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Abstract: A vortex ring impinging on a three-dimensional bump is studied using Large Eddy Simulation (LES) for 
a Reynolds number Re = 4×10

4
 based on the initial diameter and translational speed of the vortex ring. The 

evolution of vortical structures are investigated and an array of flow phenomena are discovered, such as the 
generation and deformation of secondary vortex ring, formation of loop-like vortices, interaction of vortex rings and 
the instability and breakdown of vortical structures. The total enstrophy of the flow reasonably elucidates some 
typical phases of flow evolution. Based on the Fourier analysis of the vertical vorticity, the azimuthal instabilities of 
the primary vortex ring are studied. Furthermore, the mechanism of vorticity generation on the bump surface has 
been revealed based on analysis of the boundary vorticity flux. 
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INTRODUCTION 

 
As one of the simplest and important forms of 

vortex motion, vortex rings widely exist in nature and 
engineering. The interaction of vortex rings with solid 
or fluid boundaries is a fundamental problem in fluid 
dynamics and has received considerable attention recent 
years. The interest in this subject is mainly due to its 
significant practical applications, such as cavitated 
rings being used for underwater drilling (Chahine and 
Genoux, 1983), vortex rings extinguishing gas and oil 
well fires (Akhmetov et al., 1980) and modeling the 
interaction between the downburst and the aircraft 
(Lundgren and Mansour, 1991). However, the 
underlying flow phenomena and physical mechanisms 
are still unclear and are worthy of detailed studies. 

Vortex rings interacting with a flat wall has been 
extensively studied. These studies (Walker et al., 1987; 
Chu  et  al.,  1993;  Clercx  and  Bruneau, 2006; Cheng 
et al., 2010; Couch and Krueger, 2011) showed that as 
the primary vortex ring moves gradually toward the 
wall, its rate of approach slows down and its radius 
continues to increase. When the Reynolds number of 
the ring is larger than 500 based on the initial diameter 
and translational speed of the vortex ring, the formation 
of the secondary ring occurs and then it interacts with 
the  primary  vortex  ring.  Experimental  study (Walker 
et al., 1987) has revealed that, beyond Re = 3000, the 
primary vortex ring will no longer remain stable as it 
approaches the wall. Thus, the instability of vortex 
rings should be considered when the Reynolds number 
becomes large enough. 

Comparing with the numerous studies of vortex 
ring interacting with a flat wall, the investigation 
relevant to a vortex ring impacting a curved surface is 
scarce. Orlandi and Verzicco (1993) numerically 
studied vortex pairs interacting with a two-dimensional 
circular cylinder with freeslip and no-slip boundary 
conditions. For the free-slip case, the dipole is observed 
to split into two vortices and then to rejoin on the 
cylinder. While for the no-slip interaction, the 
generation of dipolar and tripolar structures occurs on 
the cylinder surface. Verzicco et al. (1995) further 
studied this problem. They found that the induced 
vortices become more apparent as the diameter of the 
cylinder increases. Allen et al. (2007) presented 
experimental results of a vortex ring impacting a 
moving sphere. They found that the secondary vorticity 
generated on the sphere surface results in an 
acceleration of the sphere and a reduction of the fluid 
impulse. In a recent investigation, De Sousa (2012) 
studied a vortex ring impacting a stationary sphere for 
Re = 1000 using Direct Numerical Simulation (DNS). 
After the secondary vortex ring is formed, they found 
its interaction with the primary ring results in the fast 
decay of circulation for the secondary ring. 

In this study, large eddy simulation is utilized to 
investigate the dynamics and instability of vortical 
structures when a vortex ring impacts a three 
dimensional bump at Reynolds number Re = 4×10

4
. To 

our knowledge, the relevant work has never been 
performed before. The purpose of this study is to 
investigate the complex flow phenomena and the 
underlying mechanisms.  
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MATHEMATICAL FORMULATION AND 
NUMERICAL METHODS 

 
To investigate a vortex ring impinging on a bump, 

the    three    dimensional   Favre-filtered   compressible  
Navier-Stokes equations in generalized coordinates are 
used. Large eddy simulation is implemented in the 
present work for turbulence closure. Some terms in the 
Favre-filtered equations arising from unresolved scales 
need to be modelled in terms of resolved scales. Then, 
dynamic Subgrid-Scale (SGS) models for turbulent 
flows are employed. A detailed description of the 
mathematical formulation of the non-dimensionalized 
equations and the SGS models can be found in the 
previous work (Xu et al., 2010; Zhang et al., 2014). 

