
Research Journal of Applied Sciences, Engineering and Technology 8(19): 2082-2091, 2014

DOI:10.19026/rjaset.8.1201

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2014 Maxwell Scientific Publication Corp.

Submitted: May 26, 2014 Accepted: July 13, 2014 Published: November 20, 2014

Corresponding Author: Souhaib Besrour, Department of Computer and Information Sciences Universiti Teknologi

PETRONAS, 31750 Tronoh, Perak, Malaysia
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

2082

Research Article

The Study of Available Techniques for Existing Requirements Engineering Challenges

Based on Literature Review Evidences

Souhaib Besrour, Lukman Bin Ab Rahim and P.D.D. Dominic
Department of Computer and Information Sciences, Universiti Teknologi PETRONAS,

31750 Tronoh, Perak, Malaysia

Abstract: It is well known that software engineering suffer from various challenges. Moreover, numerous
researchers found that project challenges have a negative effect on project time cost and user satisfaction.
Additionally, Numerous Requirements Engineering (RE) methods have been proposed to improve the quality of
requirements documents and to increase customer satisfaction about final product. Nevertheless, the choosing
between various techniques may be confusing and puzzling. Therefore, this study aims to present, Literature review
based study to link between RE challenges and available techniques to eliminate challenges using the utmost
appropriate technique. Study conclusions are relevant for both industry and academic researchers in order to achieve
effective software requirement engineering.

Keywords: Comparison criteria, literature review based study, requirements engineering, software requirement,

software requirement techniques

INTRODUCTION

Various researches (Wieringa et al., 2005), found

that there is inconsistence and incontinence between
available techniques and existing RE challenges. Other
researches (Kotonya and Sommerville, 1998) ensure
about how critical software requirement. Therefore, this
study aims to highlight existing challenges faced in RE
process and the appropriate technique to eliminate those
problems. A total of 18 challenges have been
highlighted briefly. Moreover a total of 15 techniques
presented in order to eliminate the effect of RE
challenges. The research (Wieringa et al., 2005),
discusses about the gap between techniques and
existing RE challenges. All in all this study presents RE
challenges and the appropriate techniques and solutions
based on well supported evidences from literature. Next
section presents brief about RE process structure.

RE PROCESSES

It contains several steps and procedures that should
be followed in order to achieve a successful
requirement process. Elicitation is a major process in
software requirement engineering, it is the process of
gathering and acquiring requirement for a computer
based system. It purposes to gather client requirements,
system constrains and goals. Requirement elicitation

process is a compound process where clients’ needs
need to be understood correctly to obtain the correct
requirement. It needs adequate expertise in dealing with
social issues and software requirement processes.
Various techniques are available for collecting
requirements such as: interview, brainstorming, Card
sorting (Spencer, 2009) and Joint Application
Development (JAD) (Didar and Coulin, 2005). The
second process in software requirement engineering is
analysis; it targets to breakdown requirement meanings
and structures. Analysis process aims to answer “what”
to build rather than “how” to build. The chief
techniques for analyzing software requirement are:
Scenario based analysis (Use-case), Kano model
Analysis, Decision table based-specification and Goal-
Oriented (Chung and Supakkul, 2005). The third
process in software requirement engineering is
specification; it purposes to record and document
system requirement in a clear format and specify client
needs accurately and correctly. Accordingly, even after
finishing the entire project, software requirement
specification can be used as a contract document and as
a strong base of additional system enhancements. There
are various techniques for software requirement
specification such as: IEEE Software Requirement
Specification (SRS), ERD-based specification,
Structured Natural Language Specification. Lastly, the
fourth process in requirement engineering is

Res. J. Appl. Sci. Eng. Technol., 8(19): 2082-2091, 2014

2083

Fig. 1: Requirement engineering processes

requirement verification: it is the process of testing

requirements correctness and conforming that clients’

needs are correctly interpreted. Errors and faults can

easily be fixed through the early periods of building

system. Accordingly software requirement errors are

very costly to repair and fix after the system is

completely shaped. Thus, requirement verification

process plays a vibrant role in reducing developed

system cost dramatically. There are various techniques

for requirement verification such as peer review

validation (Xiong and Litman, 2010), Ad-hoc based

validation (Saqi and Ahmed, 2008), Checklist-based

validation (Porter et al., 1995) and Misuse-case

(Whittle et al., 2008) (Fig. 1).

RE CHALLENGES AND

LITERATURE REVIEW EVIDENCES

This section presents a total of 18 requirement

engineering challenges, which they are discussed

separately in order to present further details about each

challenge. Furthermore, proposed technique has been

presented in order to eliminate those challenges.

Elicitation process: This process encompasses five key

challenges: First, exclusion of stakeholders’

identification, second, poor communication during

requirement elicitation, third undefined functional

requirement, fourth, undefined non-functional

requirement, fifth, exclusion considerations of

organizational and social issues. Aforementioned

challenges have been discussed briefly with proposed

techniques based on literature review evidences.

First, Base on Bourne (2009, 2010) exclusion of

stakeholder’s identification is one challenge that may

affect project quality. Stakeholders, refers to entity that

have direct interaction with system. Moreover,

stakeholders could be a human, a system or any other

entity that communicate with the system. Based

(Alexander, 2005) the exclusion of stakeholders

identification may results incomplete requirement and

low integrity. Kamata and Tamai (2007) have shown

that numerous large projects fail because of

requirement errors (Sommerville, 2010). In the other

hand, Brainstorming is a lateral thinking process and is

designed to improve thinking patterns into new ways of

looking at things. Participants in the brainstorming

process can be from wide range of disciplines. This

brings a broad range of experiences to the session and

helps to make it more creative (Mohd Kasirun and

Salim, 2008; Herrmann and Nolte, 2010; Herrmann and

Nolte, 2010). Based on Nuseibeh Easterbrook (2000)

Brainstorming is core technique in requirement

elicitation process. Furthermore, the research don by

Scheinholtz and Wilmont (2011) reveal that

Brainstorming used to eliminate Exclusion of

Stakeholders identification (Litchfield, 2008). This

hypothesis was also proved and supported by Mohd

Kasirun and Salim (2008).

