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Research Article 
On-line Transient Stability Assessment through Generator Rotor Angles Prediction Using 

Radial Basis Function Neural Network 
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Abstract: On-line Transient Stability Assessment (TSA) is challenging task due to the large number of variables 
involved and continuously varying operating conditions. This study proposes an on-line transient stability 
assessment methodology based on the predicted values of generator rotor angles under varying operating conditions 
for predefined contingency set through Radial Basis Function Neural Network (RBFNN). The real and reactive 
power loads are taken as input features for training of the neural network. Principal Component Analysis (PCA) is 
used for dimensionality reduction of the input data set to select informative features. The proposed method is tested 
on IEEE-39 bus test system and the results obtained for transient stability assessment through predicted rotor angles 
are promising. 
 
Keywords: Artificial neural network, feature selection, on-line power system transient stability, principal 

component analysis, radial basis function 

 
INTRODUCTION 

 
Modern power systems operating close to their 

stability limits due to economic and operational 
constraints are more vulnerable to transient instability 
under severe credible contingency. To monitor and 
control transient stability, the rotor angle of the 
synchronous generators is very important reference 
quantity. On-line Transient Stability Assessment (TSA) 
involves generation of off-line data for varying 
operating conditions under probable contingencies and 
then predicting the future state on-line for given 
operating scenarios under predefined set of 
contingencies so that preventive actions can be taken to 
enhance the transient stability (Morison, 2006). 
Normally preventive actions are derived based on the 
predicted state of the system for particular operating 
scenarios. Thus it becomes imperative to find the 
correct post-fault scenarios so that suitable preventive 
actions can be taken accordingly (Vega and Pavella, 
2003). Time Domain Simulation (TDS) is the 
established and accurate method for TSA but due to 
heavy computational burden it is suitable only for off-
line purposes (Sobajic and Pao, 1989). Transient 
Energy Function (TEF) and extended equal area 
criterion based TSA has been proposed (Chiang et al., 
1994; Vittal et al., 1988; Xue et al., 1989) for fast on-
line TSA. The challenging task in implementation of 
energy based methods for on-line TSA is to find the 
function that defines the transient energy of the large 
and complex power system and simultaneously finding 

the critical transient energy of the system under given 
disturbance.  

In the past few years Artificial Intelligence (AI) 
based techniques such as Artificial Neural Network 
(ANN), Support Vector Machines (SVM) and decision 
tress have been proposed for on-line TSA (Krishna and 
Padiyar, 2000; Moulin et al., 2004; Sawhney and 
Jeyasurya, 2006; Voumvoulakis et al., 2006). Normally 
these AI techniques are used to learn from off-line data 
and then can be utilized for on-line transient stability 
evaluation. Various neural network based techniques 
has been proposed for on-line TSA in recent years due 
to their ability to synthesize complex mappings very 
accurately and rapidly for practical applications. A 
backpropagation neural network is used for on-line 
TSA with 2 hidden layers (Krishna and Padiyar, 2000). 
A feed-forward ANN based method was proposed for 
TSA with two feature selection techniques (Sawhney 
and Jeyasurya, 2006), fuzzy neural network based 
transient stability prediction method with transient 
swings as input was proposed in Liu et al. (1999). 
Fisher discrimination feature selection technique based 
ANN was proposed for dynamic security analysis 
(Jensen et al., 2001).  

Majority of ANN based methods available in 
literature determines security state of type stable/ 
unstable (0 or 1) (Moulin et al., 2004; Krishna and 
Padiyar, 2000; Liu et al., 1999), i.e., able to classify the 
system stability successfully but fails to determine the 
degree of stability/instability in the postfault state of the 
system. The energy function based method using neural 
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network techniques for TSA proposed in Mansour et al. 
(1997), is able to determine the severity of contingency 
and can find the stability margins for the contingency. 
However majority of the methods require heavy 
computational time for training, as well it is difficult to 
construct the energy function for multi-machine system. 
Thus it is desirable to have a method which can predict 
the future transient stability state based on the present 
operating conditions for the set of contingencies and as 
well able to evaluate the severity. In the simple 
classification based methods accuracy is the major 
issue, as insecure scenarios predicted to be secure can 
make the entire system to collapse.  

