
Research Journal of Applied Sciences, Engineering and Technology 8(23): 2334-2342, 2014
DOI:10.19026/rjaset.8.1237
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2014 Maxwell Scientific Publication Corp.
Submitted: September 22, 2014 Accepted: October 24, 2014 Published: December 20, 2014

Corresponding Author: G. Kalpana, Department of CSE, SRM University, Kattankulathur, Chennai, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

2334

Research Article

Data and Job Aware Community Scheduler Framework for Grid Scheduling Problems

1G. Kalpana and 2D.I. George Amalarethinam
1Department of CSE, SRM University, Kattankulathur, Chennai,

2Department of Computer Science, Jamal Mohamed College (Autonomous), Tiruchirappalli, India

Abstract: Grid technologies have brought the promise of flawless combination of distributed heterogeneous
resources. Scheduling in Grid computing is the hot topic of research and challenging to manage task, job in efficient
manner. For instance, tasks are assumed to include all data needed for its computation or tasks are just the processes
and data is assumed to be available in Grid nodes. All the existing works doesn’t focus on the data aware scheduling
framework and it is almost impossible to make an optimal or approximate optimal scheduling for the end-to-end
workflow with considering the intermediate data movement in grid computing environment. In order to solve this
problem in this study a novel Community Scheduler Framework (CSF) approach is proposed for solving the job and
data aware scheduling problem together and it can be integrated to grid host environment. The system is able to find
data-affinity hosts for user requested jobs and to adjust the data replicas dynamically according to the job load. The
proposed work reviews the policies for scheduling of grid jobs in the context of data and task aware-intensive
applications. Proposed data and task aware CSF Meta scheduler framework makes it possible for job requests to set
data needs not only as absolute requirements but also as functions for resource ranking. As the experimental results
show that, this makes it more flexible than currently used resource brokers to implement different data-aware
scheduling algorithms. The experimentation of the proposed Meta scheduler work is implemented with the help of
grid simulation toolkit.

Keywords: Community Scheduler Framework (CSF), data aware scheduling, grid computing, grid simulation

toolkit, Job aware scheduling, scheduling

INTRODUCTION

Grid Computing is a type of parallel and
distributed system (Gandotra et al., 2011) that involves
the integrated and collaborative use of computers,
networks and scientific instruments depending on their
ease of use, capability, cost and user requirements.
These days, heterogeneous computing networks can be
linked to each other through grid technology as it seems
to be fully integrated machine. Then, very complex
application programs can be implemented which needs
high processing power and large amount of data (Foster
et al., 2008). For instance, with the grid technology,
several PC computers can be connected with each
other. Grid computing has no restraint owing to its
geographical area and the type of furtively resources. In
certain cases, a grid network can be measured as a
series of numerous big branches, different kinds of
microprocessors, thousands of PC computers and
workstations in all over the world. Grid network makes
connection between those heterogeneous systems which
have no steadiness among them. It also recognizes
different types of resources and maintains to remote
reach to them and lastly makes possible huge and
complicated processing to be implemented with huge

amount of resources as distributed in a powerful context
(Broberg et al., 2008).

Scheduling in Grid computing is the hot topic of
research and challenging due to heterogeneity and
dynamism of resources in grid. In the simplest of cases,
scheduling of jobs can be done in a blind way by
simply assigning the incoming tasks to the available
compatible resources. Yet, it is more profitable to use
more advanced and complicated schedulers.

The scheduling system is able to provide parallel
computational environments link to perform easier
owing to the same features of programs and resources.
For a moment, it can be said that grid computing is a
software frame which collects resource status data,
prepare suitable resources, anticipates the efficiency of
each resource and determines the best resource (Banino
et al., 2004). It can be said that, grid resource
management system is responsible for controlling grid
resources and its goal is to encourage efficiency
(Heymann et al., 2000).

