
Research Journal of Applied Sciences, Engineering and Technology 8(14): 1630-1638, 2014
DOI:10.19026/rjaset.8.1144
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2014 Maxwell Scientific Publication Corp.
Submitted: May 19, 2014 Accepted: June 18, 2014 Published: October 10, 2014

Corresponding Author: Ahmad B.A. Hassanat, Department of IT, Mu'tah University, Mu'tah-Karak 61710, Jordan
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

1630

Research Article

Rule-and Dictionary-based Solution for Variations in Written Arabic Names in Social
Networks, Big Data, Accounting Systems and Large Databases

1Ahmad B.A. Hassanat and 2Ghada Awad Altarawneh

1Department of IT,
2Department of Accounting, Mu'tah University, Mu'tah-Karak 61710, Jordan

Abstract: This study investigates the problem that some Arabic names can be written in multiple ways. When
someone searches for only one form of a name, neither exact nor approximate matching is appropriate for returning
the multiple variants of the name. Exact matching requires the user to enter all forms of the name for the search and
approximate matching yields names not among the variations of the one being sought. In this study, we attempt to
solve the problem with a dictionary of all Arabic names mapped to their different (alternative) writing forms. We
generated alternatives based on rules we derived from reviewing the first names of 9.9 million citizens and former
citizens of Jordan. This dictionary can be used for both standardizing the written form when inserting a new name
into a database and for searching for the name and all its alternative written forms. Creating the dictionary
automatically based on rules resulted in at least 7% erroneous acceptance errors and 7.9% erroneous rejection errors.
We addressed the errors by manually editing the dictionary. The dictionary can be of help to real world-databases,
with the qualification that manual editing does not guarantee 100% correctness.

Keywords: Arabic names, Arabic names standardization, database, name entity recognition, NLP

INTRODUCTION

Online social networks, accounting systems and

large database systems allow people to register their
names preprocessing being done to the names, except
for the imposition of a few rules, such as the exclusion
of numbers and special characters from the names.

When the names being entered in Arabic and the
people entering them come from different backgrounds,
they enter the names with their local accents and
understanding, and after a short period of time, the
same name is entered in different forms. For example,
the Arabic name “Rola” “Hرو” might also be entered
using characters such as “رلى”//”Rla”, “روله”//”Rulah”,
“Hر”//”Rlaa”, “Hُر”//”Rulaa”, “رُلى”//”Rula”, and so on.
A Google search for these six variants resulted in
4420000, 356000, 91400, 218000, 20800 and 5560 hits,
respectively.

Without having a solution to this problem, when
someone searches for such a name, that person must use
exactly the variant written and stored in the database. If
a banker is asked to search for the name of a customer
and the banker enters the wrong alternative form, the
result might be embarrassing to the banker and
dissatisfactory to the customer, if the customer cannot
remember the account number. The problem is more
acute in accounting systems, when use of the wrong
variant may result in payments being denied if, for

example, the name written on a check or a bill is in a
different form than the one on the ID.

Another example-if someone searches for a friend
on Facebook® and knows the person’s name, but not
the exact variant, the searcher must try all alternatives
manually. Even if the searcher knows all of the
variants, the process may be time-consuming.

Diversity in the writing of Arabic names is due to
several factors, such as ambiguity in Arabic
morphology, ambiguity in Arabic orthography and
insufficient and ambiguous methods of standardizing
Arabic names. To solve this problem, this study
presents a rule-based and dictionary-based solution for
writing and searching for Arabic names. We created the
dictionary using all of the Arabic first names
generously provided to us by the Jordanian civil status
and passport department. The names include 75,000
distinct row names belonging to 9.9 million (living and
dead) citizens.

Edit distance is employed (offline) to compare each
name with the others to collect all similar names-those
with distances less than or equal to one. Then we
confirmed the similarity using some rules related to the
reasons behind having different written forms of Arabic
names (any name written in Arabic text, this includes
foreign names transliterated to Arabic), the
confirmation continues manually to edit the resultant
dictionary. Names in the resultant dictionary are
indexed alphabetically to decrease searching time for

Res. J. Appl. Sci. Eng. Technol., 8(14): 1630-1638, 2014

1631

names. Using edit distance alone (online) as a solution
for this problem is not practical for two reasons:

• It consumes time
• It yields unrelated names

When someone searches for an Arabic name in an
accounting database for example, alternative forms of
the name are first sought in the proposed dictionary and
then the algorithm searches for the both the entered
name and the alternatives. In addition, this dictionary is
important for document matching, plagiarism detection
and recognition of Arabic names for Natural Language
Processing (NLP). The problem of matching different
writing forms of Arabic names has not been the subject
of sufficient studies. This study attempts to fill that gap.