Most of the authors have used feed forward neural 

network (Krishna and Padiyar, 2000; Sawhney and 

Jeyasurya, 2006; Jensen et al., 2001) with sigmoidal 

nonlinearities using back propagation algorithm, which 

usually suffers from the problem of local minima and 

over fitting. Another shortcoming of this network is that 

it takes long time for training. Radial Basis Function 

Neural Network (RBFNN), which has nonlinear 

mapping capability, has become increasingly popular in 

recent years due to its structural simplicity and training 

efficiency. Therefore, in this paper RBFNN based 

approach for TSA is proposed by predicting the rotor 

angles of all the machines for given operating 

conditions and then evaluating the transient stability 

state by Transient Stability Index (TSI) using the values 

of these predicted rotor angles under predefined 

contingency set. The severity of contingency can be 

determined based on the predicted values of rotor 

angles for these operating conditions. The input features 

of neural network are real and reactive power demands, 

whereas the output is the rotor angles of all the 

generators. The dimensionality of the input features is 

reduced by Principal Component Analysis (PCA) which 

enhances the speed of training. The effectiveness of the 

proposed scheme is investigated on IEEE-39 New 

England test system. The results shows that the 

predicted values of generator rotor angles are very close 

to the values obtain through dynamic simulation. 

 

Power system dynamics and rotor angle prediction: 

One of the main objectives of the dynamic simulation is 

to observe the transient stability state of the system 

following contingency. This is accomplished by 

determining the rotor trajectories of all the generators in 

post disturbance scenario. If the rotor trajectories 

increases/decreases monotonously without bounds the 

system is termed as unstable, however if rotor 

trajectories swings within specified limits the system is 

termed as stable. The rotor angle of all the generators is 

obtained by solving the set of following equations given 

by Hiyama (1981) as: 

 
���
�� =  ∆�	 for g = 1, 2........NG                  (1) 

 

�
�
�� = �

�� (��	 −  ��	 − �	∆�	)  
for g = 1, 2........NG                                               (2) ��	 =  �		�	� +  � ��	���	� cos��	 − ��  !"�#��$	   

+!%	�sin (�	 − ��)(                                           (3) 

 

where, NG is the total number of generators, �	 and ∆�	 
are the rotor angle and speed deviation of the g

th 

generator, respectively, Pmg and Peg are the input 

mechanical and output electrical power respectively of 

the generator g, �	 is the internal voltages of the gth 
generator, )	 is the moment of inertia of machine g, �	 
is the damping coefficients of g

th
 machine, �	�+ j%	� is 

the transfer admittance between the g
th
 and h

th
 machine, 

n is the total generating buses except g. These rotor 

angles can be utilized to assess transient stability state 

of the system by Transient Stability Index (TSI) as 

follows: 

 

TSI = *�	(+) − �,-.* =  �	,-.(+) ≤  ��01          (4) 
 

where, �	(+)  = The rotor angle of the generator g 

�,-.  = The centre of angles �	,-.(+)  = The relative rotor angle of the gth generator 
with respect to Centre of Angles (COA)   

t  =  The time step during dynamic simulation. 

The COA is determined as given by 

(Kundur, 1994): 

 

�,-. =  � �� 2�34�56
� 2�34�56                                             (5) 

 

where, Hg is the inertia constant of the generator g, if 

the rotor trajectories of all the generators with respect to 

COA remains below the predefined value during the 

entire simulation the system is transiently stable (1) else 

it is unstable (0). In this study, ��01 is taken as 120°. 
For each contingency, with varying operating 

conditions, a class label of 0 or 1 is assigned based on 

(4) as transiently stable or unstable, respectively. The 

rotor angles obtained through these simulations can be 

utilized for training the network and can be used for 

online applications for the unseen operating scenarios 

through trained ANN to predict the values of rotor 

angles for defined contingency set. 

 

Ann based on-line transient stability assessment: For 

on-line TSA, the offline data is generated for the given 

set of credible contingencies by randomly varying the 

real and reactive loads, the real and reactive power 

generations of all the generators are set to optimal point 

of the base case. In this study, the initial input features 
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considered are real and reactive power load demands 

(�78  and 978) of all the buses. The initial input feature 

set for ANN training is defined as: 

 :;<= =  :�78 , 978= = Fi  where, m = 1….ND (6) 

  
The target for ANN output is the rotor angle in 

degrees of all the generators at given time instant 
defined as: 

 ?;�@ =  :�	=, for g = 1……NG                (7) 

 
Contingency selection: The selection of critical 
contingencies depends upon the knowledge of the 
operator about the probability of their occurrence and 
severity. In this paper, two credible contingencies (three 
phase fault) are selected for testing the proposed 
scheme based upon their severity for different given 
operating conditions. After simulating different 
contingencies it is found that these two faults are more 
sensitive to the load variation with large excursions in 
the rotor angles. The purpose of RBFNN in this study is 
to map the pre-fault operating conditions to the post-
fault rotor angles of all the generators for the specific 
contingency.  
 