Second, Base on Zave (1997) poor communication

during requirement elicitation is one challenge during

requirement gathering. Moreover, before completing

requirement gathering process it is hard to know what is

inside customer thoughts. The Research Kamata and

Tamai (2007) have shown that numerous large projects

fail because of inadequate requirement process. This

inadequacy is often related to requirement elicitation

and social issues (Goguen and Linde, 1992). In the

other hand, interview is a conversation between two or

more people where questions are asked by the

interviewer to elicit facts or statements from the

interviewee (Burke and Miller, 2001). Based on Lloyd

et al. (2002) interview is major technique in

requirement elicitation. Moreover, it is used to elicit

information, requirement and system constrains.

Furthermore, the research don by Scheinholtz and

Wilmont (2011) and Opdenakker (2006) reveal that

interview used to eliminate poor communication during

requirement elicitation. This hypothesis was also

proved and supported by Goguen and Linde (1992).

Third and fourth, based on Glinz (2007) undefined

functional and non-functional requirement is critical

problem that may affect project success. Non-functional

requirement is a requirement that specifies criteria that

can be used to judge the operation of a system, rather

than specific behaviors. Additionally, functional

requirement defines a function of a system or its

component. A function is described as a set of inputs,

the behavior and outputs. In the other hand, functional

requirements may be calculations, technical details,

data manipulation and processing and other specific

functionality that define what a system is supposed to

accomplish. Although aforementioned terms have been

used for more than two decades, there is still various

fails because of undefined functional and non-

functional requirements (Ullah et al., 2011; Firesmith,

2007). In the other hand, JAD was originally developed

for internal use at IBM (Davison, 2000). It is a

Res. J. Appl. Sci. Eng. Technol., 8(19): 2082-2091, 2014

2084

technique used to gather information and system

constrains by conducting a structured meeting. During

JAD session, users will be involved in intensive

discussion and conversation to clarify ambiguous and

complex perspectives (Carmel et al., 1993). Based on

Nuseibeh and Easterbrook (2000) JAD is key technique

in requirement elicitation process. Additionally, the

research don by Duggan and Thachenkary (2003)

reveal that JAD used to eliminate undefined functional/

non-functional Requirements and system constraints.

This hypothesis was also proved and supported by

Davidson (1999).

Fifth, Based on Exclusion considerations of social

and organizational issue may produce incomplete

requirement data. Moreover, it is hard to find two

projects that have completely similar requirement and

social issues. Therefore, social and organizational issue

has to be sensitively conducted due to uniqueness of

each project. Built projects effects by various variables

such as country low, project budget, user preferences,

company policy, gender different preferences,

organization culture. Base on Zave (1997) the

Elimination of social and organizational issue may

affect the project quality and project success. In the

other hand, Card sorting was originally developed by

psychologists as a method to the study of how people

organize and categorize their knowledge. In the world

of information technology, information architects and

developers of desktop and Web-based software

applications are faced with the problem of organizing

information items, features and functions to make it

easier for users to find them. Card sorting can be an

effective means of discovering the optimal organization

of information for potential users’ viewpoint (Wood

and Wood, 2008). Based on Nuseibeh and Easterbrook

(2000) Card sorting is chief technique in requirement

elicitation process. Moreover, the research don by

Spencer (2009) reveal thatCard sorting used to

eliminate exclusion considerations of social and

organizational issue. This hypothesis was also proved

and supported by Nurmuliani et al. (2004).

ANALYSIS PROCESS

This process encompasses four key challenges:

First, execution of analyzing complex requirement,

second, exclusion of requirements prioritization, third,

exclusion of understanding and modeling functional

requirements, Fourth exclusion of understanding non-

functional requirements. Aforementioned challenges

have been discussed briefly with proposed techniques

based on literature review evidences.

First, the phenomenon of large-scale, highly-

complex systems is not limited to NASA and the

Defense Department, but has extended to the

commercial infrastructure as well (Carr, 2000). In last

decade software industry became more and more

challenging for different response. Thus designed

system became more complicated to face those

challenges. Based on Heninger (1980) and Roman

(1985) Execution of analyzing complex requirement is

requirement challenge and may produce severe problem

to project. In the other hand, decision Table is a precise

yet compact way to model complicated logic. It is

effective techniques used to analyses complex

requirements and system constrains (Becker, 1998).

Based on Subramanian et al. (1992) Decision Table is

principal technique in requirement analysis process.

Moreover, the research done by Kohavi and Daniel

(1998) and Dai et al. (2013) reveal that Decision Table

used to eliminate Execution of analyzing complex

requirement. This hypothesis was also proved and

supported by Becker (1998) and Huysmans et al.

(2011).

Second, prioritization is a crucial step towards

making good decisions regarding product planning for

single and multiple releases. Various aspects of

functionality are considered, such as importance, risk,

cost, etc. Prioritization decisions are made by

stakeholders, including users, managers, developers, or

their representatives (Berander and Andrews, 2005).

Requirement prioritization is used in Software industry

for determining which candidate requirements of a

software product should be included in a certain

release. Requirements are also prioritized to minimize

risk during development so that the most important or

high risk requirements are implemented first.

