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Abstract: The aim of the study-to demonstrate the properties of the gas-dynamic discontinuity as a singularity the 
geometry of the Euler equations give on this basis, the definition of the intensity discontinuity. We have considered 
the gas-dynamic discontinuity conception. We demonstrated geometrical content of gas dynamics equation. The 
shock-wave process concept (as a transfer function of gas-dynamic variables space reorganization) was introduced. 
The basic types of gas-dynamic discontinuities: shock waves, compression shocks, centered depression and 
compression waves, contact discontinuities were considered. The discontinuity intensity concept was introduced. 
The basic formulae and discontinuity intensity calculation results were given. 
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INTRODUCTION 

 
The object of study-normal and contact the gas-

dynamic discontinuity, as well as its intensity and the 

relationship between the parameters on both sides of 

gasdynamic discontinuities. Geometrical interpretation 

of the gas-dynamic characteristics of the space 

discontinuity as gas-dynamic variables. Shock-Wave 

Process (SWP) are gas-dynamic system reorganization 

processes which parameters f into a system with 

parameters ��: 
 

� → ��                  (1) 

 

Here, f and f1 are sets of gas-dynamic variables 

before and after SWP. These sets include cinematic, 

thermodynamic and thermal variables which 

characterize the gas flow parameters: 
 

• Cinematic (u -speed, w-acceleration) 

• Thermodynamic (p-pressure, ρ-density, T-
temperature) 

• f0-relevant deceleration parameters 

• And entropy change ∆S = Cvlnϑ/ϑ, where ϑ = p/p
γ
–

Laplace-Poisson invariant (Loitsyansky, 1978) and 
hand h0 -enthalpy, as well as thermal and physical 
parameters (thermal capacity cp and cv, γ = cp/cv- 
adiabatic index, viscosity index etc.), which can 
change during the SWP 

 
SWP is understood as isentropic or shock waves, 

which arise in the outgoing streamline or are taken into 
it from outside.  

Isentropic waves cover sound (acoustic fields) 
fields and Riemann waves (��) or Prandtl-Meyer waves 
(�	), which lead to the stream line compression (�
���, �
����) 

or depression (�����, ������). 

Shock waves (
	) are Gas-Dynamic Discontinuities 
(GDD), they can occur inside of the outgoing 
streamline with known parameters f before SWP, or 
they can be captured in the streamline from outside 
(Adrianov et al., 1995). Difference of waves and 
discontinuities is in the fact that waves have the width 
which can be measured from the front edge to the end 
edge. Gas-dynamic discontinuities are some kind of 
idealization of the area with parameters f bumping, 
replacing it by surfaces where gas-dynamic variables 
unevenly change, that is, GDD is first kind 
discontinuity. Shock wave real width, as Prandtl 
showed (Deitch, 1974), comparable with the width (λ) 
of molecule free path and can be big enough in diluted 
gas. In solid medium it is insignificant and model of 
mathematical discontinuity with zero length is 
adequate. A criterion of gas rarity is Knudsen 

number �� =  �/�, where λ is average length of free 
path of molecules in gas, L is characteristic parameter 
of the streamline (for example, streamline body length, 
pipeline diameter, free jet diameter). From all has been 
said it follows that the important thermo-dynamic 
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difference of simple waves and discontinuities is 
behavior of entropy in streamlines going through these 
discontinuities. 

Let us mention tangentialτ and contact (�	) 
discontinuities (entropic waves). Throughτ and (�	) gas 
cannot overflow, these discontinuities separate moving 
gas flows with different thermo-dynamic variables, 
excluding static pressure. So, tangential and contact 
discontinuities are not SWP. In tangential discontinuity, 
velocity  vector  is  collinear  to  the  discontinuity`s 
plane. 
 