Data generation: The offline database of operating 
points is required to train the neural network. The 
database consists of large number of randomly varied 
load patterns covering wide range of scenarios. The 
dynamic simulation is performed by numerical 
integration technique such as trapezoidal method. The 
real and reactive load demands are considered as input 
features to neural network and the rotor angle of all the 
machines at the end of simulation are taken as output 
targets, each contingent case is assigned a class label of 
stable (1) or unstable (0) based on the TSI as (4).  
 
Data normalization: The input features �78 and 978 

in this study is normalized in the range of 0 and 1 for 
each pattern and shuffled several times for enhancing 
the randomness and minimizing the sequential effect. 
Normalization is done to make the Euclidean length of 
the vector equal to 1 by dividing vector by norm of the 
vector. Each input is normalized to xn for training and 
testing of neural network as: 
 

;" =  ABCDBC,8CEF
ABC,8GBDBC,8CEF                  (8) 

 
where,  
xi  = The actual value of the input 
xi,min  = The minimum value in the input data set  
xi,max  = The maximum value in the input data set 
 
Feature selection using PCA: The purpose of feature 
selection is to reduce the dimension of the input 
features. With large-scale power systems, the number of 

input variables increases sharply and therefore, it is 
necessary to discard the redundant features, having no 
additional information, from the original feature set. A 
neural network with less inputs have less adaptive 
parameters to be determined and thus better 
generalization and reducing training time drastically 
(Haykin, 1999). In this study, Principal Component 
Analysis (PCA) is investigated to reduce the dimensions 
of the input features. The dimension reduction of the 
input variables can be achieved by transforming to a 
new set of uncorrelated variables known as Principal 
Components (PCs), which are ordered with first few 
hold most of the variation present in the original input 
variables. PCA is orthogonal linear transformation 
which transforms the original data to new coordinate 
system such that data which have large variations comes 
to lie in the first coordinate (termed as first PC) and so 
on in the decreasing order of their variance. Normally 
most of the original information is retained by the first 
PCs, reducing the dimensions of input features 
drastically. 
 
RBFNN for TSA: RBFNN is the class of single 

nonlinear hidden layer feed forward neural networks 

(Devaraj et al., 2002), which have nonlinear mapping 

capability and uses radial basis function as activation 

functions. The input nodes pass the input to the hidden 

layer directly without any connection weights.  

The transfer function in the hidden nodes is given as: 

 

∅<(;) = I;J K− L1MNOLP
�QOP R               (9) 

 

which is similar to the multivariate Gaussian density 

function, where ; is the d-dimensional input vector 

with elements ;S, T< is the vector which determines the 

centre of the basis function ∅<, U< is their widths. Thus 
each RBF correspond to a unique local neighbourhood 

in the input space. The generalised RBFNN architecture 

is shown in Fig. 1.  

The k
th
 output node value given by yk is determined by: 

 VW(;) =  � XW<∅<(;) + XWYZ<#�             (10) 

 

where, XW<   = The connection weight between the output and 

the j
th
 hidden node XWY = The bias term and p is the number of the basis 

function 

 

PROPOSED METHODOLOGY 

 

The flowchart of the proposed scheme for transient 

stability assessment through rotor angle prediction is 

shown in Fig. 2.  

The algorithm steps are as follows: 
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Fig. 1: RBFNN architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2: Flowchart of data generation for on-line TSA 
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• Run Optimal Power Flow (OPF) on the given test 

system at base case and obtain the optimal 

generation schedules, Set contingency count J = 1. 

• Set total load of the system to 95% of the base case. 

• Set pattern count I = 1. 

• Randomly vary the real and reactive load of each 

bus of the system.  

• For credible contingency J (three phase fault), 

perform dynamic simulation for given load pattern. 

• Record the rotor angles with respect to COI, �	,-[(+) (g = 1, 2........, NG) at each time step during 

simulation.  

• Is �	,-[(+) >120°, the system for the given operating 

conditions for contingency J is transient unstable 

(0) otherwise transient stable (1). 

• Is  pattern  count  = max?  Yes,  go  to  step 9  else  

I = I+1 and go to step 4. 

• All load scenarios simulated for the contingency J? 

Yes, go to step 10, otherwise, increase the total load 

by 1% and go to step 3. 

• All contingencies simulated? Yes, divide the total 

patterns into train set and test set for ANN, 

otherwise, take next contingency J, i.e., increment  

J = J+1 and go to step 2. 

• The normalized and shuffled values of PD and QD 

are taken as input variables for training RBFNN and �	,-[(+) as targets for the network. 
• With the predicted values of rotor angles evaluate 

the stability state of the system for the unseen cases.  