Most of the present Grid approaches are task-
oriented approaches. For example, tasks are considered
to include all required data for its tasks are just the
processes and data is assumed to be available in Grid
nodes. However, with the ever-increasing complexity of

Res. J. App. Sci. Eng. Technol., 8(23): 2334-2342, 2014

2335

large-scale problems in which both tasks and data are to
be scheduled, an integrated scheduling approach that
would optimize allocation of both the task and the data
is required. Data processing in scientific workflows
slowly attains more attention owed to large amounts of
data generated by complex scientific workflows will
considerably increase the turn time of the whole
workflow. It is approximately not possible to make an
approximate optimal scheduling for the end-to-end
workflow without considering the intermediate data
movement.

In order to reduce the difficulty of the grid
scheduling problem, several researchers are constrained
by various unrealistic assumptions, which result in non-
optimal scheduling in practice. A constraint forced by
the majority of researchers in their algorithms results in
their computation site can only start the execution of
other tasks after it has completed the execution of the
present task and delivered the data generated by this
task. To deal with the data-aware workflow-scheduling
problem, a sophisticated algorithm is used to pay
attention on the dependencies of these tasks. In order to
solve this data and task scheduling problem in the grid
computing a Community Scheduler Framework (CSF)
is proposed in this research. The proposed CSF
integrates both data and job scheduling process.CSF
schedulers would generally be expected to react to the
dynamics of Grid system, typically by evaluating the
present load of the resources and notifying when new
resources join or drop from the system based on co-
scheduling across multiple resource managers and
economic scheduling.

LITERATURE REVIEW

Different types of scheduling are found in Grid
systems as could have different scheduling requirement
task independent or dependent; in contrast, the Grid
environment features themselves impose restrictions
such as dynamics, exploit of local schedulers,
centralized or decentralized approach, etc. Grid
workflows resolve several complex problems in Grids
necessitate the combination and orchestration of several
processes. This class of applications is known as Grid
workflows. Such applications can take advantage of the
power of Grid computing; still, the uniqueness of the
Grid environment make the coordination of its
execution very difficult (Cao et al., 2003; Yu and
Buyya, 2006).

In static scheduling, it is considered that data
associated to both grid resources and tasks of an applied
program while scheduling is existing (Casavant and
Kuhl, 1988). In dynamic scheduling, the main thought
is that a task allocated is implemented while the applied
program is running. This method is functional as it is
not possible to decide running time, branching
orientation and indefinite number of loop repetition and
real time of tasks. Grid computing can be performed in
two types of static and dynamic (Braun et al., 2000).
Decision making is assigned to central scheduling about

global scheduling or shared among several distributed
scheduling (Christodoulopoulos et al., 2009).

There are several algorithms like genetic
algorithms and heuristic approaches which are
presented to schedule data. Radha and Sumathy (2009)
made a comparison for those algorithms to find their
performance in the data scheduling to select the best
optimal algorithm. Even though those algorithms are
functioned well, they have certain drawbacks which
were corrected by using the techniques like Stork
(Kosar and Balman, 2008) which is well suited in data
placement and data movement. The Stork also contains
disadvantages like congestion in the network through
which the data is transmitted to the destination node
(Kosar and Livny, 2004).

All the models presented here have either poor
accuracy or they need a lot of information to be
collected. Unfortunately, users do not want to present
this information or have no idea about what to transfer
to a data transfer tool. They need to make a projection
of their data transfer throughput and must gather the
information to optimize their transfer without caring
about the characteristics of an environment and the
transfer at hand. For individual data transfers, instead of
relying on historical information, the transfers should
be optimized based on instant feedback.

PROPOSED DATA AND JOB AWARE
SCHEDULING CSF FRAMEWORK

Grid scheduling problem is really a challenging

task. Job scheduling problem has become one of the
challenging issue with the advance of distributed
computing research. As new computation paradigms
emerge such as many-task computing and cloud
computing, the scheduling problem has become a major
bottleneck in improving the performance of the
proposed system. Dealing with many limitation and
optimization condition in a dynamic environment it is
very complex and computationally hard. In order to
solve a job and data scheduling problem in grid
computing environment, CSF is proposed which
integrates both the information about the data and the
job service for specific grid environment. The several
number of tasks which is grouped into the job, then the
data aware scheduling is performed. CSF is an open-
source implementation of a number of Grid services,
which together perform the functions of a grid meta
scheduler or community scheduler.