Noteworthy that, execution of Requirements

prioritization has negative effect to project and overall

time consuming (Firesmith, 2004; Lehtola et al., 2004).

In the other hand, Kano Analysis is analysis techniques

used to provide an effective categorization of customer

requirements and to understand their nature. Kano’s

classifies customer preferences into various categories.

Additionally, customer is not always having same level

of satisfaction about system requirements and

constrains (Chaudha et al., 2010). Based on Sauerwein

et al. (1996) Kano Analysis is an important technique in

analysis process. Furthermore, the research done by

Baek et al. (2009) and Von Dran et al. (1999) reveal

that Kano Analysis used to eliminate Execution of

Requirements Prioritization. This hypothesis was also

proved and supported by Lai et al. (2004).

Third, Based on Carr (2000), Roman (1985) and

Lutz (1993) Exclusion of Modeling and understanding

Functional requirements has a negative effect to the

project. Functional requirements may be calculations,

technical details, data manipulation and processing and

other specific functionality that define what a system is

supposed to accomplish (Sommerville, 2010).

Noteworthy that requirements analysis is critical to the

success of a systems or software project (Abran et al.,

2005). In the other hand, use case is a list of steps,

typically defining interactions between a role and a

Res. J. Appl. Sci. Eng. Technol., 8(19): 2082-2091, 2014

2085

system, to achieve a goal. The actor can be a human or

an external system. In systems engineering, use cases

are used at a higher level than within software

engineering, often representing missions or stakeholder

goals. As an important requirement technique, use cases

have been widely used in modern software engineering

over the last two decades (Siau and Lee, 2004; El-Attar

and Miller, 2007). Based on Sendall (2003) Use-case is

principal technique in requirement analysis process.

Moreover, the research don by Génova1 et al. (2005)

reveal that use-case used to eliminate Exclusion of

Modeling and understanding Functional requirements.

This hypothesis was also proved and supported by

García, et al. (2004).

Fourth, Based on Glinz (2007) and Ullah et al.

(2011) exclusion of understanding non-functional

requirements and constraints of the system is critical

challenge during system development. Non-functional

requirement is a requirement that specifies criteria that

can be used to judge the operation of a system, rather

than specific behaviors. Non-functional requirements

are often called qualities of a system. Other terms for

non-functional requirements are "constraints", "quality

attributes", "quality goals", "quality of service

requirements" and "non-behavioral requirements"

(Stellman and Greene, 2005). Consequently the

exclusion of understanding non-functional has a serious

effect on project success (Glinz, 2007). In the other

hand, Goal-Oriented is model that allows representing

non-functional requirements using actors and

dependencies instead of components and connectors. It

offers a better analysis in the requirements stage since

requirements are explicitly specified in goal-oriented

models in order to support reasoning about

organizational objectives, alternatives and implications,

thus having a deep understanding about the domain

(Grau and Franch, 2007). Based on Van Lamsweerde

(2001) Goal-Oriented is principal technique in

requirement analysis process. Furthermore, the research

don by Cysneiros and Sampaio do Prado Leite (2004)

and Chung and Sampaio do Prado Leite (2009) reveal

that Goal-Oriented used to eliminate Exclusion of

understanding non-functional requirements and

constraints of the system. This hypothesis was also

proved and supported by Aguilar et al. (2011) and

Chung and Supakkul (2005).

Specification process: This process encompasses four

key challenges: First, poor-defined specification

structure and system terminology, Second, exclusion of

documenting functional requirements, Third, exclusion

of documenting non-functional requirements, Fourth,

exclusion of documenting the relationship among

requirements. Aforementioned challenges have been

discussed briefly with proposed techniques based on

literature review evidences.

First, poor-defined specification structure and

system terminology it refers to Natural Language (NL)

syntactically ambiguous and semantically inconsistent.

Natural language is syntactically ambiguous and

semantically inconsistent. Hence, the NL specifications

of software requirements can not only result in

erroneous and absurd software designs and

implementations but the informal nature of NL is also a

main obstacle in machine processing of NL

specification of the software requirements (Umber and

Bajwa, 2011). Natural language is flexible and wide-

spread, but unfortunately also inherently ambiguous.

Even worse, often neither customers nor software

developers recognize an ambiguity and each derives an

interpretation that differs from that of others without

noticing this difference. Consequently, software

developers design and implement a system that does not

behave as intended by the customers. Additionally, NL

lack of clear structure to produce good requirements

(Sommerville, 2010). In the other hand, numerous

studies such as Jiang (2005) and Sommerville and

Sawyer (1997) present guidelines and good practices. In

order to have a better structured natural language

specification. Based on Kandt (2003) Structured NL is

an essential technique in specification process.

Furthermore, the research done by Cleuziou et al.

(2007) and Ferrari et al. (2013) reveal that Structured

NL used to eliminate poor-defined specification

structure and system terminology. This hypothesis was

also proved and supported by Tablan et al. (2008) and

Sneed and Verhoef (2013).

Second and third, Based on Giakoumakis and

Xylomenos (1996) Exclusion of documenting

Functional and non-functional requirements leads to

poor requirement documentation. Moreover, the way in

which requirements are documented plays an important

role in ensuring that they can be read, analyzed, (re-)

written and validated (Nuseibeh and Easterbrook, 2000;

Juristo et al., 2002). In the other hand, Software

Requirements Specification (SRS) is a requirements

specification for a software system. It is a complete

description of the behavior of a system to be developed.

SRS contains non-functional requirements section: it is

constraints on the design or implementation (such as

performance engineering requirements, quality

standards, Maintainability, Portability and Availability).