The governing equations are numerically solved by 
a finite volume method. The convective terms are 
discretized by a second order centered scheme and the 
viscous terms by a fourth order central scheme. The 
time advancement is performed using an implicit 
approximate-factorization method with sub-iterations to 
ensure the second order accuracy and a fourth order low 
artificial numerical dissipation is employed to prevent 
numerical oscillations. Moreover, the present numerical 
strategy has already been applied successfully to a 
variety of complex flows and has been verified the 
reliable calculations. 
 
Computational overview and validation: 
Computation overview: According to the schematic as 
depicted in Fig. 1, a Gaussian vortex ring (Shariff et al., 
1994) with radius R0 is initially placed at xc = (0, 0, Hv), 
where Hv represents the distance between the vortex 
ring center and the bottom wall. The bump has a 
circular base with a cosine-squared cross section 

2 2 2(x, y) H cos 6),
b

z x yπ= +（
 

where Hb is the bump 

height. The initial translational speed of the vortex ring 
can be represented as (Saffman, 1978): 
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where, σ0 is the initial core radius and Γ is the 

circulation of the vortex ring. To deal with the 

instability of the vortex ring, an azimuthal disturbance 

with an amplitude of 2×10
4
 is introduced by imposing a 

radial  displacement  on  the  axis  of  the  ring  (Shariff 

et al., 1994; Archer et al., 2008). 
In the computation, the slenderness ratio and initial 

height of the vortex ring are σ0/R0 = 0.2 and Hv/R0 = 6, 
respectively. The bump height Hb/R0 is 1.8. The 
Reynolds number based on the translational speed and 
the ring diameter is Re = 4×10

4
. The computational 

domain extends for 16 R0  in  the  x  and  y  directions  
and 12 R0 in the z or vertical direction, i.e., Lx /R0 = Ly 

/R0 = 16; Lz/R0 = 12. Based on our careful 
examinations, a mesh of size Nx×Ny×Nz = 641 
×641×321 with a resolution R0 = 40 ∆x is used in the 
computation. The grid-spacing is uniform in the x and y 

 
 

Fig. 1: Schematic diagram of a vortex ring approaching a 

bump 

 

 
 

Fig. 2: Vorticity pattern for the interaction between a vortex 

ring and a flat wall by the experimental observation 

(Chu et al., 1993) (left panel) and present numerical 

result (right panel) 

 

directions and a grid stretching in the z direction is used 

to increase the grid resolution near the surface. Periodic 

boundary conditions are employed in the x and y 

directions. No-slip boundary condition is used on the 

bump surface and a far-field boundary condition is 

applied in the z = Lz plane. 

 

Validation: Our code is validated through a case about 

a vortex ring impinging on a flat wall at Re = 830, 

which has been investigated by Chu et al. (1993) and 

Cheng et al. (2010). The vortex ring is initially placed 

at the vertical position z0 = 3R0 and a grid  resolution  

R0 = 30 ∆x is used for the simulation (Cheng et al., 

2010). As shown in Fig. 2, vorticity pattern in the y = 0 

plane is compared with the experimental observation of 

Chu et al. (1993). The essential flow features are 

accurately reproduced in our simulation, including the 

interaction between the primary and secondary vortex 

rings and the formation of the tertiary vortex ring. The 

trajectory of the primary vortex ring center is also 

compared with the previous results in Fig. 3.  It  can  be 
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Fig. 3: The trajectory of the primary ring center for Re = 830. 

The solid and dashdot lines present the numerical 

results obtained in this study and by Cheng et al. 

(2010), respectively. The filled symbols represent the 

experimental data of Chu et al. (1993) 

 

seen that our results agree well with the experimental 

data and numerical results. 

 

RESULTS AND DISCUSSION 

 

Vortical structures: We first investigate the evolution 

of vortical structures depicted in Fig. 4. From Fig. 4a, 

when the primary vortex ring moves close to the bump, 

a vorticity layer is obviously generated on the core 

surface of bump at t = 15.0. Then the separation of 

boundary layer occurs in the adverse pressure gradient 

region  resulting  in  the  generation of secondary vortex 

 

ring at t = 17.5. Due to the growth of the azimuthal 

perturbation, the primary vortex ring develops into a 

wavy-like structure at t = 17.5 and 20.0. Furthermore, 

by means of Fourier analysis of the azimuthal 

perturbation, it is identified that the wave number of the 

most unstable mode for the primary ring is k = 11, 

consistent with the theoretical estimate of the dominant 

mode k = 2.26/σ0 approximately by Maxworthy (1972) 

and the number of the wavy-like structures observed at 

t = 17.5 and 20.0. After the primary ring collides with 

the bump surface, the secondary ring generated lifts up 

from the surface and then moves over the primary 

vortex ring. At t = 22.5, it is seen that the secondary 

ring has already moved up the primary ring. 