MOTIVATION AND LITERATURE REVIEW

Technology related to Arabic Names is playing an
increasingly important role in a variety of practical
applications, such as Arabic NLP, named entity
recognition, machine translation, cross-language
information retrieval and various security applications,
such as anti-money laundering activities, terrorist watch
lists and criminal tracking systems.

Despite the importance of those applications,
Arabic Names has not been the subject of sufficient
studies that examine linguistic issues, such as problems
resulting from the writing of Arabic names in different
forms. Such problems flourish in the absence of
standardization, the existence of different accents and
the nature of Arabic text in which words/names are
written mostly without diacritics, which does not
preserve the sound of the word/name. These problems
lead to a situation in which Arabic writers write the
same name in different forms. Table 1 shows some
examples of the problem.

Arabic language is ambiguous, because Arabic
names (like Arabic words generally) are written as a
string of consonants with vowels usually omitted. In
some cases diacritics are used to indicate short vowels,
while the use of consonants to indicate long vowels is
still ambiguous. This situation is major challenge for
Arabic language-processing applications. There are two
kinds of ambiguity-morphological ambiguity and
orthographical ambiguity (Soudi et al., 2007; Farghaly
and Shaalan, 2009).

The morphological ambiguity occurs because
Arabic is an extremely inflected language. This is
indicated by changing the vowel patterns and adding
various suffixes and prefixes to words. For example, the
name “زارع” /zarie/ (planter) might be represented in
several word forms according to the context, such as
 ,zara'a/ (to plant)/ ”زرع“ ,muzarie/ (farmer)/ ”مزارع“
 ,mazrah/ (farm)/ ”مزرعة“ ,zari/ (the noun plant)/ ”زرع“
etc. On the orthographic level, Arabic is also

Table 1: Examples of discrepancies in the writing of some Arabic
names

Form 1 Form 2 Form 3 Form 4
 ايبا ابا ايباء اباء
 ثريه ثريا اثريه اثريا
 حميدى احميدي احميده احميدى
 خضيرا اخضيره اخضيرا خضيره
 اروا ارواء اروه اروى
 زھيه ازھيا ازھيه زھيا
 اسماء اسمى اسمه اسما
 ضحيه ضحيا اضحيه اضحيا
 عليه اعليه عليا اعليا
 ايريني ايرينا ايرين يرين
 بوثينا بوثينه بثينه بثينا
 تماره تمارى تمارا تامارا
 جومانه جمانه جومانا جمانا
 اوساما اوسامه اساما اسامه
 بھحة بھجه بھجات بھجت
 ضيف الله ضيفا| ظيف الله ضيف الله
 داؤود داؤد داوود داود
 زكري زاكري زكريه زكريا
 حسيين الحسين احسين حسين
 يحيي يحيى يحيا يحي

ambiguous. For example, the word “فلح” may
theoretically represent many consonant-vowel
permutations, such as falah, faleh, faloh, falha, etc.,
(Halpern, 2007).

Arabic names are no exception, regarding the
ambiguity of Arabic; both kinds of ambiguity affect the
written forms of names. Normally, Arabic readers use
context to resolve this indistinctness, but for machines
it is a non-trivial task. In describing the ambiguity,
Aboaws Alshamsan (2003; in Arabic) identified twenty
different reasons why Arabic names are written
differently. The following are some of the identified
reasons:

• Some names are acoustically similar: e.g., the

character “س” is sometimes pronounced and
written “ص”, such as in the names “سلطان” and
 .”صلطان“

• Some characters are written similarly: e.g., the
character “ى” is sometimes written “ي”, such as in
the names “يحيى” and “يحي”.

• The characters “ض” and “ظ” are often mixed: e.g.,
the name “ضياء” becomes “ظياء”, because they are
acoustically similar.

• In place of “ج” writers sometimes use “ش”: e.g.,
the name “اجدر” becomes “اشدر”; this substitution
occurs due to differences in accents.

• In place of “ا” writers sometimes use “ـه”: e.g., the
name “خضرا” becomes “خضره”.

• In place of “ ـه “ writers sometimes use “ا”: e.g., the
name “ تاله “ becomes “ Hتا ”.

• In place of “ق” writers sometimes use “ج”: e.g., the
name “قاسم” becomes “جاسم.” This substitution
occurs due to differences in accents, usually the
accents of Arab Gulf people.

• In place of “ذ” writers sometimes use “د” or “ض”:
e.g., the name “ ذھب “ becomes “ دھب ” and the name
 because they are acoustic ,”مضخر becomes ”مذخر“

Res. J. Appl. Sci. Eng. Technol., 8(14): 1630-1638, 2014

1632

similar. “Hamzah” (ء), is sometimes altered by
deletion: e.g., the name "براھيم" becomes “براھيم”.
The name can be changed to “ي” (such as when
 such as when) ,"و" or to (”رايد“ becomes ”رائد“
 .(”وحيسن“ becomes ”أحيسن“

• The Arabic definite article “ال” (or “ام” in some
accents) is sometimes added to the beginning of
names: e.g., the name “أخضر” becomes "ا�خضر".