Furthermore, SRS contains functional requirement

constrains such as “System interfaces, User interfaces

constrains, Hardware constrains, Software constrains

and Communications constrains” (IEEE Computer

Society, 1998). The SRS document enlists all necessary

requirements that are required for the project

development. To derive the requirements we need to

have clear and thorough understanding of the products

to be developed. This is prepared after detail

communications with the project team and customer

(IEEE Computer Society, 1998). Based on Sommerville

Res. J. Appl. Sci. Eng. Technol., 8(19): 2082-2091, 2014

2086

(2010) SRS is an essential technique in specification

process. Furthermore, the research don by Jiang (2005)

reveal that SRS used to eliminate Exclusion of

documenting Functional and non-functional

requirements. This hypothesis was also proved and

supported by Giakoumakis and Xylomenos (1996) and

Kandt (2003).

Fourth, Based on Kesh (1995) and Ochoa et al.

(2009) Exclusion of documenting the relationship

among requirements, the link between requirements and

stakeholders may leads to incomplete requirement

specification. Therefore due to incomplete requirement

specification, project quality may affect negatively

(Roman, 1985). In the other hand, in software

engineering, an Entity Relationship Diagram (ERD) is a

data model for describing the data or information

aspects of a business domain or its process

requirements, in an abstract way. The entity-

relationship model can be used as a basis for unification

of different views of data. This model incorporates

some of the important semantic information about the

real world. The main ERD model components are first,

entities: is a piece of data-an object or concept about

which data is stored. Second the relationships that can

exist among them (how the data is shared between

entities). Based on Jiang (2005) ERD based

specification is an essential technique in specification

process. Furthermore, the research don by Cagiltay

et al. (2013) reveal that ERD used to eliminate

exclusion of documenting the relationship among

requirements and the link between requirements and

stakeholders. This hypothesis was also proved and

supported by Song et al. (1995) and Yeh et al. (2008).

Validation process: This process encompasses four

key challenges: First, exclusion of ensuring correctness

of requirements. Second, exclusion of ensuring

completeness of requirements. Third, exclusion of

ensuring unambiguity of the requirements. Fourth,

exclusion of defining requirements redundancy. Fifth,

exclusion of ensuring stakeholders’ satisfaction of the

requirements. Aforementioned challenges have been

discussed briefly with proposed techniques based on

literature review evidences.

First, correctness of a requirements specification

describes the correspondence of that specification with

the real needs of the intended users much the same way

that correctness of a piece of software refers to the

agreement of the software part with its specification.

Based on Zowghi and Gervasi (2003) exclusion of

ensuring requirements correctness is common problem

during requirement validation. Moreover it is a

Symptom of serious requirements problems (Carr,

2000). Midsized systems often have hundreds of

requirements and many large systems can end up with

several thousand separate requirements. Therefore, with

large amount of requirement, exclusion of ensuring

requirements correctness became possible to happen

during project construction. In the other hand, Ad-hoc

based validation is a popular technique used in

requirement validation process. With Ad-hoc technique,

no guidance is provided during inspection, however it

depends on reviewers’ knowledge and experience to

identify the defects in the document (Saqi and Ahmed,

2008). Based on Fusaro et al. (1997) Ad-hoc technique

is an essential technique in validation process.

Furthermore, the research don by Porter et al. (1995)

reveal that Ad-hoc based validation used to eliminate

exclusion of ensuring requirements correctness. This

hypothesis was also proved and supported by Singer

(2013).

Second and third, because missing requirements

are much harder to spot during requirements

evaluations than incorrect or poorly-specified

requirements, their absence is often missed until the

system is integrated, undergoing operational testing,

being manufactured, or being deployed. Worst case

scenario, the missing requirements may not be

discovered until the system is in use by hundreds,

thousands, or an even larger number of users. Such

requirements are typically much more difficult and

expensive to fix, especially if they are architecturally-

significant requirements (Firesmith, 2007). Noteworthy,

user satisfaction is generally regarded as one of the

most important measures of Information Systems

success. User satisfaction has received considerable

attention of researchers since the 1980s as an important

surrogate measure of information systems success (Ives

et al., 1983; Bailey and Pearson, 1983; Baroudi et al.,

1986; Benson, 1983). In the other hand, Checklist-

based validation used to reduce failure by compensating

for potential limits of human memory and attention. It

helps to ensure completeness and user satisfaction in

carrying out a task. In software engineering checklist

based is one of the commonly used techniques.

According to Laitenberger and DeBaud (2000), check-

list based reading technique is used to be a standard

reading technique in most of the organizations. It

contains set of items which guides the reviewer/

inspector during review/inspection. Check list based

reading technique includes set of elements which are

related to quality of the requirements (Laitenberger,

2002). Based on Sommerville (2010) Checklist-based

validation is an essential technique in validation

process. Furthermore, the research don by Porter et al.

(1995) reveal that Checklist technique is used to

eliminate exclusion of ensuring completeness of

requirements and to ensuring stakeholders’ satisfaction

of the requirements. This hypothesis was also proved

and supported by Fusaro et al. (1997) and Chen et al.

(2006).

Fourth, Based on Opdahl and Sindre (2009)

exclusion of ensuring security issues in requirements is

critical error and may threaten developed system. The

Res. J. Appl. Sci. Eng. Technol., 8(19): 2082-2091, 2014

2087

penetration of computerized information systems into

almost every aspect of society, especially when

combined with their increasingly ubiquitous nature, has

made society more vulnerable to security breaches in

these systems. At the same time, the tendency towards

larger systems that are distributed over the Internet has

introduced many new security threats. Hence, there is

an increased need to focus on security requirements

when developing new information systems. Based on

Firesmith (2003) security requirements are often poorly

understood by software practitioners and, as a result,

security issues are often not considered until late design

or coding, or even patched in later after security defects

are discovered in a fielded application. This late

handling of security concerns can be very costly

(Jurjens, 2002) if the chosen design turns out not to

enable the wanted level of security. In the other hand,

Misuse-case is a process modeling technique used in

the software development industry (Sindre and Opdahl,

2004). The term Misuse Case or mis-use case is derived

from and is the inverse of use case. The term was first

used in the 1990s by GuttormSindre of the Norwegian

University of Science and Technology and Andreas L.

