pd1 = 0.03 p.u. 

MW to area-1 and ∆Pd2 = 0.0193 p.u. MW to area-2 

respectively. The dynamic performance of the proposed 

AGC regulators are evaluated for power system model-

2 and  the  system  dynamic  responses are shown in 

Fig. 5a and b. The simulation results indicate that the 

proposed AGC regulator is superior to other AGC 

regulators and quite robust for a wide range of 

operating conditions and area load disturbances. 

 

CONCLUSION 

 

In this study, a new non-linear LS-SVM based 

AGC regulator is proposed for two-area power system 

connected via parallel AC/DC tie-lines with dynamic 

participation from DFIG based wind turbines in each 

area. The governor dead-band effects are also 

considered in the power system models. The LS-SVM 

based AGC regulators are trained from the off-line data 

set generated using robust control technique for  a  wide 
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range of operating conditions and area load changes. 
The RBF kernel is used to train the LS-SVM network. 
One of the main advantages of the proposed AGC 
regulator is it doesn’t required efficient training 
algorithm and no need to determine the hidden layer 
which is a series drawback of MLP NNs. By proper 
selecting the values of two parameters, the kernel 

function variable σ and an adjustable constant γ, the 
desired level of performance can be achieved and can 
be useful for real world complex power system. 

An investigation of time response plots reveal that 
the proposed AGC regulator is exhibiting superior 
system dynamic performance when two-areas are 
connected via parallel AC/DC tie-lines with dynamic 
participation from DFIGs based wind turbines in each 
area as compared to those obtained without considering 
their dynamics in the power system model. Further, 
investigations reveal that the proposed AGC regulator 
is showing promising performance as compared to 
MLP and conventional PI based AGC regulators for a 
wide range of parametric uncertainties and area load 
disturbances occurring in the area of the power system. 

 

NOMENCLATURE 

 

a12 :  Area size ratio coefficient  

ACEi :  Area control error 

Bi : Frequency bias constant 

Hi : Per unit inertia constant 

Di : Load frequency constant 

i : Subscript referring to area i (i = 1, 2) 

Kpi : Power system gain 

Mi : Effective rotary inertia 

Pri : Rated area power output 

Ri : Speed regulation parameter 

T12 : Synchronizing coefficient of AC tie-line 

Thi : Speed governor time constant of area i (sec) 

Tpi : Power system time constant (sec) 

Tti : Turbine time constant (sec) 

∆Fi : Incremental change in frequency 

∆PCi : Incremental change in speed-changer 

position 

∆Pdi : Incremental change in load demand  

∆Ptie : Incremental change in tie-line power 

∆Phi : Incremental change in governor valve 

position of area i 

Kωpi : DFIG proportional controller gain of area i 

Kωii : DFIG integral controller gain of area i 

Pmech : Wind turbine mechanical output 

Tai : DFIG turbine time constant of area i 

Tri : Transducer time constant area i 

Twi : Washout filter time constant for DFIG area i 

ωi : Wind turbine speed of area i 

ωi max : Wind turbine cut-out speed maximum of 

area i 

ωi min : Wind turbine cut-out speed minimum of 

area i 

ωmech : Angular velocity of rotor rotation 

ωm, meas : Wind turbine measured mechanical speed 

ωs : System frequency 

∆P
*

f : Incremental wind turbine power set point 

(reference) based on frequency 

∆PNCi : Incremental DFIG active power output of 

area i 

∆PNCi,ref : Incremental Wind Turbine active Power 

reference of area i 
∆P

*
ω : Incremental Wind Turbine power set point 

(reference) based on speed change 
∆ ωi : Incremental wind turbine speed of area i 
∆X1-1 : Measured incremental frequency change for 

DFIG (after Transducer) area 1  
∆X1-2 : Measured incremental frequency change for 

DFIG (after Transducer) area 2 
∆X2-1 : Measured incremental frequency change 

(after wash out filter) for DFIG area 1 
∆X2-2 : Measured incremental frequency change 

(after wash out filter) for DFIG area 2 
∆X3-1 : Incremental DFIG active power based on 

mechanical speed change area 1 
∆X3-2 : Incremental DFIG active power based on 

mechanical speed change area 2 
∆Pdci : Incremental change in tie-line power 

through DC link 
Kdc : Gain associated with DC link 
Tdc : Time constant of DC link 
Hei : Wind turbine of inertia i 
∆Pgi : Incremental change in power generation 

 
REFERENCES 

 
Ahamed, T.P.I., P.S.N. Rao and P.S. Sastry, 2006. 

Reinforcement learning controllers for automatic 
generation control in power systems having reheat 
units with GRC and dead-band. Int. J. Power Energ. 
Syst., 26(2): 137-46. 

Boolchandani, D., A. Ahmed and V. Sahula, 2011. 
Efficient kernel functions for support vector 
machine regression model for analog circuits 
performance evaluation. Analog Integr. Circ. S., 66: 
117-128. 

Cavin, J.K., M.C. Budge and P. Rosmunsen, 1971. An 
optimal linear system approach to load frequency 
control. IEEE T. Power Ap. Syst., 90: 2472-2482. 

Demiroren, A. and E. Yesil, 2004. Automatic generation 
control with fuzzy logic controllers in the power 
system including SMES units. Int. J. Elec. Power, 
26: 291-305. 

Keung, P., P. Lei, H. Banakar and B.T. Ooi, 2009. 

Kinetic energy of wind-turbine generators for 

system frequency support. IEEE T. Power Syst., 

24(1): 279-287. 

Mohamed,   T.H.,   H.   Bevrani,  A.A.   Hassan   and   

T. Hiyama, 2011. Decentralized model predictive 

based load frequency control in an interconnected 

power  system.  Energ.  Convers.  Manag., 52: 

1208-1214. 



 

 

Res. J. Appl. Sci. Eng. Technol., 8(8): 1022-1028, 2014 

 

1028 

Morren, J., S.W.H. Haan, W.H. Kling and J.A. Ferreira, 
2006. Wind turbines emulating inertia and 
supporting   primary   frequency   control.   IEEE  
T. Power Syst., 21(1): 433-434. 

Shayeghi, H. and H.A. Shayanfar, 2002. µ
 
controller 

design for interconnected power systems load 
frequency control. Proceedings of the International 
Conference on PES, 352-158: 751-758. 

Vapnik, V., 1998. Statistical Learning Theory. John 

Wiley, New York. 

Wang, Y., R. Zhou and C. Wen, 1993. Robust load-

frequency controller design for power system. IEE 

Proc-C, 140(1): 11-16. 

 

 