• The feminization Ta'a is sometimes added to the
end of names: e.g., the name “عزة” becomes
 .”عزت“

• In place of “ة” writers sometimes use “ه”: e.g., the
name “غادة” becomes “غاده”.

• Long vowels “ا،و،ي” are sometimes added to
represent short vowels “ ِ◌◌ُ◌َ”: e.g., the name “رندا”
becomes "راندا", the name “رُبى” becomes “روبى”
and the name “رھام” becomes "ريھام".

• In place of “ا” writers sometimes use “اء” and vice
versa at the end of a name: e.g., the name “غيدا”
becomes "غيداء".

• In place of “ا” writers sometimes use “ى” (and vice
versa) at the end of a name: e.g., the name “Hرو”
becomes "رولى".

This study uses a subset of Alshamsan’s list of

rules to identify different forms of the same name.
Please refer to Alshamsan’s work for more clarification
and detailed explanations.

Another reason for variations in names (not
mentioned in the previous reference) is to do with
system restrictions-most large databases of Arabic
names are old and built on old mainframes that use
seven bits to represent characters. Seven bits is not
enough to represent (in addition to English characters,
numbers and special characters) Arabic diacritics and
some characters such as “آ“ ,”إ“ ,”أ” and “ؤ”. Therefore,
people who entered the names in the databases had to
cope by writing names differently, such as by entering
the name “أحمد” as "احمد".

To the best of our knowledge, no solution has yet
been proposed to address variations in Arabic names,
this study attempts to fill this gap.

A similar problem is the Romanization of Arabic
names, in which several versions of the same Arabic
name are transliterated in the Roman alphabet. A few
solutions have been proposed to solve this problem. For
example the work of Arbabi et al. (1994) presents a
hybrid algorithm designed to automate the
transliteration of Arabic names in real time. They
employed an Artificial Neural Network (ANN) and a
knowledge-based system to add vowels to Arabic
names. Their ANN system filters out unreliable names,
passing only the reliable names on to the knowledge-
based system, which is designed for Romanization.
This approach was developed at the IBM Federal
Systems Company and made available for a broad
range of applications, such as for visa and document
processing by border control personnel.

Related work was done by Alghamdi (2005). The
work describes a new system for standardized
Romanization of Arabic names. Alghamdi's system is
composed of three major steps; the first step is
diacritization of the Arabic word and removal of typing
habits such as the insertion of dashes between letters.
The second step is to convert Arabic graphemes into
phonetic symbols. The third step is to convert sound
symbols into the Roman alphabet. The work of Al-
Onaizan and Knight (2002) also fits in this category.

Another similar problem is the recognition of
Arabic names in a text. An example of work on this
problem is the work done by Elsebai et al. (2009) who
used a set of keywords to guide their algorithm-the
phrases that most often include a person’s name. In
addition to making use of the Buckwalter Arabic
Morphological Analyzer (Buckwalter, 2004). The
dictionary and solution presented in this study can also
be applied to the problem of recognizing Arabic names
in text as part of NLP.

Our proposed method can also be used for the
problem of matching personal names in English to the
same names in Arabic writing. A solution to the
matching problem is proposed by Freeman et al.
(2006), who reported significant improvement by using
the classic Levenshtein edit-distance algorithm.

The Levenshtein edit-distance algorithm
(Levenshtein, 1966) has been used extensively in
research on approximate-string matching. The
algorithm compares two strings by counting the number
of character insertions, deletions and substitutions
required to convert one string to a second. The question
thus arises: why not using the edit-distance algorithm to
approximate the searched name and view the most
relative name?

This method (Edit-distance-in our case) will not
work properly for two reasons. First, it is unclear what
the threshold for matching should be. If the threshold is
1 (the smallest threshold), using edit-distance to search
for the name "احمد", for example, will yield the three
totally unrelated names “ حمد“, “احمد ” and “احمر”. The
correct search results should contain only “احمد” and its
alternatives, such as “أحمد”. Second, using edit distance
for all names in a database is time-consuming-the time
complexity is O (NM2), where N is the number of
names in the database and M is the average length of
names in the database.

PROPOSED METHODOLOGY

The proposed solution has two modes-writing and
reading. In writing mode, inserting new names in a
standard form in the database should be guaranteed, so
the problem is solved for future searching. In reading
mode, the proposed solution works for the current
(corrupted) names in different databases, such as

Res. J. Appl. Sci. Eng. Technol., 8(14): 1630-1638, 2014

1633

Fig. 1: Flow chart of the proposed system in writing mode

Fig. 2: Flow chart of the proposed system in reading mode

current accounting and banking systems, social media
networks and national passports systems. The solution
should guarantee that all possible alternatives for the
searched name are returned.
The proposed solution consists of two steps:

Step 1: The entered name is pre-processed. Pre-

processing includes the removal of special
characters, numbers and spaces, except for
compound names such as “عبد الله”, for which
one space between the two words is allowed
and should be enforced. This step is performed
in the same way for both reading and writing
modes.