Opdahl of the University of Bergen, Norway.

Noteworthy, Misuse Case is valuable in threat and

hazard analysis, system design, eliciting requirements

and generating test cases. In the other hand, misuse

Case highlights something that should not happen (i.e.,

a Negative Scenario). It describes the process of

executing a malicious act against a system (Whittle

et al., 2008). Based on Opdahl and Sindre (2009)

Misuse-case is an essential technique in validation

process. Furthermore, the research don by (Alexander,

2003) reveal that Misuse-case technique issued to

eliminate exclusion of ensuring security issues in

requirements. This hypothesis was also proved and

supported by John and Gunnar (2006) and Tøndel

et al. (2010).

Fifth, Based on Didar and Vincenzo (2003)
consistency requires that no, two or more requirements

in a specification contradict each other. Moreover

inconsistency may obstruct project expected goal and

may lead to various errors in following software

processes. Consistency it is also often regarded as the

case where words and terms have the same meaning

throughout the requirements specifications. These two

views of consistency imply that mutually exclusive

statements and clashes in terminology should be

avoided. In the other hand, peer review is the evaluation

process done by one or more people of similar

competence to validate a specific task. It constitutes a

form of self-regulation by qualified members of a

profession within the relevant field. Peer review

methods are employed to maintain standards of quality

improve performance and provide credibility. In

academia paper peer review is often used to determine

an academic paper's quality and suitability for

publication. In software engineering, one of the

methods to validate system requirement is by peer

review technique. It aims to evaluate requirement and

validate its contents and structure. Noteworthy,

numerous errors caused by human nature mistakes such

as forgetfulness and omission (Ragone et al., 2013).

Based on Saqi and Ahmed (2008) peer review is an

essential technique in validation process. Furthermore,

the research don by Ragone et al. (2013) reveal that

Misuse-case technique is used to eliminate Exclusion of

ensuring consistency of the requirements. This

hypothesis was also proved and supported by He et al.

(2008) and Xiong and Litman (2010).

CONCLUSION

This study presents, literature review based study

to bond between RE challenges and existing techniques.

Moreover this study aims to eliminate RE challenges by

proposing appropriate technique for each challenge. A

total of 18 challenges have been presented with

supportive evidences from literature review. In the

other hand a total of 15 techniques have been

introduced, in order to eliminate afore mentioned

challenges and improve industry ability to face existing

RE obstacles. All in all this entire study finding is

relevant for both industry and academic researchers in

order to eliminate effect of challenges and to have a

decent RE quality.

ACKNOWLEDGMENT

I would like to thank University Teknologi

PETRONAS, which had given me the opportunity to

study and conduct my reach in faculty of computer and

information science. Furthermore, I would like thank

CIS department staff for their guidance and dedication.

REFERENCES

Abran, A., J.W. Moore, P. Bourque and R. Dupuis,

2005. Software Requirements. Guide to the

Software Engineering Body of Knowledge.

Version 2004, IEEE Computer Society Press, Los

Alamitos, California.

Aguilar, J.A., I. Garrigós, and J.N. Mazón, 2011. A

goal-oriented approach for optimizing non-

functional requirements in web applications. In: De

Troyer, O. et al., (Eds.), ER 2011 Workshop.

LNCS 6999, Springer-Verlag, Berlin, Heidelberg,

pp: 14-23.

Alexander, I., 2003. Misuse cases: Use cases with

hostile intent. IEEE Software, 20(1): 58-66.

Alexander, I.F., 2005. A taxonomy of stakeholders:

Human roles in system development. Int.

J. Technol. Hum. Interaction, 1(1): 23-59.

Res. J. Appl. Sci. Eng. Technol., 8(19): 2082-2091, 2014

2088

Baek, S.I., S.K. Paik and W.S. Yoo, 2009.

Understanding key attributes in mobile service:

Kano model approach. In: Smith, M.J. and G.

Salvendy (Eds.), Human Interface, Part II, HCII

2009. LNCS 5618, Springer-Verlag, Berlin,

Heidelberg, pp: 355-364.

Bailey, J.E. and S.W. Pearson, 1983. Development of a

tool for measuring and analyzing computer user

satisfaction. Manage. Sci., 29(5): 530-545.

Baroudi, J.J., M.H. Olson and B. Ives, 1986. An

empirical study of the impact of user involvement

on system usage and information satisfaction.

Commun. ACM, 29(3): 232-238.

Becker, B.G., 1998. Visualizing decision table

classifiers. Proceeding of IEEE Symposium on

Information Visualization, pp: 102-105.

Benson, D.H., 1983. Field study of end-user computing:

Findings and issues. MIS Quart., 7(4): 35-45.

Berander, P. and A. Andrews, 2005. Requirements

prioritization. In: Aurum, A. and C. Wohlin, (Eds.),

Engineering and Managing Software

Requirements, Springer, Heidelberg, pp: 69-94.

Bourne, L., 2009. Stakeholder Relationship

Management. Gower Publishing, USA.

Bourne, L., 2010. Using the Stakeholder Circle

methodology for more effective stakeholder

engagement of senior management. Proceeding of

7th Project Management National Benchmarking

Forum PMI Chapter, Rio de Janeiro, Brazil.