Made some of the modification in the CSF
framework by adding the task completion time for each
one of the job in the job service stage and reservation
service stage some of the additional requirements and
rank expressions to account for the presence of data
also defined to perform job and data aware scheduling
task. The CSF classes can be extensive to provide more
domain specific community schedulers and support
many different kinds of grid operation models. By
make use of the open source CSF, grid scheduling
execution make sure that they interrelate with resource

Res. J. App. Sci. Eng. Technol., 8(23): 2334-2342, 2014

2336

Fig. 1: Proposed CSF architecture for data and job aware scheduling

managers by means of standard interfaces underlying
details of the specification (Platform Computing Co.,
2004).

The purpose of the met scheduler is to permit end-
users to act together with underlying resource managers
in a system and efficiently solve job and data aware
scheduling problem by defining the protocols that
interact with resource managers, requirements of the
each data, task completion time for each job. In
addition, the Meta scheduler is a high-level abstraction
for some of the concepts that are key to resource
management including a “job”, a “resource reservation”
and a “scheduler”. The scheduling framework of the
proposed modified CSF scheduler for data aware and
job scheduling problem in grid environment is shown in
Fig. 1.

Consider a number of tasks which is requested by
user. The main objective is to minimize the turnaround
time of this group of tasks and efficiently handle data in
scheduling process in different computation sites, in
which order these tasks should be executed and how the
data flow between these tasks should be scheduled. Let
us consider ܰீ be the number of computation sites in
grid host environment. ௗܰ is the number of data sites
in grid host environment for each number of the task.
௧ܰ is the number of task that run in the grid host

environment ܲ is a set of computation sites .

ܲ ൌ ሼሽ, ݅ ൌ 1,… ܰ. D is the set of the data sites of
݀ ൌ, ݅ ൌ 1, , … ܰௗ in grid host environment.	ܥ is a set
of computation links between computation sites ܿೕ,
data sites ܿௗೖௗ and computation-data sites ܥ ൌ
൛ܿௗೖ, ܿௗೖௗ, ܿௗೖൟ, ݅, ݆ ൌ 1,… ܰ, ݇, ݈ ൌ 1,… . ܰௗ.

Each task consists of two phases, one is
computation and the other is intermediate data transfer.
Once a task starts, it cannot be stopped until the
computation work is done. An intermediate data
transfer is initiated; it cannot stop until this transfer is
finished. Each task ݐ needs a finite amount of time ݐ
to finish if it can be scheduled to computation site :

,ݐ൫ݐݔܧ ൯ ൌ ൜
	݊	݈ܾ݈݁ܽܿ݅ܽ	ݏ݅	ݐݐ

݁ݏ݅ݓݎ݄݁ݐ	∞
 (1)

Then the execution time is calculated for each task

the priority level or queuing service level is calculated
based on the weight value with waiting time:

௪௧ܬ ൌ ൬
௫௧൫௧,ೕ൯

௩௪௧
൰
ఈ

 (2)

where,	ext൫t୧, p୨൯ is the time that a job waits in the
queue and avgwt is the average job waiting time in the

Res. J. App. Sci. Eng. Technol., 8(23): 2334-2342, 2014

2337

Fig. 2: Perform job service

system and α is the weighting factor. Job running time
also can be a factor for a dynamic priority by favoring
shorter running jobs over longer running jobs:

ோ௧ܬ ൌ ቀ

௩௧
ቁ
ఉ

 (3)

where, r is the average runtime for the tasks of a job
and avgrt is the average of the average runtime for the
Map tasks for all jobs and β is the weight factor.
Further, consider the number of remaining unscheduled
tasks for a job as another as:

ௌܬ ൌ ቀ

௩௧
ቁ
ఊ
 (4)

where, n is the number of remaining tasks for the job
and avgnt	is the average number of remaining tasks per
job over the entire queue and γ is the weighting factor.
The combination of these above Eq. (2-4) becomes the
final priority for the job in the system as:

ݕݐ݅ݎ݅ݎ ൌ 	 ൬
௫௧൫௧,ೕ൯

௩௪௧
൰
ఈ

∗ ቀ

௩௧
ቁ
ఉ
∗ ቀ

௩௧
ቁ
ఊ
 (5)

The importance of each user in the queue may be

accounted as:

ܷ ൌ ఋ (6)ݑ	

After the queue service of the each user is
calculated for number of the jobs then performs the job
service task. A Job Service provides an interface for
insertion jobs on a resource manager and interacting
with the job formerly it has been dispatched to the
resource manager. The Job Service gives essential
matchmaking capabilities between the needs of the job
and the underlying resource manager for processing the
job. More highly developed Job Services levels are
illustrated in Fig. 2. It considers the advanced job
features such as interactive execution, parallel jobs
across resource managers and jobs with requirements
based on SLAs.

The interfaces provided by the Job Service in
Fig. 2 include:

Job submit: User job submission requests from the
grid host environment. A job is submitted with resource
requirements in RSL (Resource Specification
Language) syntax, user importance with the completion
time of the each job, with a reservation id in order to
bind the job to a specific resource reservation.
Otherwise a job is submitted with the name of a specific
resource manager on which to run the job.

Job ctrl: Controls a job after it has been instantiated
from user in the grid host environment. This would
include the ability to suspend/resume, checkpoint and
kill a job.

Job query: Query the status of a job and queue status
of the job in the queuing service. This includes
information about the each one of the job such as
execution time of the each job, status of a job and
resource usage.

The Job Service make use of information such as
policies, which are defined at the met scheduler level
and resource information based on available resource
managers, queues, host and job statuses as provided by
the Global Information Service. The Job Service uses
the Resource Manager Adapter (RM Adapter) to submit
jobs to the fundamental resource manager to control
running jobs. The Job Service also makes use of the
Global Information Service to store its own state
information of the each job that running on the grid host
environment. The information stored includes job
submission information, job status and a list of jobs that
a particular Job Service instance can manage, which
provides the ability for the Job Service to recover from
any faults.

The Reservation service allows end-users or a Job
Service to reserve resources under the control of a
resource manager to guarantee their availability to run a
job and their data are accessed by user based on the
user request and their priority. This service allows
reservations for any type of resource (e.g., hosts,
software licenses, or network bandwidth). These types
of the reservations service categories also additionally
consist of the following information to perform the
reservation process. Reservations can be is made, a Job
Service sends a job to a resource manager that is
associated to a provided reservation. Some of the policy
decisions prepared by the Reservation Service for
Platform CSF contain how many hosts a particular user
or user group can reserve at a time, when reservations
can be done and what types of hosts can be reserved.
The Reservation service provides the following
interfaces:

Add Rsv: Request a new reservation with a particular
resource requirement, starting at a specific time for a
given duration.

Delete Rsv: Remove a reservation.

Res. J. App. Sci. Eng. Technol., 8(23): 2334-2342, 2014

2338

Query Rsv: Retrieve the details of a particular
reservation.

Job category information:
Transfer: This job type is for transferring a complete
or partial file from one physical location to another one.
This can include a get or put operation or a third party
transfer.

Allocate: This type of job is employed for allocating
storage space at the destination location, allocating
network bandwidth, or found a light-path on the route
from source to destination. On the whole, it deals with
all essential resource allocations prerequired for the
placement of the data.

Release: This job type is used for releasing the
corresponding resource which is allocated before.

Remove: This job is used for physically removing a file
from a remote or local storage server, tape or disk.