Step 2: The use of our dictionary (contains all Arabic
names and their alternative writing forms)
made for the purpose of this study. Basically,
the dictionary, is a table in a simple database,
consists of all names and all their alternative
writing forms, in addition to a field containing
the standard writing form of each name. The
standard name is the most frequent form of
each name in the real database (the one that
contains all Jordanian names), assuming that
the most common written form is the most
accurate one, because common linguistic
errors often become acceptable (over time):

• In writing mode, when a name is inserted, the

dictionary is invoked and returns the standard name
as an alternative for the entered name, advising the
person entering data (either a user or data-entry

clerk) to insert the standard name if the entered
name is corrupted (an invalid written form of the
name). Figure 1 depicts the proposed system in the
writing mode.

• In the reading mode and when a user searches for a
specific name, the dictionary is invoked and passes
all alternative written forms of that name to the
search algorithm. The algorithm searches for the
name and all alternatives using other information,
such as the family name, the birth date, etc., the
user can then choose the desired name. Figure 2
depicts the proposed system in the reading mode.

Data collection and dictionary preparation: All
Jordanian names were collected from the Jordanian
civil status and passport department, who generously
provided us with all the Jordanian first names in their
database. The list included 75,000 distinct names; after
the removal of mistakes, special characters, double
middle spaces, spaces from left and right for all names,
the number of distinct names was dramatically reduced
to 17992. We compared those names to find the edit
distance of threshold 1 based on the mentioned rules in
section above. A threshold of more than 1 allows many
unrelated names to be considered as alternatives. A
threshold of 2 is used only for rule 10, because this rule
is a special case in which two characters (“ال”) are
added or removed at the beginning of a name.
Alternatives come from rule 10 might be excluded from
the dictionary, as this rule is easier to be checked
online.

Res. J. Appl. Sci. Eng. Technol., 8(14): 1630-1638, 2014

1634

If the compared name satisfied the edit distance
threshold and also one of the mentioned rules, it was
then considered as an alternative to the searched name.
We did this for all names in the dictionary. Algorithm 1
(written later in C++) shows the list of constraints that
we used in the creation of the dictionary.

Algorithm 1: create name dictionary
Input: text file containing all Jordanian first names
(17992 distinct names)

Output: text file represents the name dictionary which
contains each name and its alternative forms
For each name as A in Input file {
List = NULL//dynamic array of strings to contain the
name and its alternatives.
Add A to A's list
For each name as B in Input file {

D = Edit distance (A, B)
If D = 1 {

If index (B, ”س”) = index (A, ”ص”) or index (A,
 THEN (”ص” ,B) index = (”س”
ADD B TO A's LIST//Rule 1
If (Last Char (B) = “ي” and Last Char (A) = “ى”)
or (Last Char (B) = “ى” and Last Char (A) = “ي”)
THEN
ADD B TO A's LIST//Rule 2
If index (B, ”ض”) = index (A, ”ظ”) or index (A,
 THEN (”ظ” ,B) index = (”ض”
ADD B TO A's LIST//Rule 3
If index (B, ”ج”) = index (A, ”ش”) or index (A,
 THEN (”ش” ,B) index = (”ج”
ADD B TO A's LIST//Rule 4
If (Last Char (B) = “ا” and Last Char (A) = “ه”) or
(Last Char (B) = “ه” and Last Char (A) = “ا”)
THEN
ADD B TO A's LIST//Rule 5 & 6
If index (B, ”ج”) = index (A, ”ق”) or index (A,
 THEN (”ق” ,B) index = (”ج”
ADD B TO A's LIST//Rule 7
If index (B, ”ذ”) = index (A, ”د”) or index (A,
 THEN (”د” ,B) index = (”ذ”
ADD B TO A's LIST//Rule 8-a
If index (B, ”ذ”) = index (A, ”ض”) or index (A,
 THEN (”ض” ,B) index = (”ذ”
ADD B TO A's LIST//Rule 8-b
If index (B, ”ئ”) = index (A, ”ي”) or index (A,
 THEN (”ي” ,B) index = (”ئ”
ADD B TO A's LIST //Rule 9
If (Last Char (B) = “ة” and Last Char (A) = “ت”) or
(Last Char (B) = “ت” and Last Char (A) = “ة”)
THEN
ADD B TO A's LIST //Rule 11
If (Last Char (B) = “ة” and Last Char (A) = “ه”) or
(Last Char (B) = “ه” and Last Char (A) = “ة”)
THEN
ADD B TO A's LIST//Rule 12
If (index (B, ”ا”) not = index (A, ”ا”) and index (B,
 and (”ا” ,B) not = index (”ا” ,A) or (index (0< (”ا”
index (A, ”ا”) >0) THEN

