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Abstract: Sparsity constraint channel estimation using compressive sensing approach has gained widespread 
interest in recent times. Mostly, the approach utilizes either the l1-norm or l0-norm relaxation to improve the 
performance of LMS-type algorithms. In this study, we present the adaptive channel estimation of time-varying ultra 
wideband channels, which have shown to be sparse, in an indoor environment using sparsity-constraint LMS and 
NLMS algorithms for different sparsity measures. For a less sparse CIR, higher weightings are allocated to the 
sparse penalty term. Simulation results show improved performance of the sparsity-constraint algorithms in terms of 
convergence speed and mean square error performance. 
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INTRODUCTION 

 
The popularity of Ultra Wideband (UWB) 

signaling in recent times is chiefly due to the very high-
data transmission rates it can offer (Kaiser and Zheng, 
2010; Kaiser et al., 2009). It has seen extensive use in 
applications requiring stationary transceivers. Other 
applications, such as vehicle-to-vehicle propagation 
(e.g., communication between mobile robots) or 
vehicle-to-infrastructure propagation (e.g., mobile robot 
to base station communication), that require very high-
data transmission rates can also take advantage of UWB 
technology. 

The need for accurate Channel State Information 
(CSI) at the receiver side of many wideband 
communication systems is of utmost importance and 
UWB systems are no exception. Instructively, most of 
these channels have shown to be sparse. In fact, the 
UWB channel is either “dense” or “sparse” depending 
on the measured bandwidth and the environment under 
consideration (Molisch, 2005). Adaptive Channel 
Estimation (ACE) is an effective approach for 
estimating such channels. There are many ACE 
algorithms, such as the Least Mean Square (LMS) and 
the Recursive Least Squares (RLS) algorithms (Diniz, 
2013; Sayed, 2008; Haykin, 2002). However, these 
algorithms are not able to exploit the channel sparsity 
due to their lack of sparse characteristics. 

In recent times, some ACE algorithms have 
exploited channel sparsity to improve the identification 
performance (Gui et al., 2013a; Das et al., 2011; Taheri 
and Vorobyov, 2014; Gui and Adachi, 2013; Gui et al., 

2013b; Chen et al., 2009). These algorithms adopt the 
Compressive Sensing (CS) approach (Donoho, 2006). 
Many of these algorithms are shown to be robust in 
noisy environments. Chen et al. (2009), proposed the l1-
norm relaxation to improve the performance of the 
LMS algorithm, resulting in the Zero-Attracting LMS 
(ZA-LMS) and Reweighted ZA-LMS (RZA-LMS). Gui 
and Adachi (2013) also proposed algorithms utilizing 
the l0-norm sparsity-constraint, which promises to a 
more accurate channel estimation.  

To the best of our knowledge, ACE of UWB 

channels using sparsity-constraint algorithms is yet to 

be exploited. In this study, we present the ACE of time-

varying UWB channels in an indoor environment using 

sparsity-constraint LMS and Normalized LMS (NLMS) 

algorithms for different sparsity measures. This work is 

unique in the sense that the Channel Impulse Response 

(CIR) used in the analysis is based on time-domain 

UWB channel measurements. 

 

SYSTEM MODEL AND PROBLEM 

FORMULATION 

 

Preliminaries: Considering the receiver side of a 

typical communication system, we can represent the 

system identification system like as shown in Fig. 1 to 

discuss channel estimation algorithms. Given that, d (k) 

is the desired signal of an adaptive filter, then: 

 

( ) ( ) ( )Td k k n k= +x h                                           (1) 
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Fig. 1: A typical system identification block diagram 

 
where, x (k) = [x0 (k) x1 (k) … xN-1 (k)]

T
 is the input 

signal vector at iteration k for an N-length channel 
vector, n (k) is the system noise signal, which is a zero-
mean uncorrelated sequence that is independent of x 
(k), h = [h0 h1 … hN-1]

T
 is the channel vector of the 

communication  system  that  we  wish  to  estimate,  y 
(k) = x

T 
(k) w (k), w (k) = [w0 (k) w1 (k) … wN-1 (k)]

T
 is 

the filter weight coefficient vector and [•]
T
 denotes 

vector transpose. For simplicity, the filter is assumed to 
have the same structure as the unknown system. Thus, 
the a priori estimation error e (k) is also given by: 

 

( ) ( ) ( ) ( )Te k d k k k= − x w                                     (2) 

 
(N) LMS algorithm: The LMS algorithm is the most 
widely used adaptive system mainly due to its ease of 
implementation and robustness in the presence of 
numerical errors. Based on (2), the standard LMS cost 
function is given as: 
 

( ) ( )21

2
k e k=  J w                                                (3) 

 
Thus, the update equation of the LMS algorithm is 

described by the equation: 
 

( ) ( ) ( )
( ) ( ) ( ) ( )1

J k
k k k e k k

k
µ µ

∂
+ = − = +

∂
w w w x

w
     (4) 

 
where, µ is the step-size and it is chosen such that; 
0<µ≤1. 