Burke, L.A. and M.K. Miller, 2001. Phone interviewing

as a means of data collection: Lessons learned and

practical recommendations. Qual. Soc. Res., 2(2):

Art. 7.

Cagiltay, N.E., G. Tokdemir, O. Kilic and D. Topalli,

2013. Performing and analyzing non-formal

inspections of Entity Relationship Diagram (ERD).

J. Syst. Software, 86: 2184-2195.

Carmel, E., R.D. Whitaker and J.F. George, 1993. PD

and joint application design: A transatlantic

comparison. Commun. ACM, 36(6): 40-48.

Carr, J.J., 2000. Requirements engineering and

management: The key to designing quality

complex systems. TQM Mag., 12(6): 400-407.

Chaudha, A., R. Jain, A.R. Singh and P.K. Mishra,

2010. Integration of Kano’s Model into Quality

Function Deployment (QFD). Int. J. Adv. Manuf.

Tech., 53: 689-698.

Chen, T.Y., P.L. Poon, S.F. Tang, T.H. Tse and Y.T.

Yu, 2006. Applying testing to requirements

inspection for software quality assurance. Inform.

Syst. Control J., Vol. 6.

Chung, L. and S. Supakkul, 2005. Representing NFRs

and FRs: A goal-oriented and use case driven

approach. In: Dosch, W., R.Y. Lee and C. Wu

(Eds.), SERA 2004. LNCS 3647, Springer-Verlag,

Berlin, Heidelberg, pp: 29-41.

Chung, L. and J.C. Sampaio do Prado Leite, 2009. On

non-functional requirements in software

engineering. In: Borgida, A.T. et al. (Eds.),

Mylopoulos Festschrift. LNCS 5600, Springer-

Verlag, Berlin, Heidelberg, pp: 363-379.

Cleuziou, G., L. Martin and C. Vrain, 2007. Structuring

natural language data by learning rewriting rules.

In: Muggleton, S., R. Otero and A. Tamaddoni-

Nezhad (Eds.), ILP 2006. LNAI 4455, Springer-

Verlag, Berlin, Heidelberg, pp: 125-138.

Cysneiros, L.M. and J.C. Sampaio do Prado Leite,

2004. Nonfunctional requirements: From elicitation

to conceptual models. IEEE T. Software Eng.,

30(5): 328-350.

Dai, J., W. Wang and Q. Xu, 2013. An uncertainty

measure for incomplete decision tables and its

applications. IEEE T. Cyb., 43(4): 1277-1289.

Davidson, E.J., 1999. Joint Application Design (JAD)

in practice. J. Syst. Software, 45(3): 216-223.

Davison, R., 2000. The role of groupware in
requirements specification. Group Decis. Negot., 9:
149-160.

Didar, Z. and G. Vincenzo, 2003. On the interplay
between consistency, completeness, and
correctness in requirements evolution. Inform.
Software Tech., 45: 993-1009.

Didar Z. and C. Coulin, 2005. Requirements Elicitation:
A Survey of Techniques, Approaches, and Tools.
Maté, JL & Silva, A (Eds.), Idea Group, USA.

Duggan, E.W. and C.S. Thachenkary, 2003. Higher
quality requirements: Supporting joint application
development with the nominal group technique.
Inform. Technol. Manag., 4: 391-408.

El-Attar, M. and J. Miller, 2007. Producing robust use
case diagrams via reverse engineering of use case
descriptions. Softw. Syst. Model., 7: 67-83.

Ferrari, A., S. Gnesi and G. Tolomei, 2013. Using
clustering to improve the structure of natural
language requirements documents. In: Doer, J. and
A.L. Opdahl (Eds.), REFSQ 2013. LNCS 7830,
Springer-Verlag, Berlin, Heidelberg, pp: 34-49.

Firesmith, D., 2003. Engineering security requirements.
J. Object Technol., 2: 53-68.

Firesmith, D., 2004. Prioritizing requirements. J. Object
Technol., 3(8): 35-47.

Firesmith, D., 2007. Common requirements problems,

their negative consequences and the industry best

practices to help solve them. J. Object Technol.,

6(1): 17-33.
Fusaro, P., F. Lanubile and G. Visaggio, 1997. A

replicated experiment to assess requirements
inspection techniques. Empir. Softw. Eng., 2(1):
39-57.

García, J.D., J. Carretero, J. Maria Perez and F.

García, 2004. A model for use case priorization

using criticality analysis. In: Lagana, A. et al.

(Eds.), ICCSA 2004. LNCS 3046, Springer-Verlag,

Berlin, Heidelberg, pp: 496-505.

Res. J. Appl. Sci. Eng. Technol., 8(19): 2082-2091, 2014

2089

Génova1, G., J. Llorens, P. Metz, R. Prieto-Díaz and
H. Astudillo, 2005. Open issues in industrial use
case modeling. In: Jardim Nunes, N. et al. (Eds.),
UML 2004 Satellite Activities. LNCS 3297,
Springer-Verlag, Berlin, Heidelberg, pp: 52-61.

Giakoumakis, E.A. and G. Xylomenos, 1996.
Evaluation and selection criteria for software
requirements specification standards. Software
Eng. J., 11(5): 307-319.

Glinz, M., 2007. On non-functional requirements.
Proceeding of 15th IEEE International
Requirements Engineering Conference, pp: 21-26.

Goguen, J.A. and C. Linde, 1992. Techniques for
requirements elicitation. Proceeding of IEEE
International Symposium on Requirements
Engineering, pp: 152-164.