ADD B TO A's LIST //Rule 13-a (long vowel “ا”)
If (index (B, ”و”) not = index (A, ”و”) and index
(B, ”و”) >0) or (index (A, ”و”) not = index (B, ”و”)
and index (A, ”و”) >0) THEN
ADD B TO A's LIST//Rule 13-b (long vowel “و”)
If (index (B, ”ي”) not = index (A, ”ي”) and index
(B, ”ي”) >0) or (index (A, ”ي”) not = index (B,
 THEN (0< (”ي” ,A) and index (”ي”
ADD B TO A's LIST//Rule 13-c (long vowel “ي”)
If (Last 2 Chars (B) = “اء” and LastChar (A) = “ا”)
or (LastChar (B) = “ا” and Last2Chars (A) = “اء”)
THEN
ADD B TO A's LIST//Rule 14
If (LastChar (B) = “ا” and LastChar (A) = “ى”) or
(LastChar (B) = “ى” and LastChar (A) = “ا”)
THEN
ADD B TO A's LIST//Rule 15
}
If D = 2 {
If (First 2 Chars (B) = “ال” and First2Chars (A)
not = “ال”) or (First 2 Chars (B) not = “ال” and
First2Chars (A) = “ال”) THEN
ADD B TO A's LIST//Rule 10
}

}//for B
Write List to OUTPUT file
Write End-line

}//for A
Save OUTPUT file
//end algorithm

RESULTS AND DISCUSSION

The dictionary that resulted from applying our
algorithm to the database of names consists of one
table. The table is indexed by the first field, which
contains the Arabic name and the next 13 fields contain
the alternative names, with an integer field showing
how frequent each alternative was in the main database.
The last field contains the standard (most frequently
used) form of the name.

The algorithm found 11330 names with at least one
alternative. Despite the care we took in constructing
rules and constraints, after manually checking the
resultant dictionary, we found that some names were
rejected as alternatives and others were wrongly
accepted as alternatives. We therefore amended the
dictionary manually to fix the erroneous acceptance and
rejection errors. As a result of our manual editing, the
number of names with at least one alternative rose to
11433. Names were grouped based on the number of
alternatives, from 1 to 13. Table 2 shows the number of
alternatives.

The number of names with 1 and 2 alternatives
decreased after manual editing by 804 names. The
change is due to names which satisfied the rules and
Algorithm 1 constraints, but which we rejected, because
they were different names. For example the name
 was listed as an alternative for the different name ”حسن“
 ,so we rejected it manually. By our calculation ,”حسين“

Res. J. Appl. Sci. Eng. Technol., 8(14): 1630-1638, 2014

1635

Table 2: The number of names with each number of alternative names, before and after manual editing of the dictionary

Number of alternatives
Number of names before manual
editing

Number of names after manual
editing

Change in the number of
names due to editing

1 5939 5422 -517
2 2972 2685 -287
3 1344 1524 180
4 583 852 269
5 258 424 166
6 130 189 59
7 63 177 114
8 20 69 49
9 17 40 23
10 3 29 26
11 1 10 9
12 0 0 0
13 0 12 12

Table 3: Some example alternative Arabic names in the dictionary that occurred due to spelling errors and types
Name Alt1 Alt2 Alt3 Alt4 Count Standard name
 ع»ء 4 ع»ء ءاHء
 اعبد 9 اعبد اءبد
 اعتدال 191 اعتدال اءتدال
 اعتماد 33 اعتماد اءتماد
 اعرابي 4 اعرابي اءرابي
 اعطيش 4 اعطيش اءطيش
 اعمر 3 اعمر اءمر
 عبدالرؤوف 2915 عبدالروئوف عبدالرووف عبدالرؤف عبدالروؤف عبدالرؤوف
 عبدالرؤوف 9 عبدالرؤوف عبدالروئوف عبدالرووف عبدالروؤف عبدالرؤف
 عبدالرؤوف 100 عبدالرؤوف عبدالروئوف عبدالرووف عبدالرؤف عبدالروؤف
 عبدالرؤوف 5 عبدالرؤوف عبدالرووف عبدالرؤف عبدالروؤف عبدالروئوف
 عبدالرؤوف 209 عبدالرؤوف عبدالروئوف عبدالرؤف عبدالروؤف عبدالرووف
Empty and hidden fields mean no alternatives

the erroneous acceptance rate of Algorithm 1 was at
least 7% for all numbers of alternatives, from 1-13.