Locate: Logical file name is given; this job check with
a Meta data catalog service:

 Close Data (logical file name): Requirements

expression. For each Computing Element (CE), it
is examined as True only if specified data is seized
by a close Storage Element (SE) and as False
otherwise:

 Has close data (logical file name): Rank
expression. For each CE, it is evaluated as 1 if
specified data is held by a close SE and as 0
otherwise.

 Size close data (logical file name): Rank
expression. For each CE, evaluated as the size of
the specified data if held by a close SE and as 0
otherwise.

Register: This type is used to register the file name to a
Meta data catalog service.

Unregister: This job unregisters a file from a Meta data
catalog service.

The Reservation Service uses the information
about the existing resource managers and policies that
are distinct at the Meta scheduler level based on the job
completion time, user request service in the queue
service and will build with the use of a logging service
to log reservations. The Reservation Service uses the
RM Adapter interface to create and delete existing
reservations. The Reservation service implements the
Agreement Factory Type as defined in the OGSI
Agreement specification so that a client can make
reservations based on agreement terms supplied.
Reservations can also be specified using RSL (Fig. 3).

Global information service: The Global Information
Service offers a warehouse for required information to
function the Meta scheduler is dissipated in the Fig. 4
for precise data and job scheduling process. Service
combined various lower-level Grid services with the
purpose of replicate service data between Grid services
and to create a dynamic data-generating and indexing
node. The mechanism used in the Global Information
Service consists of:

Registry components: Provides static information
about installed services such as service name, location
and service ACLs. Each Platform LSF-based cluster
registers itself in the Cluster Registry, enabling Job and
Reservation services to find available resource
managers.

Service data provider manager: Manages the
acquisition of dynamic data into the Global Information
Service via external programs. Resource Information
Provider Service (RIPS) is to collect job and resource
information from each cluster in the system. This
includes aggregate information about the individual
resource managers (e.g., how many jobs in the system,
average job turnaround time, what host types are
available, etc.). Also, it collects more detailed
information about individual jobs, queues, reservations
and hosts.

Fig. 3: Reservation service

Res. J. App. Sci. Eng. Technol., 8(23): 2334-2342, 2014

2339

Fig. 4: Global information service

Service data aggregator: Here the service data of
other services are collected and provides notification
mechanisms. This is used in the Global Information
Service to aggregate information about Job Service
instances (e.g., submission, job status, execution, Job
Service instance, etc.) and about Reservation Service
instances (e.g., requests and individual reservation
details).

Queuing service: The Queuing Service endow with
scheduling capacity to the Meta scheduler. The CSF
execution of the Queuing Service outfits a plug-in
scheduling structure. Schedulers are java classes that
execute the schedPlugin interface, which consist of four
methods. The two most important methods are used at
some point in the scheduling cycle that is sched Order
and schedMatch. A series of jobs is listed one by one in
the system that is agreed to schedOrder, which order the
list based on which jobs have priority based on the
implemented scheduling algorithm. The sched Match
method goes with jobs among the resource managers
(the RM Adapter resource managers or GRAM job
factories) that are accessible to the scheduler. The job-
to-RM mappings are refered as a “job decision”.

If there are multiple scheduling policies in the
Queuing Service, the dissimilar schedulers will be call
upon in certain order based on the job list and on the
job decisions, allowing the effects of one scheduling
connect (plugins) to be combined with the effects of
another. For instance, two scheduling plugins are given
as a part of the CSF Queuing service together with a
FCFS queue and a job throttle. The FCFS scheduler
orders the list of jobs based on their submission time to
the Queuing service. During the matching phase, jobs
are either mapped to an RM, based on a given cluster
name or reservation id, or else the FCFS scheduler

identifies an RM, based on a round-robin choice from
the available RMs.

The job throttling scheduler not supposed to
reorder the list of jobs from the FCFS scheduler. Its
match phase makes sure that too many jobs are not
sending to the same RM at the same time, so that:

 An RM is not overwhelmed
 A job is not queued at an RM which may not run

the job for awhile, when another RM may be
available earlier to run the job

RM adapter: The RM Adapter is an interface for
communicating with primary resource managers. The
primary purpose of the RM Adapter is to provide a link
between the Open Grid Services Infrastructure (OGSI)-
compliant grid clients and legacy resource managers
that do not have a native Grid service interface.

