Research Journal of Applied Sciences, Engineering and Technology 8(16): 1777-1780, 2014

DOI:10.19026/rjaset.8.1164

ISSN: 2040-7459; e-ISSN: 2040-7467 © 2014 Maxwell Scientific Publication Corp.

Submitted: January 20, 2014 Accepted: September 04, 2014 Published: October 25, 2014

Research Article

Mapping QoS Classes in Loose Coupling Heterogeneous Networks

¹Firas Ousta, ¹Nidal Kamel, ¹Mohd Zuki Yusoff and ²Sadek Ali ¹Department of Electrical and Electronic Engineering, Center of Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Perak, Malaysia ²Department of Electrical and Electronic Engineering, Tishreen University, Lattakia, Syria

Abstract: One of the main objectives of Heterogeneous Wireless Access Networks (HWAN) is to integrate the different wireless access technologies, such as Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN), with a common IP-based network in order to offer mobile users continuous and unified service in a transparent way. However, one of the major issues is to support end-to-end Quality of Service (QoS) across all these technologies at all stages of the service from set-up to handoff. We present, in this study, a novel method of mapping QoS of UMTS and WiMAX over a loose coupling environment across Internet Protocol/Differentiated Service (IP/DiffServ) network.

Keywords: 4G, DiffServ, HWAN, IP, NGWN, QoS, UMTS, WiMAX

INTRODUCTION

Existing wireless networks (e.g., 2G/3G, LTE, WiFi. WiMAX, cdma, cdma2000, etc.), have been independently designed and deployed without cooperating with each other. In order to provide, at anytime and anywhere, the end-users with the best service at the lowest cost, incorporating between these networks, through Heterogeneous Wireless Access Network (HWAN) also known as Next Generation Wireless Network (NGWN) and referred to as the 4th Generation network (4G), becomes a must; however it will introduce new challenges; such as Security Billing. Handoff, Mobility management, End-to-End QoS (Sarraf and Ousta, 2008), due to the different radio access characteristics with varying bit rate, available and allocated bandwidth, fault tolerant levels and handoff methods and protocols.

This paper addresses the issues of supporting QoS in loose coupling approach of 4G wireless networks from End-to-End point of view and presents novel mapping mechanisms between UMTS CoSs, IP/DiffServ and WiMAX QoS categories in loose coupling approach; however it does not address the other issues and challenges-neither mapping the QoS between the other wireless access networks nor in tight coupling.

4G networks: Since the 4G wireless networks are composed of multiple heterogeneous radio access

networks as illustrated in Fig. 1, mobile users should seamlessly be connected and handed-off between those multimode radio access capabilities (Stratogiannis *et al.*, 2010). However, even if the terminals can adapt to the different radio interfaces, maintaining the service continuity and the offered QoS through diverse environments is a complex issue that current methods do not support.

In order to achieve this interconnection between the various wireless access networks, two main approaches have been considered: Integrated and Interworking networks approaches.

In integrated networks-Tight Coupling-method, the air interfaces from different radio access technology are coupled at Radio Access Network (RAN) or Core Network level (CN) (Wu *et al.*, 2001). Whereas, interworking networks-Loose Coupling-method is constructed by introducing edge gateways and linking between the latters to connect different wireless systems and exchanging information as well as signaling through those gateways (Song *et al.*, 2005; Masip-Bruin *et al.*, 2007; ETSI-TR.101-957, 2001).

In loosely coupled architecture, the different wireless access networks are independent of each other providing a flexible framework. However the main disadvantage is the mobility management where the signaling messages may traverse long path causing relatively high latency for handoff and QoS.

Corresponding Author: Firas Ousta, Department of Electrical and Electronic Engineering, Center of Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Perak, Malaysia

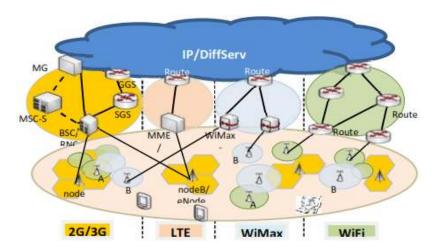


Fig. 1: Heterogeneous wireless access network

Table 1: UMTS OoS classes

Table 1. UNITS Qu	JS Classes			
Traffic class	ARP	THP	MBR	GBR
Conversational	Yes	No	Yes	Yes
Streaming	Yes	No	Yes	Yes
Interactive	Yes	Yes	Yes	No
Background	Yes	No	Yes	No

QUALITY OF SERVICES OVER DIFFERENT SYSTEMS

UMTS: Four classes of services namely, Conversational, Streaming, Interactive and Background, have been defined in UMTS with different QOS parameters and attributes used for prioritization, scheduling and queuing. Some of the most important attributes are Maximum Bit Rate (MBR), Guaranteed Bit Rate (GBR), Traffic Handling Priority (THP) and Allocation/Retention Priority (ARP) that may be used, within the same class, for further differentiation, as detailed in Table 1.

WiMAX: Similarly five QoS categories, named service flows, have been defined in WiMAX; a service flow refers to unidirectional flow of packets that is associated with a particular QoS. These five services flows as defined in (IEEE Std 802.16e, 2009) are listed in Table 2.