The number of names with 3-13 alternatives
increased after manual editing by 907 names. This
reflects the manual addition of alternatives that were
rejected as not satisfying the rules and Algorithm 1
constraints, but are acceptable alternatives. For
example, according to the rules, the female name
 .”ادھمه“ :has only one alternative name ”ادھميه“
However, we found and accepted two other
alternatives, “ادھيمه” and “دھمه”, manually. By our
calculation, the erroneous rejection rate of Algorithm 1
was at least 7.9%, for all numbers of alternatives, from
1-13.

Erroneous acceptance and rejection of alternatives
occurred because:

• Some names satisfied the rules despite not being

alternatives
• Some acceptable alternative names did not satisfy

the rules
• Other problems occurred, which had nothing to do

with the rules and have not been mentioned in the
literature

Some of the errors of the last type include:

• Spelling errors and typos, such as when the name

 and the confusion of ”ءHء“ is written ”ع»ء“
“Hamzah” (“ء”) and “Ein” (“ع”). (Many Arabic

writers, including data-entry clerks, have not
mastered the rules of Arabic “Hamzah”.) For
example, the female name “رؤى” included 13
misspelled variants: “ روئى ”, “رؤه”, “رؤا”, “رؤوى”,

, “رئى”, “روى”, “رواى”, “روا”, “روئ”, “روئا”, “روئه”
روىء” ” and “روؤى”. This name is the one most

often written differently. Table 3 shows other
examples that fit this problem.
People employed for data entry usually have not
attained a high educational level. They are trained
mostly in how to use the system and it is assumed
that they can write well. Due to the ambiguity in
Arabic, we believe that writing correctly in Arabic
is not an easy task; therefore, data-entry clerks
need to be trained to write correctly using a
computer keyboard and only then trained to use the
database.

• Foreign names are written in multiple ways in
Arabic, mainly because some foreign sounds are
not represented in the Arabic alphabet, such as the
English letter “g” in “Margret.” The letter “g” is
usually represented by “ج” or “غ”. In the absence
of standardization, the name “Margret” and other
similar names might be written, for example, as
 In addition, “g” is also .”مارغريت“ or ”مارجاريت“
transliterated sometimes as “ق” in Arabic, so the
name “Margo” becomes “ مارجو”, “مارقو ”, or
 The same applies to the letter “s,” which is .”مارغو“
sometimes transliterated as “z”, so that “Teresa”,
for example, would be written “تريزا” with “z” or as

Res. J. Appl. Sci. Eng. Technol., 8(14): 1630-1638, 2014

1636

Table 4: Examples (from our dictionary) that show alternatives of transliterated names in Arabic

Name Alt1 Alt2 Alt3 Alt4 Alt5 Alt6 Alt7 Alt8 Count
Standard
name

 ماريا تريزا 3 مارى تريز ماري تيريز مارياتريزا ماريا تيريسا ماريا تيريزا ماريا تريزا ماريا تريز
 ماريا تريزا 9 مارى تريز ماري تيريز مارياتريزا ماريا تيريسا ماريا تريز ماريا تيريزا ماريا تريزا
 ماريا تريزا 3 مارى تريز ماري تيريز مارياتريزا ماريا تيريسا ماريا تريزا ماريا تريز ماريا تيريزا
 ماريا تريزا 3 مارى تريز ماري تيريز مارياتريزا ماريا تريزا ماريا تريز ماريا تيريزا ماريا تيريسا
 اليزابيث 9 اليزابيتا اليزابيث الزابيت اليزابيت اليزبيث اليزبث اليزابتا اليزابث اليزابت
 اليزابيث 109 اليزابيتا اليزابتا اليزابث اليزابيث اليزبيث اليزبث اليزابت الزابيت اليزابيت
 اليزابيث 305 اليزابيت اليزابتا الزابيت اليزابيتا اليزبيث اليزبث اليزابت اليزابث اليزابيث
اليزابيث اليزابت اليزابث اليزبث اليزابيث 11 اليزابيت اليزابتا الزابيت اليزابيتا اليزبيث
مارجاريت مارجاريتا مرجريت مارجريت مرغريت 102 مرغريتا مارغريتا مرغريت مارغريت مارجريتا
 مرغريت 21 مرغريتا مارغريتا مرغريت مارغريت مارجاريت مارجاريتا مرجريت مارجريت مارجريتا
 مرغريت 352 مارغريتا مارغريت مارجريتا مرجريت مارجريت مارجاريتا مارجاريت مرغاريتا مرغريت
 مرغريت 173 مارغريتا مرغريت مارجريتا مرجريت مارجريت مارجاريتا مارجاريت مارغاريتا مارغريت
 مارغو 26 مارجو مارقو مارغو
 مارغو 21 مارغو مارجو مارقو
 مارغو 19 مارغو مارقو مارجو
Empty and hidden fields mean no additional alternatives