 

RESULTS AND DISCUSSION 

 

The proposed RBFNN based TSA approach is 

tested on IEEE-39 bus New England test system (Pai, 

1989), the system consists of 10 generators, 12 

transformers and 46 transmission lines. The slack bus is 

taken as bus 39. Classical generator models are used 

having turbines, governors, exciters and stabilizers. All 

the simulations are carried out using MatPower 4.1 

(Zimmerman, 2011), PSAT (Milano, 2005) and 

MATLAB 7.7 2008.  

 
Training and testing data generation: The real and 
reactive loads are varied from 95 to 105% of the base 
case in steps of 1% and for each load topology 100 
patterns are generated by randomly varying all loads, 
which covers a wide range of scenarios, the two 
contingency are simulated for each load pattern as 
mentioned in Table 1: three phase fault at bus-28 cleared 
by opening the line 28-26 (contingency-A) and three 
phase fault at the midpoint of line 21-22 cleared by 
opening the line (contingency-B). Both faults are 
applied at 1 sec and are cleared after 0.2 sec.  

The dynamic simulation is performed for 3 sec and 
rotor angle value of all the generators at the end of 
simulation   is  observed.  Thus  total  2200  patterns  are  

Table 1: Applied credible contingencies 

Contingency # Location of fault Tripped line Duration 

A Bus-28 26-28 12 cycles 

B Line 21-22 21-22 12 cycles 

 

Table 2: Features reduced using PCA 

Contingency # 

Initial features 

(Fi) 

Selected 

features (Fs) 

Dimensionality 

reduction (%) 

A 42 20 52.24 

B 42 16 61.90 

 

generated, 1100 patterns for each contingency. The on-

line TSA is done by pre-contingent data. The RBFNN is 

used for mapping the nonlinear relationship of pre-fault 

operating conditions to the post-fault rotor angle of the 

generators. One RBFNN is trained for each contingency. 

 

Feature selection using PCA: The features are selected 
for training and testing of network using PCA to reduce 
the dimensionality and increasing the speed of the 
network. Since most of the contingency are localized in 
nature thus remote power system variables do not affect 
the transient stability of the system, as these variables 
not only complicate the network but also degrade the 
performance of the network. The real and reactive loads 
are considered as input features for ANN, as post fault 
rotor angle excursions largely depends upon these load 
demands, hence these features can predict transient 
stability status for the given contingency. In the IEEE-
39 bus system total dispatchable loads considered are 
21, therefore, initial feature set; Fi consists of total 42 
input features. The features selected from Fi after 
applying feature selection using PCA are 20 and 16, 
respectively shown in Table 2 for the two contingencies 
applied. The data set with reduced features Fs is shuffled 
several times and divided into training set and test set. 
Out of 1100 cases of each contingency 700 cases are 
used to train the network and remaining 400 cases for 
testing the network.  

 
Test results: The two contingencies defined in Table 1 
are simulated for IEEE-39 test system; the sample 
results obtained for the two contingencies for stable and 
unstable operating scenarios are shown in Table 3 and 4. 

Table 3 indicates an unstable case, where the actual 
relative rotor angle of generator of G9 is above the 
threshold value of 120° and goes out of step with respect 
to COA. The predicted value of all the rotor angles 
obtained from RBFNN are nearly the same as the actual 
values obtained from time domain simulations. The 
proposed methodology using RBFNN is able to classify 
correctly this operating condition as transiently unstable. 
Figure 3 shows the relative rotor angles of all machines 
for contingency-A for unstable operation. It can be 
observed from the figure that for contingency-A (fault at 
bus-28) generator G9 is most sensitive to load 
variations, since this generator is near to the faulted bus-
28. For all the unstable cases for contingency-A it is 
found that rotor angle of G9 is above the threshold value 
and the RBFNN is able to predict these cases correctly 
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Table 3: Actual and predicted relative rotor angles for contingency

Generator No. Actual rotor angle (deg)

1 -2.08 
2 15.15 
3 23.93 
4 24.87 
5 28.35 
6 21.60 
7 25.02 
8 31.19 
9 717.17 
10 -15.49 

*: Pattern number:754 
 
Table 4: Actual and predicted relative rotor angles for contingency

Generator No. Actual rotor angle

1 20.75 
2 51.39 
3 60.78 
4 65.84 
5 71.15 
6 76.86 
7 77.41 
8 69.28 
9 81.78 
10 7.53 

*: Pattern number: 625 

 

 

Fig. 3: Relative rotor angle of sample unstable case for contingency

 

Fig. 4: Relative rotor angle of sample stable case for contingency
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e rotor angles for contingency-A (unstable case)* 