MATERIALS AND METHODS 
 

Gas-dynamic discontinuity image as features of 

reflection of projection of gas-dynamic parameters 

variety: Generalization of the surface concept is 

variety. The variety is random set of points in the form 

of aggregation of finite number of Euclidean space 

domains with the given local coordinates. According to 

the  modern  representation,  gas-dynamic  variables 

form multidimensional hyperspace and the Euler 

equations  describing  the  perfect  gas  streamline 

specify   hypersurface   (Arnold,  1976)   which  

curvature is specified by gas-dynamic unevenness Ni 

(unisobarity N1, curvature of streamline N2 and vorticity 

N3): 
 

�� = � �� �
�� , �� = ��

�� , �� = � = � �� ��
�   

 
In axisymmetric case, the Euler equations written 

with the help of unevenness look in the natural 
coordinate system connected with the streamlines as 
follows: 

  
!"#�
$!" �� + ��

� + &'� �
( = 0,  

*+� � �� ,
�� = −��,  

+��� = − � �� �
�   

 
In these equations:  
n  = The normal length/streamlines 
s  = Arc length along streamline 
P  = Pressure 
ϑ  = Velocity vector angle 
P0 = Total pressure 
ζ  = Vorticity 
 

The first expression is the continuity equation. The 
second and third ones are projections of motion 
equation on the natural coordinate system axis 
connected with the streamlines. As we know, 
supersonic flows can contain domains where 
parameters change unevenly. Within the perfect gas 
model, in such cases they say about existence of Gas-
Dynamic Discontinuities (GDD). 

Let us consider, for simplicity, the one-dimensional 
equation of perfect gas motion (Euler equation): 

 
 

Fig. 1: Euler equation solution with the help of characteristics 

 

 
 
Fig. 2: Integral surface ceases to be function graph y(x) 

 
./
.0 + 1 �/

�2 = 0  

 
This equation describes the velocity field of 

particles freely moving along the straight line. The 
particle free motion law is of the form x= φ(t)= x0+ut, 
where u is particle velocity. Function φ meets the 
Newton equation. By definition dφ/dt = u (t, φ). 
Differentiating the last ratio with respect to t we result 
the equation: 

 
�3
�0" = �/

�0 + 1 �/
�2 = 0  

 
In such a way, the motion description by the Euler 

equation for the field is equivalent to description by the 
Newton equation for particles. We know that partial 
quasi-linear equations can be solved with the help of 
characteristic formation. Every variety meets its own 
characteristic field. The characteristics are phase curves 
of the characteristic field. The equation of the Euler 
equation characteristics is equivalent to the Newton 
equation (Arnold, 1990).  

In such a way, the wave propagation problem can 

be solved by construction of characteristics along which 

material particles move. Figure 1 show how the Euler 

equation can be solved with the help of characteristics. 

On surface y-x initial function y = u0(x)t = 0 is 

specified. Characteristic equations t’= 1, y’= 0, x’= y. 

At moments t = 1, t = 2 etc., the solution is constructed 

by means of transport along the characteristics at the 

initial moment of time. The integral surface in different 

ways is projected on plane x-t (Fig. 2). Reflection y(x) 

ceases to be the function graph, i.e., there are values х 

which meet a few values y. The curve of the projecting 

critical a value (tangent to the surface is vertical) has a 

return point (Fig. 3).  

Violation of the solution uniqueness can be 

interpreted as free passage of particle flows through  
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Fig. 3: GDD-singularity of reflection of parameter variety projection 

 

each other. On the other hand, for the particles large 

density, you cannot neglect their interaction. 

In this case, the Euler equation should be replaced 

by the Burgers equation which takes into consideration 

gas particles interaction inside the shock wave: 

  
�/
�0 + 1 �/

�2 = 4 �"(
�2"                                                

 

For small ε, it brings closer the Euler equation in 

the domains of the parameters smooth change. On the 

shock wave left and right, the streamline is described 

with the Euler equations, inside the shock wave (gas-

dynamic discontinuity) -with an equation similar to the 

heat conduction equation.  

So, the shock wave or Gas-Dynamic Discontinuity 

(GDD) is a reflection singularity of gas-dynamic 

parameters variety projection (Fig. 3). The GDD 

interaction forms Shock Wave Structures (SWS). 

 

Parameter connection at discontinuities and waves: 

The SWP intensity is characterized by the ratio of static 

pressure J = p1/p after (p1) and before (p) SWP. The 

values Jc>1characterize the streamline compression in 

�
���, �
���� orin (
	) –waves and values Jr<1–its expansion 

(depression). A particular case of 
	– 

wavesarestationary waves (
5���) in supersonic outgoing 

streamline (Mach number M = v/a>1), when the wave 

velocity is D = 0. Such stationary waves are often 

called compression shocks (6�). 