Grau, G. and X. Franch, 2007. A goal-oriented
approach for the generation and evaluation of
alternative architectures. In: Oquendo, F. (Ed.),
ECSA 2007. LNCS 4758, Springer-Verlag, Berlin,
Heidelberg, pp: 139-155.

He, L., J.C. Carver and R.B. Vaughn, 2008. Using
inspections to teach requirements validation.
CrossTalk: J. Defense Software Eng., 21(1).

Heninger, K.L., 1980. Specifying software
requirements for complex systems: New techniques
and their application. IEEE T. Software Eng., SE-
6(1): 2-13.

Herrmann, T. and A. Nolte, 2010. The integration of
collaborative process modeling and electronic
brainstorming in co-located meetings. In:
Kolfchoten, G., T. Herrmann and S. Lukosch
(Eds.), CRIWG 2010. LNCS 6257, Springer-
Verlag, Berlin, Heidelberg, pp: 145-160.

Huysmans, J., K. Dejaeger, C. Mues, J. Vanthienen and

B. Baesens, 2011. An empirical evaluation of the

comprehensibility of decision table, tree and rule

based predictive models. Decis. Support Syst., 51:

141-154.

IEEE Computer Society, 1998. Recommended Practice

for Software Requirements Specifications.

IEEE Standard 830-1998, pp: 1-40.
Ives, B., M.H. Olson and J.J. Baroudi, 1983. The

measurement of user information satisfaction.
Commun. ACM, 26(10): 785-793.

Jiang, L., 2005. A framework for the requirements

engineering process development. Ph.D. Thesis,

University of Calgary Calgary, Alberta.
John, S. and P. Gunnar, 2006. Defining misuse within

the development process. IEEE Secur. Priv., 4(6).
Juristo, N., A. Moreno and A. Silva, 2002. Is the

European industry moving toward solving
requirements engineering problems? IEEE
Software, 19(6): 70-77.

Jurjens, J., 2002. UMLsec: Extending UML for
secure systems development. In: Jezequel,
J.M., H. Haussmann and S. Cook (Eds.),
Proceeding of the Unified Modeling Language, 5th
International Conference. LNCS 2460, Springer,
Dresden, Germany, pp: 412-425.

Kamata, M.I. and T. Tamai, 2007. How does
requirements quality relate to project success or
failure? Proceeding of 15th IEEE International
Requirements Engineering Conference (RE’07),
pp: 69-78.

Kandt, R.K., 2003. Software quality improvement
software requirements engineering: Practices and
techniques. SQI Report R-3.

Kesh, S., 1995. Evaluating the quality of entity
relationship models. Inform. Software Tech.,
37(12): 681-689.

Kohavi, R. and S. Daniel, 1998. Targeting business
users with decision table classiers. Proceeding of
KDD-98.

Kotonya, G. and I. Sommerville, 1998. Requirements
engineering: Processes and techniques. John Wiley
and Sons, United Kingdom, pp: 5-282.

Lai, X., M. Xie and K.C. Tan, 2004. Optimizing
product design using the kano model and QFD.
Proceeding of IEEE International Engineering
Management Conference, pp: 1085-1089.

Laitenberger, O., 2002. A Survey of Software
Inspection Technologies. In: Chang, S.K. (Ed.),
Handbook on Software Engineering and
Knowledge Engineering. World Scientific,
Singapore, pp: 517-556.

Laitenberger, O. and J.M. DeBaud, 2000. An
encompassing life cycle centric survey of software
inspection. J. Syst. Software, 50(1): 5-31.

Lehtola, L., M. Kauppinen and S. Kujala, 2004.
Requirements prioritization challenges in
practice. In: Bomarius, F. and H. Iida (Eds.),
PROFES 2004. LNCS 3009, Springer-Verlag,
Berlin, Heidelberg, pp: 497-508.

Litchfield, R.C., 2008. Brainstorming rules as assigned
goals: Does brainstorming really improve idea
quantity? Motiv. Emotion, 33: 25-31.

Lloyd, W.J., M.B. Rosson and J.D. Arthur, 2002.

Effectiveness of elicitation techniques in

distributed requirements engineering. Proceeding

of the IEEE Joint International Conference on

Requirements Engineering, pp: 311-318.

Lutz, R.R., 1993. Analyzing software requirements

errors in safety-critical embedded systems.

Proceeding of IEEE International Symposium on

Requirements Engineering, pp: 126-133.

Mohd Kasirun, Z. and S.S. Salim, 2008. Focus group

discussion model for requirements elicitation

activity. Proceeding of International Conference on

Computer and Electrical Engineering, pp: 102-105.

Nurmuliani, N., D. Zowghi and S.P. Williams, 2004.

Using card sorting technique to classify

requirements change. Proceeding of the 12th IEEE

International Requirements Engineering

Conference, pp: 240-248.

Nuseibeh, B. and S. Easterbrook, 2000. Requirements
engineering: A roadmap. Proceeding of the
Conference on the Future of Software Engineering
(ICSE’00), pp: 35-46.

Res. J. Appl. Sci. Eng. Technol., 8(19): 2082-2091, 2014

2090

Ochoa, S., R. Alarcon and L. Guerrero, 2009.

Understanding the relationship between

requirements and context elements in mobile

collaboration. In: Jacko, J.A. (Ed.), Human-

Computer Interaction, Part III, HCII 2009. LNCS

5612, Springer-Verlag, Berlin, Heidelberg, pp:

67-76.

Opdahl, A.L. and G. Sindre, 2009. Experimental

comparison of attack trees and misuse cases for

security threat identification. Inform. Software

Tech., 51(5): 946-932.

Opdenakker, R., 2006. Advantages and disadvantages

of four interview techniques in qualitative research.

Qual. Soc. Res., 7(4), Art. 11.