Table 5: Examples (from our dictionary) that show alternatives for Arabic compound names
Name Alt1 Alt2 Alt3 Alt4 Count Standard name
 بھاء الدين 4105 بھاعالدين بھاع الدين بھاالدين بھاءالدين بھاء الدين
 بھاء الدين 560 بھاعالدين بھاع الدين بھاالدين بھاء الدين بھاءالدين
 بھاء الدين 3 بھاعالدين بھاع الدين بھاء الدين بھاءالدين بھاالدين
 رجا الله 7 رجا الله رجاالله
 رجا الله 35 رجاالله رجا الله
رجبخان رجب خان رجب خان 11
رجب خان رجبخان رجب خان 6
 ضيف الله 249 ضيفا| ظيف الله ضيف الله
اللهضيف 4 ظيف الله ضيف الله ضيفا|
 عوده الله 924 عودھا| العوده الله عوده الله
 عوده الله 3 العوده الله عوده الله عودھا|
 ماشاء الله 8 مشاء الله ما شاء الله ماشاءالله مشاء الله ماشاء الله
 ماشاء الله 5 مشاء الله ما شاء الله مشاء الله ماشاء الله ماشاءالله
 عطا الله 4827 عطاالله عطا| عطاء الله عطا الله
 عطا الله 12 عطا الله عطا| عطاالله عطاء الله
 عطا الله 1284 عطا الله عطاء الله عطا| عطاالله
 عطا الله 138 عطا الله عطاء الله عطاالله عطا|

Table 6: Examples (from our dictionary) that show alternative females names derived from a male name
Name Alt1 Alt2 Alt3 Alt4 Count Standard name
 بدوى 195 بديوي بدوى بدوي
 بدويه 87 بديويه بديه بدوه ابدويه بدويه
 بشير 4045 البشير ابشير بشير
ابشيره بشيرا بشيره 11 بشيره
ارزيق رزيق رزق 7 رزق
ارزيقه رزيقه رزقه 30 رزقه
روميس رميس رميس 34
الرميساء رميساء رميساء 38 روميساء
 رھف 17 رھف رھيف
 رھيفه 15 روھيفا رھيفه رھيفاء رھيف رھيفا
 اسحيم 4 اسحيم سحيم
 سحيمه 5 اسحيمه سحيمه سحمه سحيما
صبحي صبحيي صبحي 3 صبيحى صبيحي
اصبيحه صبيحه صبحه 573 صبيحى صبيحا صبحه

 ”with more of an “s” sound. The letter “t ”تيريسا“
and combination “th” are also often confused, so
that “Elizabeth” is transliterated to many different
forms in Arabic, such as “اليزابيث” and “اليزابت”.
Table 4 shows some examples taken from our
proposed dictionary for solving these problems.

• Compound names are sometimes written with
spaces between names and sometimes without.
Table 5 shows examples of how our dictionary
solves this problem.

Our dictionary shows that female names include
alternatives than male names, because Arabic female
names usually end with “ ـة”, “اء”, “ا”, “ى ” or “ـه”. These
characters are important for distinguishing female
names from male names with the same roots. For
example, the male name “حسين” becomes the female
name by adding “ـه” to the end to convert it to “حسينه”,
or adding ا” ” to convert it to “حسينا”. The use of many
female characters results in a larger number of
variations in the forms of female's names. Table 6
shows some examples of male and female names.

Res. J. Appl. Sci. Eng. Technol., 8(14): 1630-1638, 2014

1637

A great deal of effort will need to be expended to
standardize Arabic names and it will require the
cooperation of all Arab countries. This study is just an
attempt to fix and standardize names taken from the
Jordanian civil status and passport department. Other
experimenters may use the methodology in this study
on data from other Arab countries to create a complete
Arabic names dictionary. Such a dictionary would be
useful for international accounting systems, social
network databases and security tracking systems.

Instead of creating a dictionary, other interested
parties might also apply rules directly (online) while
users search. The problem with this approach is that
when those rules are applied to the searched name, they
generate a large number of combinations, which is
time-consuming both during the generation of
combinations and search for each combination.
Moreover, the combinations are not necessarily names
or alternatives, due to erroneous acceptance errors like
those we encountered and some legitimate alternatives
will be absent due to erroneous rejection errors. For
both speed and accuracy we recommend the use of a
dictionary solution.

Indexing the field of the name in the dictionary
speeds up searching of the dictionary for alternatives.
The cost is O (log k), where k is the number of names
in the dictionary (17992 in our case). Searching the
whole targeted database (which is normally indexed by
name) costs O (m log n), where m is the number of
alternatives, which varies from 1 to 13 and n is the
number of names in the target database. Thus the total
time complexity is equivalent to O (log k) +O (m log
n). Because k and m are both constants, time
complexity can be approximated to O (log n). This
means we did not add significant time to normal search
algorithms used in the target database.