Sometimes, stationary discontinuities (
5����) and 

compression shocks (6	) are considered shock wave 

synonyms. It is incorrect, as shock waves go in the 

medium and compression shocks are at rest in the 

supersonic flow. In 
	-waves, the flow total heat σ 

content h0 changes and for the shock passage the value 

remains the same (H0 = h01/h0 = 1) (Uskov, 2000). The 

same note is true for the Riemann progressing waves 

and stationary Prandtl-Meyer waves in supersonic 

flows. The density ration E = ρ/ρ is connected with the 

wave intensity by the Laplace-Poisson isentropic 

(invariant) (ϑ = const), that is: 

 

ϑ/ϑ = JE
γ
 = 1                                            (2) 

 

Or the Rankine-Hogoniot shock adiabat: 

  

7 = �89:
:89                   (3) 

 

where, 4 = lim>→∞ 7 = $#�
$8�. From (1, 2) you can see 

that ∆S = 0 in isentropic waves and ∆S>0 in shock 

waves, where formula (3). The waves through which 

gas flows are called normal waves, as compared with 

tangential discontinuities τ and K, which are not 

crossed with the streamlines. 

Thermodynamic variables are connected with the 

help of state equations, for example of the Clapeyron-

Mendeleev perfect gas state: 

 
?

@A = BC�DE = F�G5
H                             (4) 

 

where, µ is the gas molar mass. 

The deceleration parameters change in SWP 

characterize the relation of total pressures J0 = p0/p0 

and total heat content H0 = h0/h0 (Kochin et al., 1963): 

 

I5 = J K�
L

:MLN
O

LPO
                 (5) 

 

From (5) and the energy change equation in the 

non viscous non conducting gas: 

 

Q .R�
.0 = �?

�0                                                          (6) 

 

Which takes in to consideration кото рое the total 

enthalpy change h0 only because of the pressure force 

work the two important conclusions follow: 
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• Instationary flows (∂ρ/∂t = 0) along the streamline, 

the total heat content does not change. It means 

that in stable flows (H0 = 1) and formula (5) look 

as follows: 

 

I5 = SI7$T O
LPO                                          

 

Formula (7) describes the total pressure

in the supersonic stable waves (compression

and in the Prandtl-Meyer isentropic waves,

1. 

 

• In non-stationary flows, the total enthalpy changes 

(H0 ≠ 1), therefore in the Riemann 

progressing shock waves changes of

connected with the formula (5), at the same time, 

the most easy in simple (��) waves:

 

  I5 = U5
L

LPO
                                                     

 

RESULTS AND DISCUSSI

 

Shock intensity: It is easy to introduce the intensity 

concept for a compression shock. Considering a direct 

compression wave as an individual shock wave, you 

can write the following expression for its intensity 

(Uskov and Mostovykh, 2012): 

 

IV = SW + 4T+�� − 4   

 

where, M1-Mach number before the compression shock 

(+� = 1�/X�). Dependence of Jm on Mach number (9) 

is given in Fig. 4. 

 

Contact discontinuity intensity: We introduce the 

concept of contact discontinuity intensity

the fact that generally the gas-dynamic parameters at 

�	undergo discontinuity (excluding static pressure), 

they are not free. The parameters of the streamlines 

 
 Fig. 4: Dependence of maximal intensity of shock 

1.4, 1.67 (lower curve) 
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along the streamline, 

the total heat content does not change. It means 

and formula (5) look 

                                          (7) 

pressure loss factor 

(compression shocks (6�) 

waves, where JE
γ 
= 

stationary flows, the total enthalpy changes 

), therefore in the Riemann waves and 

progressing shock waves changes of J0 and H0 are 

connected with the formula (5), at the same time, 

waves: 

                                                       (8) 

RESULTS AND DISCUSSION 

It is easy to introduce the intensity 

concept for a compression shock. Considering a direct 

compression wave as an individual shock wave, you 

can write the following expression for its intensity 

              (9) 

Mach number before the compression shock 

on Mach number (9) 

We introduce the 

concept of contact discontinuity intensity �	. Despite of 

dynamic parameters at 

undergo discontinuity (excluding static pressure), 

they are not free. The parameters of the streamlines 

divided by �	 are connected with equations following 

the Clapeyron-Mendeleev equation:

 
@OYOAO
@"Y"A"

= W                                                       

 

Deceleration parameters on both sides 

different but interconnected, as well as the entropy 

values. 