Actual rotor angle (deg) Predicted rotor angle (deg) Actual state 

-4.32 Instep 
14.41 Instep 
23.06 Instep 
21.98 Instep 
21.34 Instep 
20.50 Instep 
25.30 Instep 
29.77 Instep 
755.81 Outstep 
-23.27 Instep 

rotor angles for contingency-B (stable case)* 

rotor angle (deg) Predicted rotor angle (deg) Actual state 

22.54 Instep 
52.51 Instep 
61.95 Instep 
66.82 Instep 
72.45 Instep 
78.71 Instep 
79.19 Instep 
69.94 Instep 
80.19 Instep 
7.16 Instep 

 

Fig. 3: Relative rotor angle of sample unstable case for contingency-A (pattern number-754) 

 
 

rotor angle of sample stable case for contingency-B (pattern number-625) 

Predicted state 

Instep 
Instep 
Instep 
Instep 
Instep 
Instep 
Instep 
Instep 
Outstep 
Instep 

Predicted state 

Instep 
Instep 
Instep 
Instep 
Instep 
Instep 
Instep 
Instep 
Instep 
Instep 
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Fig. 5: Relative rotor angle of sample marginal stable case for contingency

 
as unstable with an average error of 5% in predicting the 
rotor angles. 

From Table 4, it can be observed that the excursions 
of rotor angles are small from their pre
indicating that it is stable case. The predicted values 
obtained from RBFNN are very close to their actual 
values obtained using time domain simulations. The 
RBFNN is able to classify correctly this operating 
condition as transiently stable for contingency
Figure 4 shows the relative rotor angles for stable case 
of all the generators for contingency-B. However, it is 
found for this contingency, the generators G6 and G7
are the most sensitive to load variations, as faulted line 
21-22 is close to these two generators and therefore the 
rotor angle excursions of these generators is maximum 
for an unstable case.  

For all other transiently unstab

conditions simulated for contingency-B, it is found that 

the rotor angles of G6 and G7 are always above 

threshold values and for all these cases the RBFNN can 

able to predict these angles correctly with an average 

error of 5% and all these cases are correctly classified as 

unstable.  

Figure 5 is another marginally stable case where the 

relative rotor angle of G9 is very close to threshold 

value of 120°. For this case also, the proposed 

methodology is able to predict correctly the rotor angles 

and the stability status of the system. 

 
CONCLUSION 

 
This paper presents fast and effective neural 

network based approach for on-line transient stability 
assessment of power systems for varied operating 
conditions. The transient stability of the system 
upon the trajectories of the rotor angles of the generators 
and thus in post-fault scenario they indicates the stability 
state of the system. The proposed method is based on 
predicting the rotor angles of the generators using
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Fig. 5: Relative rotor angle of sample marginal stable case for contingency-A (pattern number-454)  

as unstable with an average error of 5% in predicting the 

From Table 4, it can be observed that the excursions 
of rotor angles are small from their pre-fault value 
indicating that it is stable case. The predicted values 
obtained from RBFNN are very close to their actual 

simulations. The 
RBFNN is able to classify correctly this operating 
condition as transiently stable for contingency-B.  

4 shows the relative rotor angles for stable case 
B. However, it is 

ncy, the generators G6 and G7 
are the most sensitive to load variations, as faulted line 

22 is close to these two generators and therefore the  
rotor angle excursions of these generators is maximum 

For all other transiently unstable operating 

B, it is found that 

the rotor angles of G6 and G7 are always above 

threshold values and for all these cases the RBFNN can 

able to predict these angles correctly with an average 

es are correctly classified as 

5 is another marginally stable case where the 

relative rotor angle of G9 is very close to threshold 

value of 120°. For this case also, the proposed 

methodology is able to predict correctly the rotor angles 

This paper presents fast and effective neural 
line transient stability 

assessment of power systems for varied operating 
conditions. The transient stability of the system depends 
upon the trajectories of the rotor angles of the generators 

fault scenario they indicates the stability 
state of the system. The proposed method is based on 
predicting the rotor angles of the generators using 

RBFNN for a given contingency to assess the transient 
stability of the system. The input features for
reduced using PCA. For all the unseen operating
the average error in predicting the rotor angles using 
RBFNN is about 5% and the network is able to predict 
instability/stability state correctly. With these predicted 
values the severity of the contingency can be determined 
on-line and they can be ranked for the current operating 
conditions from the set of credible contingencies. The 
proposed approach is tested on IEEE
the test results obtained for proposed RBFNN in 
predicting the rotor angles highlights the effectiveness 
of the proposed methodology. 
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