It is worth noting that in WiMAX network, the Medium Access Control layer (MAC) is responsible for handling QoS according to a parameter set defined for each service flow.

IP/DiffServ system: The Internet Protocol is a connectionless best effort protocol; therefore it does not support QoS. Consequently, a Differentiated Service technique is used to support QoS over backbone network. DiffServ Code Point (DSCP) and Per-Hope Behaviors (PHB) are the main components which are used to classify different classes of service in DiffServ domain. The DiffServ (DS) Domain consists of a contiguous set of nodes that guarantee Service Level Agreement (SLA) requirements. On ingress to DiffServ

domain, the traffics are classified using implicit classification methods into a limited number of traffic classes. The classification process depends on the content of the packet header by a Differentiated Service Code Point (DSCP).

Per-Hop-Behavior (PHB) in turn defines the scheduling treatment of the packet and the drop probability for the packet. Three types of PHBs are identified, Default PHB, 2-Expedited Forwarding (EF) PHB and 3-Assured Forwarding PHB (AF1x, AF2x, AF3x, AF4x), supporting different types of traffics and applications (Nicolas *et al.*, 1998; Davie *et al.*, 2002; Exist *et al.*, 1999).

MAPPING STRATEGIES

Achieving an End-to-End QoS between 3G/UMTS and WiMAX in a loose architecture heterogeneous wireless network would consist of first, mapping the QoS of one wireless network into IP/DiffServ and second, mapping the QoS between IP/DiffServ and the other wireless network.

WiMAX-IP/DiffServ-mapping: UGS class of WiMAX supports services with minimum delay and jitter requirements with higher priority than other types of traffics; it is possible to map this class to the EF class of a DiffServ network. On the other hand, the rtPS class of WiMAX supports real time applications with less tolerant and can have traffic priorities, so the mapping process between this class and AF3 class of DiffServ network is recommended (ITU-T-R, 2011).

In the case of nrtPS class, which supports non real time applications with higher delay tolerance, the better class that is matched to nrtPS in DiffServ domain is AF2 or AF1. As extended rtPS class is a combination of UGS and rtPS class, the ertPS traffic is mapped to higher AF class like AF4 and the best-effort class is mapped to the default DiffServ class or lower AF class with high drop precedence, as described in Table 3.

Table 2: WiMAX QoS classes

QoS category	Applications	QoS specifications
UGS	VoIP, T1/E1	Maximum sustained rate
Unsolicited grant service	ATM CBR	Maximum latency tolerance
		Jitter tolerance
rtPS	Streaming audio or video	Minimum reserved rate maximum sustained rate
Real-time polling service		maximum latency
		Tolerance traffic priority
nrtPS	File Transfer Protocol (FTP)	Minimum reserved rate maximum sustained rate traffic
Non-real-time polling service		priority
BE	Data transfer, web browsing	Maximum sustained rate
Best-effort service		Traffic priority
ErtPS	Voice with activity detection (VoIP)	Minimum reserved rate maximum
Extended real time polling service		Sustained rate maximum latency
		Tolerance jitter tolerance
		Traffic priority

WiMAX QoS classes	DiffServ class
UGS	EF
rtPS	AF3x
nrtPS	AF2x and
	AF11, AF12
BE	AF13, default
ertPS	AF4x

Table 4: UMTS-IP/DiffServ QoS mapping

UMTS QoS classes	DiffServ class
Conversational	EF and AF4
Streaming	AF3
Interactive	AF2 and AF1
Background	DF

UMTS-IP/DiffServ-mapping: The Conversational Class, in UMTS, mainly handles real-time applications with loose delay and jitter with guaranteed bit rate; therefore it is logical to map this class to EF and AF41 of DiffServ depending on required values of the delay, jitter and bit rate. Similarly, Streaming Class of UMTS can be mapped to AF3 of DiffServ and Interactive Class that mainly has two types of applications-Web Browsing and File Transfer-may be mapped into AF2 and AF1 of DiffServ. Finally, the Background Class of UMTS is mapped to DF of DiffServ. Table 4 summarizes the mapping between UMTS classes of service and DiffServ.

End-to-end QoS mapping between UMTS and WiMAX in loose coupling architecture: We propose, in loose coupling HWAN over an IP/DiffServ backbone network, a novel strategy for mapping End-to-End between the CoSs of UMTS and WiMAX networks. The proposed framework is illustrated in Table 5. This proposal is based on two mapping processes; the first performs a mapping between the four classes of services in UMTS, with their parameters into IP/DiffServ classes with DS Assignation and the second consists of mapping the corresponding IP/DiffServ classes into WiMAX QoS categories and parameters. Since each class or category supports multiple applications with different QoS performance values,

differentiation at the QoS level is achieved through assigning specific QoS parameters/attributes; therefore, we proposed, per class, further mapping. For example, the Conversational Class of UMTS may have three different ARP values supporting different PDPs; therefore, we proposed a mapping into two classes of DiffServ (EF and AF41) with two different DCSP values.