There are three options of an arbitrary discontinuity 

breakup, resulting in the formation of a multidirectional 

and separated by a contact discontinuity following 

formations: 

 

• Two shock waves: The problem of the collision of 

counter masses of gas (Fig. 5a). This case arises in 

a collision of the two gas streams moving

opposite directions 

• Shock and rarefaction waves:

equalizing pressure (Fig. 5b). Occurs in a contact 

of two media with different pressure.

• Two centered rarefaction waves:

the expansion of the two masses of gas (Fig. 5c). 

The case where two initially contacting masses of 

gas moving in opposite directions.

 

Formation of two outgoing waves as a result of an 

arbitrary discontinuity breakup is due to the need to 

perform dynamic compatibility conditions on the 

contact discontinuity separating them.

We fix intensity �	 through the ration of parameters 

of streamline deceleration Z =
difference [D = B\ l]S^�/^�T, where 

Laplace-Poisson invariant. For at

B\ l]SQ�/Q�T$. As the gas flow in the Riemann wave is 

isentropic, the deceleration parameters in 

not change and intensity �	 is expressed by the total 

parameters ratioZ = �5� �5�_ = W. At the shock wave 

the deceleration parameters undergo a discontinuity 

which should characterize the entropy intensity 

(Arkhipova, 2013): 
 

Dependence of maximal intensity of shock Jm on Mach number at the fixes adiabatic index γ =1.1 (upper curve), 1.25, 

are connected with equations following 

on: 

                                                     (10) 

Deceleration parameters on both sides �	 are 

different but interconnected, as well as the entropy 

There are three options of an arbitrary discontinuity 

resulting in the formation of a multidirectional 

and separated by a contact discontinuity following 

The problem of the collision of 

counter masses of gas (Fig. 5a). This case arises in 

a collision of the two gas streams moving in 

Shock and rarefaction waves: The problem of 

equalizing pressure (Fig. 5b). Occurs in a contact 

of two media with different pressure. 

Two centered rarefaction waves: The problem of 

the expansion of the two masses of gas (Fig. 5c). 

e case where two initially contacting masses of 

gas moving in opposite directions. 

Formation of two outgoing waves as a result of an 

arbitrary discontinuity breakup is due to the need to 

perform dynamic compatibility conditions on the 

discontinuity separating them. 

through the ration of parameters 

�5� �5�_ or entropy 

, where ^ = ` Q$_  is the 

Poisson invariant. For at �	`� = `�, [D =
he gas flow in the Riemann wave is 

isentropic, the deceleration parameters in �����- wave do 

is expressed by the total 

. At the shock wave 

the deceleration parameters undergo a discontinuity 

uld characterize the entropy intensity 

 

=1.1 (upper curve), 1.25, 
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(a)                                        (b)                                               (c) 

 

Fig. 5: Types of an arbitrary discontinuity breakup; D-shock waves; R-isentropic expansion wave; K-contact discontinuity 

 

 
 
Fig. 6: Diagram of intensity kρ(N) 

 

[Da = B\" l]bIa7a
$c              (11) 

 

Figure 6 shows dependence of the contact 

discontinuity separating differently directed shock wave 

and centered Riemann centered depression wave 

propagating in the mediums initially having different 

static pressure p01 and p04, � = `5� `5G_ .  

 

CONCLUSION 

 

In the generic form, the gas-dynamic discontinuity 

conception was introduced. At the same time, we have 

used the V.N. Uskov`s theory of interference of 

stationary (Arkhipova, 2013) and non-stationary 

(Kochin et al., 1963) gas-dynamic discontinuities. As 

the normal wave (discontinuities) intensity we used the 

ratio of pressures before and after the discontinuity. In 

case of contact or tangential discontinuity, these 

pressures are equal, therefore the intensity is understood 

as the total pressures ratio. We showed the connection 

of non-stationary waves and stationary discontinuities. 

We introduces the conception of the compression shock 

(standing shock wave) as an individual case of a 

moving shock wave. We demonstrated that the basic 

difference between them is in the character of entropy 

reorganization. At the stationary discontinuity the total 

het content does not undergo a discontinuity, but at the 

shock wave it changes unevenly. The direct 

compression shock and contact discontinuity 

calculation results are given. 
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