Manually work on the dictionary took us more than
500 working hours; still we do not guarantee the
absence of all errors. Therefore, we will publish the
dictionary on the Internet for public use, so that it can
be read, but also enhanced by users. Users can thus add
new names and alternatives, or even delete mistakenly
accepted alternatives. After user input, the dictionary
will be ready for efficient use with different databases.
Currently, the dictionary can be used within real-world
databases with the caution that manual editing does not
guarantee 100% correctness.

CONCLUSION

In this study, we introduce a new dictionary of
Jordanian first names and their different writing forms
to be used by system developers, database
administrators and researchers. This dictionary is meant
to solve the problem of multiple alternative written
forms of names in Arabic. The problem becomes more
complicated when searching databases for such names.

We created the dictionary by applying rules that govern
why and how different forms of the same Arabic name
are created.

Due to different types of errors and different
reasons for problems, we needed to manually edit the
dictionary to remove errors. During our review, we
identified a number of reasons for errors, such as
spelling errors and typos introduced by data-entry
clerks, as well as inconsistent rendering of compound
names. Therefore, we encourage database
administrators to train data-entry clerks not only in how
to use the system, but also and more importantly, how
to write correctly.

When a user searches a database for an Arabic
name, the dictionary is invoked to provide all
alternatives (if any) to be searched for in the database.
This frees the user from needing to enter all alternatives
(if the user is even aware of all alternatives) of the
name. Our solution is also important for other
problems, such as document matching, translation,
name entity problem and NLP in general. Moreover, the
dictionary contains a standard written form for each
name, which is the most common form of the name.

Because we edited the dictionary manually, we
cannot claim that the solution is ready for use as-is;
rather, it needs further editing and more efforts by other
researchers to include other names from different Arab
countries before it can be considered a comprehensive
solution ready for use with different database systems.

In future work, we intend to extend the dictionary
to include names from other Arab countries as well as
other languages that use Arabic text, such as Persian
and Urdu, because many names in both languages are
similar to those in Arabic. The methodology, with some
different rules, might even be applied to other
languages such as English, because a similar problem
may occur, with a greater or lesser degree of
complexity, for many languages.

ACKNOWLEDGMENT

All the names used to create the dictionary were

provided by the Jordanian civil status and passport
department, therefore, the authors would like to thank
and acknowledge them for their generous assistance.

REFERENCES

Alghamdi, M., 2005. Algorithms for romanizing Arabic
names. J. King Saud Univ., Comput. Sci. Inform.,
17: 1-27.

Al-Onaizan, Y. and K. Knight, 2002. Machine
transliteration of names in arabic text. Proceedings
of the ACL-02 Workshop on Computational
Approaches to Semitic Languages (SEMITIC, 02).
Stroudsburg, PA, pp: 1-10.

Res. J. Appl. Sci. Eng. Technol., 8(14): 1630-1638, 2014

1638

Alshamsan, I.S., 2003. Discrepancies in the Writing
Arabic Names in Letters and Diacritics: Forms and
Causes. The Standardization of the Romanization
of Arabic Proper Names: The Security Dimensions,
Riyadh, pp: 9-54 (In Arabic).

Arbabi, M., S.M. Fischthal, V.C. Cheng and E. Bart,
1994. Algorithms for Arabic names transliteration.
IBM J. Res. Dev., 38(2): 183-194.

Buckwalter, T., 2004. Buckwalter Arabic
Morphological Analyzer Version 2.0. LDC Catalog
Number LDC2004L02, ISBN: 1-58563-324-0.

Elsebai, A., F. Meziane and F.Z. Belkredim, 2009. A
rule based persons names arabic extraction system.
Proceeding of Communications of the IBIMA, Vol.
11, ISSN: 1943-7765.

Farghaly, A. and K. Shaalan, 2009. Arabic natural
language processing: Challenges and solutions.
ACM T. Asian Lang. Inform. Process., 8(4).

Freeman, A.T., S.L. Condon and C.M. Ackerman,
2006. Cross linguistic name matching in english
and arabic: A “one to many mapping” extension of
the levenshtein edit distance algorithm. Proceeding
of the Main Conference on Human Language
Technology Conference of the North American
Chapter of the Association of Computational
Linguistics (HLT-NAACL '06), pp: 471-478.

Halpern, J., 2007. The challenges and pitfalls of arabic
romanization and arabization. Proceeding of the
2nd Workshop on Computational Approaches to
Arabic Script-based Languages, Palo Alto.

Levenshtein, V., 1966. Binary codes capable of
correcting deletions, insertions and reversals.
Soviet Phys. Doklady, 10(10): 707-710.

Soudi, A., A. van den Bosch and G. Neumann, 2007.
Arabic Computational Morphology: Knowledge-
based and Empirical Methods. 1st Edn., Springer
Publishing Co., Incorporated © 2007, ISBN:
1402060459 9781402060458.