Porter, A.A., L.G. Jr. Votta and V.R. Basili, 1995.

Comparing detection methods for software

requirements inspections: A replicated experiment.

IEEE T. Software Eng., 21(6): 563-575.

Ragone, A., K. Mirylenka, F. Casati and M. Marchese,

2013. On peer review in computer science:

Analysis of its effectiveness and suggestions for

improvement. Scientometrics, 97: 317-356.

Roman, G., 1985. A taxonomy of current issues in

requirements engineering. Computer, 18(4): 14-23.

Saqi, S.B. and S. Ahmed, 2008. Requirements

Validation Techniques practiced in industry:

Studies of six companies. M.A. Thesis, Software

Engineering, School of Engineering, Blekinge

Institute of Technology, Sweden.

Sauerwein, E., F. Bailom, K. Matzler and

H.H. Hinterhuber, 1996. The Kano model: How to

delight your customers. Proceeding of International

Working Seminar on Production Economics, pp:

313-327.

Scheinholtz, L.A. and I. Wilmont, 2011. Interview

patterns for requirements elicitation. In: Berry,

D. and X. Franch (Eds.), REFSQ 2011. LNCS

6606, Springer-Verlag, Berlin, Heidelberg, pp:

72-77.

Sendall, S., 2003. Requirements elicitation with

use cases. Lecture Notes Comput. Sc.,

2604: 203.

Siau, K. and L. Lee, 2004. Are use case and class

diagrams complementary in requirements analysis?

An experimental study on use case and class

diagrams in UML. Requir. Eng., 9: 229-237.

Sindre, G. and A.L. Opdahl, 2004. Eliciting security

requirements with misuse cases. Requir. Eng., 10:

34-44.

Singer, M., 2013. Validation in reading comprehension.

Curr. Dir. Psychol. Sci., 22: 361-366.

Sneed, H.M. and C. Verhoef, 2013. Natural language

requirement specification for web service testing.

Proceeding of 15th IEEE International Symposium

on Web Systems Evolution (WSE, 2013), pp: 5-14.

Sommerville, I., 2010. Software Engineering. 9th Edn.,

Addison-Wesley, ISBN 10: 0-13-703515-2.

Sommerville, I. and P. Sawyer, 1997. Requirements

Engineering: A Good Practice Guide. John Wiley

& Sons, New York.

Song, Y., M. Evans and E.K. Park, 1995. A

comparative analysis of entity-relationship

diagrams1. J. Comput. Software Eng., 3(4):

427-459.

Spencer, D., 2009. Card Sorting: Designing Usable

Categories. Brooklyn, New York, USA.

Stellman, A. and J. Greene, 2005. Applied Software

Project Management. O'Reilly Media Inc., USA,

pp: 113.

Subramanian, G.H., J. Nosek, S.P. Raghunathan and

S.S. Kanitkar, 1992. Comparison of the decision

table and tree. Commun. ACM, 35(1): 89-94.

Tablan, V., D. Damljanovic and K. Bontcheva, 2008. A

natural language query interface to structured

information. Proceeding of the 5th European

Semantic Web Conference on the Semantic Web:

Research and Applications (ESWC'08), pp:

361-375.

Tøndel, I.A., J. Jensen and L. Røstad, 2010. Combining

misuse cases with attack trees and security activity

models. Proceeding of 10th International

Conference on Availability, Reliability and

Security (ARES, 2010), pp: 438-4445.

Ullah, S., M. Iqbal and A.M. Khan, 2011. A survey on

issues in non-functional requirements elicitation.

Proceeding of International Conference on

Computer Networks and Information Technology

(ICCNIT, 2011), pp: 333-340.

Umber, A. and I.S. Bajwa, 2011. Minimizing ambiguity

in natural language software requirements

specification. Proceeding of 6th International

Conference on Digital Information Management

(ICDIM, 2011), pp: 102-107.

Van Lamsweerde, A., 2001. Goal-oriented

requirements engineering: A guided tour.

Proceeding of 5th IEEE International Symposium

on Requirements Engineering, pp: 249-262.

Von Dran, G.M., P. Zhang and R. Small, 1999. Quality

websites: An application of the kano model to

website design. Proceeding of the 5th Americas

Conference on Information Systems (AMCIS'99),

August 13-15.

Whittle, J., D. Wijesekera and M. Hartong, 2008.

Executable misuse cases for modeling security

concerns. Proceeding of 30th ACM/IEEE

International Conference on Software Engineering

(ICSE '08).

Wieringa, R., N. Maiden, N. Mead and C. Rolland,

2005. Requirements engineering paper

classification and evaluation criteria: A proposal

and a discussion. Requir. Eng., 11: 102-107.

Wood, J.R. and L.E. Wood, 2008. Card sorting: Current

practices and beyond. J. Usability Stud., 4(1): 1-6.

Res. J. Appl. Sci. Eng. Technol., 8(19): 2082-2091, 2014

2091

Xiong, W. and D. Litman, 2010. Identifying problem

localization in peer-review feedback. In: Aleven,

V., J. Kay and J. Mostow (Eds.), ITS 2010. Part II,

LNCS 6095, Springer-Verlag, Berlin, Heidelberg,

pp: 429-431.

Yeh, D., Y. Li and W. Chu, 2008. Extracting entity-

relationship diagram from a table-based legacy

database. J. Syst. Software, 81: 764-771.

Zave, P., 1997. Classification of research efforts in
requirements engineering. ACM Comput. Surv.,
29(4): 315-321.

Zowghi, D. and V. Gervasi, 2003. On the interplay

between consistency, completeness, and

correctness in requirements evolution, Inform.

Software Tech., 45: 993-1009.