EXPERIMENTAL RESULTS AND DISCUSSION

Experiments were conducted in order to evaluate

the functionality and performance of the proposed
approach implementation using resources of the files
which are running under grid simulation tool. GridSim
is a toolkit for modeling and simulation of resources
and application scheduling in extensive parallel and
distributed computing surrounding. The need for
simulating complex systems is identified. The selected
file project provides large-scale computing
infrastructure for researchers conducting studies in
data-intensive and computing-intensive applications
from high energy physics, earth and life sciences.

It is employed to simulate application schedulers
for single or multiple administrative areas distributed
computing systems such as clusters and Grids.

Res. J. App. Sci. Eng. Technol., 8(23): 2334-2342, 2014

2340

Fig. 5: Initialization of the resources

Fig. 6: Job creation for user 1

Fig. 7: Grid scheduling results of the user

Application schedulers in Grid environment is called as
resource brokers, carry out resource discovery,
selection and aggregation of a varied set of distributed
resources for an individual user. It represents that, each
user has their own private resource broker and
therefore, it can be targeted to optimize for the needs
and objectives of its owner. Where schedulers,
maintaining the resources such as clusters in a single
administrative domain, contains full control over the

Fig. 8: Data and job aware scheduling for homogeneous
distributed systems

Fig. 9: Data and job aware scheduling for heterogeneous

distributed systems

policy used for allocation of resources. This means, all
the users required submitting their jobs to the central
scheduler, which can be embattled to perform global
optimization such as higher system usage and overall
user satisfaction based on resource allocation policy or
optimize for high priority users.

The number of the resource or task initialized using
the grid simulation tool is shown in the Fig. 5 and 6.

In the Fig. 6 shows the job creation of the each user
with data description length of the individual with their
JID.

In the Fig. 7 shows the grid scheduling results of
the individual user with the number of the resources
allocated to single user with their gridletID, execution
time comparison results of the each resource also
mentioned in detail.

The transfer time for the data to be delivered to a
computing site is the quotient of the summation of the
data and the summation of the bandwidth from each
storage site to the computing site. The transfer time for
all these computing sites is the maximum among them
for existing methods. Figure 8 and 9 shows the

Res. J. App. Sci. Eng. Technol., 8(23): 2334-2342, 2014

2341

Fig. 10: Job completion time for methods

Fig. 11: Data transfer time for methods

Fig. 12: Job turnaround time for methods

experimental results for different number of data files
can be compared with different data aware scheduling
methods and compare with existing random and the
heuristic data aware scheduling methods, it shows that

the proposed data and job aware scheduling CSF
framework have taken less time to complete the task
than the existing methods for both homogenous and
heterogeneous distributed system.

Res. J. App. Sci. Eng. Technol., 8(23): 2334-2342, 2014

2342

Figure 10 shows the job completion time of the
proposed data and Job aware CSF scheduling is low
and the existing random and the heuristic data aware
scheduling methods.

Figure 11 transfer time of the proposed data and
job aware CSF scheduling is low and the existing
random and the heuristic data aware scheduling
methods.

Figure 12 shows the job turnaround time of the
proposed data and job aware CSF scheduling is lower
than the existing random and the heuristic data aware
scheduling methods.