Subsequently, a variety of loop-like vortices wrapping 

around both the primary and secondary vortex rings are 

formed at t = 25.0 and 27.5. The generation of these 

wrapping vortices is associated with the short-

wavelength instability of the vortex rings (Archer et al., 

2008). Finally, the complicated interactions of the 

wrapping vortices and vortex rings over the bump 

surface result in the breakdown of the vortical 

structures into small-scale vortices at t = 30.0 and 

further lead to the vortical flow transition to turbulent 

state, as shown in Fig. 4h and i. 

 

Instability of vortical structures: To quantitatively 

analyze the development of azimuthal instabilities for 

the vortex rings, we perform the Fourier decomposition 

of the vertical vorticity ωz and get kA  (De Sousa, 2012), 

which denotes the azimuthal perturbation in the 

 
 
Fig. 4: Evolution of vortical structures depicted by iso-surface of the Q criterion with Q = 2 (a) t = 15.0, (b) 17.5, (c) 20.0, (d) 

22.5, (e) 25.0, (f) 27.5, (g) 30.0, (h) 32.5, (i) 35.0 
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Fig. 5: Azimuthal perturbation of primary vortex ring (a) t = 15.0, (b) 20.0, (c) 25.0, (d) 30.0 

 

vortical structures. The evolution of kA  for the primary 

vortex ring is plotted in Fig. 5. At t = 15.0, the vorticity 
component in the wall-normal direction ωz appears and 
it is obvious that the dominant mode is k = 11, 
consistent with the vortical structures shown in Fig. 4b 
and c. With the evolution of the vortex ring, the 
amplitude of ωz increases rapidly implying the fast 
growth of the instability. At t = 20.0, the second 

harmonic k = 22 is apparent and the amplitude of kA

increases considerably, as shown in Fig. 5b. Then with 
the vertical vorticity ωz breaking into small-scale 
vorticity, the dominant and second harmonic modes 
decay rapidly, as depicted in Fig. 5c and d. 

 
Kinetic energy and enstrophy: To investigate the 
global behavior of flow evolution, we further analyze 
the total kinetic energy and enstrophy in the flow field. 
Here, the kinetic energy E and enstrophy Ω are defined 
as: 

 

1
( ) ,

2
E dV= ⋅∫ u u                                             (2) 

 

Ω = 
�

�
 �(�.�) dV                (3) 

 

where, u and ω represent the resolved quantities 

obtained by LES and the integral domain is the whole 

flow field. The total kinetic energy and enstrophy are 

shown in Fig. 6, where E0 and Ω0 represent the initial 

kinetic energy and enstrophy, respectively. It can be 

seen  from  Fig. 6a  that  the  kinetic  energy  essentially  

 
 

 
 

Fig. 6: (a) Total kinetic energy, (b) enstrophy in the flow 

field. In (b), three phases are described as generation 

of secondary vortex ring (I), formation of loop-like 

vortices (II) and breakdown of vortical structures (III) 
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Fig. 7: Pressure coefficient on the bump surface along x = 0 

 
decreases with the flow evolution due to viscous 
dissipation. With evolution of the vortices, the kinetic 
energy reduces smoothly during the boundary-layer 
separation and secondary-vortex generation and 
decreases quickly as the vortices break down into 
small-scale ones.  

Figure 6b shows the time-dependent enstrophy, 

which is closely associated with the evolution of 

vortices. Before t = 10.0 approximately, the vortex ring 

is somewhat far from the bump and the enstrophy is 

almost constant. During 10.0<t<18.0, the enstrophy 

grows considerably due to the generation of the 

secondary vortex as typically depicted in Fig. 4a and b. 

Then, because of the generation of the loop-like 

vortices  as  well  as  the stretching and deformation of 

the   primary   and   secondary   vortices,  the  enstrophy  

 

continuously increases and reaches its maximum at 

approximately t = 26.0. Then, as the vortices break into 

small-scale ones, the enstrophy decreases quickly. 