CONCLUSION AND RECOMMENDATIONS

Conclusion: Supporting the different applications with their required QoS, End-to-End over Heterogeneous Wireless Access Network, is a very challenging task. It requires appropriate mapping of related QoS categories, protocols, messages, attributes and parameters.

In order to provide an End-to-End QoS, a novel mapping mechanism between the CoS of UMTS to WiMAX QoS categories, across IP/DiffServ backbone, has been proposed. The proposed mechanism recommends a mapping of the CoSs of UMTS associated with their attributes to WiMAX QoS categories with their corresponding attributes.

Recommendations: These mapping mechanisms must be evaluated and optimized in order to verify that Endto-End QoS parameters and values can be provided without affecting the services that are offered to the end users. Furthermore, the negotiated QoS messages during a session setup process must be mapped. We are currently working on simulating these mechanisms using QualNet V 6.1 Network and Protocol Simulator.

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial support provided by Center of Intelligent Signal and Imaging Research and the cooperation and research supports from the Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS.

Table 5: Mapping	OoS classes	s between	UMTS and	WiMAX s	vstems over	IP/DiffServ	backbone network

UMTS QoS				DiffServ network classes and DS				
	parame	ters	assignat	ion	assignation			WiMAX
UMTS traffic							WiMAX	QoS
classes	THP	ARP	PHB	DSCP	DSCP	PHB	QoS parameters	classes
Conversational	-	ARP1	EF	101111	101111	EF	Maximum sustained rate,	UGS
class	-	ARP2	EF	101110	101110		maximum latency tolerance,	
							jitter tolerance	
	-	ARP3	AF41	100010	100010	AF41	Minimum reserved rate, maximum sustained rate, maximum latency,	ertPS
							tolerance jitter, tolerance traffic priority	
Streaming	-	ARP1	AF31	011010	011010	AF3x	Minimum reserved rate, maximum	rtPS
class	-	ARP2	AF32	011100	011100		sustained rate, maximum latency	
	-	ARP3	AF33	011110	011110		tolerance, traffic priority	
Interactive class	THP1	ARP1	AF21	010010	010010	AF2 and	Minimums reserved rate, maximum	nrtPS
	THP1	ARP2	AF22	010100	010100	AF1	sustained rate, traffic priority	and
	THP1	ARP3	AF23	010110	010110			BE
	THP2	ARP1	AF11	001010	001010			
	THP2	ARP2	AF12	001100	001100			
	THP2	ARP3	AF13	001110	001110			
Background	-	APR1	DF	000000	000000	Default	Maximum sustained rate, traffic	BE
class		APR2	DF	001000	001000		priority	
		APR3	DF	010000	010000			

REFERENCES

- Davie, B., A. Charny, J. Bennett, K. Benson, J. Boudec, W. Courtney, S. Davari, V. Firoiu and D. Stiliadis, 2002. An Expedited Forwarding PHB (Per-hop Behavior). The Internet Engineering Task Force (IETF), RFC 3246.
- ETSI-TR.101-957, 2001. Requirements and architectures for interworking between HIPERLAN/2 and 3rd Generation cellular systems. ETSI Technical Report, TR 101 957, V1.1.1.
- Exist, E., J. Heinanen, F. Baker, W. Weiss and J. Wrocławski, 1999. Assured Forwarding PHB Group. The Internet Engineering Task Force (IETF), RFC 3260.
- IEEE Std 802.16e, 2009. Air Interface for Fixed and Mobile Broadband Wireless Access Systems.
- ITU-T-R, 2011. Network performance objectives for IP-based services. International Telecommunication Union ITU-T., Y.1541.
- Masip-Bruin, X., M. Yannuzzi, R. Serral-Gracia, J. Domingo-Pascual, J. Enriquez-Gabeiras, M.A. Callejo, M. Diaz, F. Racaru, G. Stea, E. Mingozzi, A. Beben, W. Burakowski, E. Monteiro and L. Cordeiro, 2007. The EuQoS system: A solution for QoS routing in heterogeneous networks. IEEE Commun. Mag., 45(2): 96-103.

- Nicolas, K., S. Blake, F. Baker and D. Black, 1998. Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers. The Internet Engineering Task Force (IETF), RFC 2474.
- Sarraf, C. and F. Ousta, 2008. End-to-end quality of services issues in 4G mobile networks. Proceeding of 12th WSEAS International Conference on Communications, pp: 236-242.
- Song, W., H. Jiang, W. Zhuang and X. Shen, 2005. Resource management for QoS support in cellular/WLAN interworking. IEEE Network, 19(5): 12-18.
- Stratogiannis, D., G. Tsiropoulos, J. Kanellopoulos and P. Cottis, 2010. 4G Wireless Networks: Architectures, QoS Support and Dynamic Resource Management. In: Angelidis, P., T. Lagkas and L. Georgiads (Eds.), Wireless Network Traffic and Quality of Service Support: Trends and Standards. IGI Global Publisher, pp: 347-377.
- Wu, H., C. Qiao, S. De and O.K. Tonguz, 2001. Integrated cellular and Ad hoc relaying systems: iCAR. IEEE J. Sel. Area. Comm., 19(10): 2105-2015.