CONCLUSION

In this study, a novel job and data aware
scheduling method is proposed for solving Grid
computing related to data and job aware scheduling
problems and the integration of Grid schedulers into
Grid architectures. After introducing some Grid job
category information and their job completion time for
each user in the grid host environment the CSF Meta
scheduler perform job and data aware scheduling in the
Grid computing domain.CSF provides basic capabilities
for scheduling and can be used as a development toolkit
for implementing community schedulers. This study
revealed the complexity of the data and job aware
scheduling problem in computational Grids when
compared to scheduling in classical homogenous and
heterogeneous distributed systems have less job
completion time, data transfer time for the design of
efficient Grid schedulers. The fact that different VOs
may present heterogeneous needs and policies
motivates us to argue in favor of a flexible system
where different allocation algorithms that make use of
data location information can be supported. This idea
has led to the development of an enhanced Grid Meta
scheduler for data and job aware scheduling problem.
From a more general point of view, further research is
needed in the area of coordinated planning of data
placement and jobs allocation in grid environments.

REFERENCES

Banino, C., O. Beaumont, L. Carter, J. Ferrante, A.

Legrand and Y. Robert, 2004. Scheduling
strategies for master-slave tasking on
heterogeneous processor platforms. IEEE T. Parall.
Distr., 15: 319-330.

Braun, T.D., H.J. Siegel, N. Beck, L.L. Boloni, M.
Maheswaran, A.I. Reuther, J.P. Robertson, M.D.
Theys, B. Yao, D. Hensgen and R.F. Freund, 2000.
A comparison study of eleven static heuristics for
mapping a class of independent tasks onto
heterogeneous distributed computing systems.
Technical Report TR-ECE-00-4, School of
Electrical and Computer Engineering, Purdue
University.

Broberg, J., S. Venugopal and R. Buyya, 2008. Market-
oriented Grid and utility computing: The state-of-
the-art and future directions. J. Grid Comput., 3(6):
255-276.

Cao, J., S.A. Jarvis, S. Saini and G.R. Nudd, 2003.
GridFlow: Workflow management for grid
computing. Proceeding of the 3rd International
Symposium on Cluster Computing and the Grid
(CCGrid'03), pp: 198-205.

Casavant, T.L. and J.G. Kuhl, 1988. A taxonomy of
scheduling in general-purpose distributed
computing systems. IEEE T. Software Eng., 14(2):
141-154.

Christodoulopoulos, K., V. Sourlas, I. Mpakolas and E.
Varvarigos, 2009. A comparison of centralized and
distributed meta-scheduling architectures for
computation and communication tasks in Grid
networks. Comput. Commun., 29: 1172-1184.

Foster, Y.Z., I. Raicu and S. Lu, 2008. Cloud
computing and grid computing 360-degree
compared. Proceeding of the IEEE Grid
Computing Environments Workshop (GCE’2008).
Austin, TX, pp: 1-10.

Gandotra, I., P. Abrol, P. Gupta, R. Uppa and S. Singh,
2011. Cloud computing over cluster, grid
computing: A comparative analysis. J. Grid Distr.
Comput., 1(1): 1-4.

Heymann, E., M.A. Senar, E. Luque and M. Livny,
2000. Adaptive scheduling for master-worker
applications on the computational grid. Proceeding
of the 1st IEEE/ACM International Workshop on
Grid Computing (GRID 2000), Springer-Verlag,
London, U.K., pp: 214-227.

Kosar, T. and M. Livny, 2004. Stork: Making data
placement a first class citizen in the grid.
Proceeding of the 24th International Conference on
Distributed Computing Systems, pp: 342-349.

Kosar, T. and M. Balman, 2008. A new paradigm:
Data-aware scheduling in grid computing. Future
Gener. Comp. Sy., 25(4): 406-413.

Platform Computing Co., 2004. Open Source
Metascheduling for Virtual Organizations with the
Community Scheduler Framework (CSF)[WP].
Retrieved from:
http://www.cs.virginia.edu/~grimshaw/CS851-
2004/Platform /CSF_architecture.pdf.

Radha, B. and V. Sumathy, 2009. Comparison of ACO
and PSO in grid job scheduling. CIIT Int. J.
Network. Commun. Eng., ISSN 0974-9713 and
Online: ISSN 0974-9616, DOI: NCE102009003.

Yu, J. and R. Buyya, 2006. A taxonomy of workflow
management systems for grid computing. J. Grid
Comput., 3(3): 171-200.