 

Pressure and boundary vorticity flux on the surface: 

The pressure coefficient is defined by 
2 2

0 0
(p p ) / ( )

p
C R ρ∞= − Γ , where p∞ represents the far field 

pressure. Figure 7 shows the distributions of pressure 

coefficient along x = 0. As the vortex ring is 

approaching the bump, the pressure distribution on the 

bump  core  region  increases  gradually  such  as  from  

t = 12.5 to 15.0. It is seen that the negative pressure 

coefficient on the vortex ring impacting region occurs 

at t = 15.0. Then, as the secondary vortex ring is 

generated at t = 17.5 as shown in Fig. 4b, the negative 

pressure coefficient becomes more obvious and the 

pressure distribution over the bump core region reduces 

gradually. Subsequently, after the vortex ring collides 

with the bump, the pressure distribution varies 

smoothly, such as at t = 22.5 and 25.0 in Fig. 7. 

To clearly demonstrate the pressure distribution on 

the bump, Fig. 8 shows the pressure contours on the 

surface. It is seen that the contours of the pressure 

coefficient are smooth distribution in the azimuthal 

direction at t = 12.5 and 15.0. Moreover, the region 

with negative distribution at t = 15.0 is related to the 

vortex ring impacting on the bump surface. Then, the 

contours become the wave-like azimuthal distribution at 

t = 17.5, which is reasonably related to the wavy-like 

structure of the primary vortex ring caused by the 

azimuthal instability as exhibited in Fig. 4b.

 
 

Fig. 8: Contours of the pressure coefficient on the bump surface (a) t = 12.5, (b) 15.0, (c) 17.5, (d) 22.5. Here, solid and dashed 

lines denote positive and negative values, respectively; the contour increment is ∆Cp = 0.04 with |Cp|≤0.3 
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Fig. 9: (a) Vorticity ωx and (b) BVF σω on the surface along  

x = 0  

 

Furthermore, the contours of the pressure coefficient at 

t = 22.5 present some local patterns along the azimuthal 

direction, corresponding to the loop-like vortices 

wrapping around both the primary and secondary 

vortex rings. 

Further, for the present flow with a high Reynolds 

number, the Boundary Vorticity Flux (BVF) can be 

approximately written as (Xu et al., 2010): 

 

/ /n pυ ρ= ∂ ∂ ×∇�ωωωωσ ωσ ωσ ωσ ω =/ /n pυ ρ= ∂ ∂ ×∇� n                             (4) 

 

where, υ is the kinematic viscosity and n is the normal 

unit vector on a solid wall. This relation is reasonably 

examined based on the present calculated data. Thus, 

we can learn that the BVF is in turn dominated by the 

tangent pressure gradient on the surface, which also 

becomes a cause of new vorticity (Xu et al., 2010). To 

analyze the vorticity and the BVF, Fig. 9 shows the 

distributions of vorticity component ωx and BVF σω on 

the bump surface. It can be seen that both the 

magnitudes of ωx and σω increase rapidly as the primary 

vortex ring moves close to the bump. At t = 17.5, the 

magnitudes reach a relatively high value. Subsequently, 

the magnitudes decrease gradually, indicating that the 

generation of vorticity from the bump surface becomes 

weak. 

CONCLUSION 

 

The interaction between a vortex ring and a three-

dimensional bump has been studied by means of the 

large eddy simulation technique. The vortical flow 

phenomena and the underlying physical mechanisms 

were investigated and are summarized briefly as 

follows. As a vortex ring impinges on a bump, an array 

of vortical flow phenomena occur, such as the 

generation and deformation of secondary vortex ring, 

the formation of loop-like vortices, the interaction of 

vortex rings and the instability and breakdown of 

vortical structures. The total kinetic energy and 

enstrophy have been investigated to reveal the different 

stages of flow evolution. Based on the Fourier analysis 

of the vertical vorticity, the azimuthal instabilities of 

the primary vortex ring were studied. It is found that the 

dominant mode of the azimuthal instability is k = 11, 

consistent with the theoretical estimate k = 2.26/σ0. 

Moreover, the vorticity generation on the bump surface 

has been analyzed and it is noticed that the generation 

of secondary vortex ring reasonably corresponds to 

large BVF and subsequently the vorticity generation 

from the bump surface becomes weak based on the 

variation of BVF.  
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