Unfortunately, the LMS algorithm is sensitive to 
the scaling of its input. This makes it very hard (if not 
unfeasible) to choose a step-size that guarantees 
stability of the algorithm (Haykin, 2002). The NLMS 
algorithm solves this problem by normalizing the 

adaptive error update section with the input power. 
Thus, the NLMS algorithm is described by the 
equation:  
 

( ) ( ) ( )
( ) ( )

( )1
T

k
k k e k

k k
µ

γ
+ = +

+

x
w w

x x

            (5) 

 
where, γ is a regulation parameter, which is included in 
order to avoid large step sizes when x

T 
(k) x (k) 

becomes small. 
 

CS-BASED CHANNEL ESTIMATION 

ALGORITHMS 

 
The LMS algorithm can simply be expressed as: 
 

( ) ( )1   k k Adaptive Error Update  + = +w w        (6) 

 

whereby the adaptive error update determines how fast 

the algorithm converges and its ability to exploit the 

sparsity inherent in UWB channels. The basic principle 

of CS-based sparse adaptive filtering is the introduction 

of an appropriate sparse penalty which can be 

generalized as follows (Gui and Adachi, 2013): 

 

( ) ( )1    k k Adaptive Error Update Sparse Penalty      + = + +w w

1    k k Adaptive Error Update Sparse Penalty      + = + +                                               (7) 

 

Thus from (7), various sparse penalties can be 

introduced to capitalize on the sparse structure and 

improve convergence. The conventional sparse 

penalties include the l1-norm sparse constraints, which 

is added to the cost function of the LMS algorithm. 

This  results  in  the  LMS  update  with a zero-attractor, 
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namely Zero-Attracting LMS (ZA-LMS) and 

Reweighted  ZA-LMS  (RZA-LMS)  algorithms  (Chen 

et al., 2009). The quest for further improvement on the 

estimation performance has also led to the lp-norm LMS 

(LP-LMS) algorithm (Taheri and Vorobyov, 2011) and 

the l0-norm LMS (L0-LMS) algorithm (Gui and 

Adachi, 2013). The associated NLMS versions of these 

CS-based algorithms have also been proposed by Gui 

and Adachi (2013). 

 

LMS-based sparse channel estimation algorithms: 

This subsection presents the LMS adaptive sparse CE 

methods. 

 

ZA-LMS algorithm: The cost function of the ZA-LMS 

algorithm is given as: 

 

( ) ( ) ( )2

ZA ZA 1

1

2
k e k kλ= +  J w w                (8) 

 

where, λZA is the regularization parameter to balance the 

estimation error and sparse penalty of w (k) and 

�� (�)�� is the l0-norm sparse penalty function. The 

corresponding update equation of the ZA-LMS 

algorithm is: 

 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

ZA

ZA

1

sgn

k
k k

k

k e k k k

µ

µ κ   

∂
+ = −

∂

= + −

J
w w

w

w x w
       (9) 

 

where, 
ZA ZAκ µλ=  and ( )sgn ⋅  is a component-wise 

function defined as: 

 

( )
         0         

sgn

0           otherwise

x
x

xx







≠
=                            (10) 

 

RZA-LMS algorithm: The cost function of the RZA-

LMS algorithm is given as: 

 

( ) ( ) ( )( )2

RZA RZA RZA
1

1
log 1

2

N

i
i

k e k w kλ ε
=

   = + +∑J w
     

(11) 

 

where, �	
� > 0 is the regularization parameter and 

�	
� is a positive threshold. The update equation in 

vector form can be expressed as: 

 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( )

RZA

RZA

RZA

1

sgn

1

k
k k

k

k
k e k k

k

µ

µ κ
ε

  

∂
+ = −

∂

= + −
+

J
w w

w

w
w x

w
   (12) 

 

where 
RZA RZA RZAκ µλ ε= . 

L0-LMS algorithm: Consider l0-norm penalty on the 

LMS cost function which forces w (k) to approach zero. 

The cost function is given by: 

 

( ) ( ) ( )2

L0 L0
0

1

2
k e k kλ   = +J w w              (13) 

 

where, ��� > 0 is a regulation parameter for balancing 

the penalty and estimation error and �� (�)�� is the l0-

norm sparse penalty function. Since the l0-norm is a 

Non-Polynomial (NP) hard problem (Gu et al., 2009), 

in order to reduce the computational complexity, we 

replace it with an approximate continuous function: 

 

( ) ( )1

0
0

1
N

w k
i

i

k e
β−  −

 
 

=  

≈ −∑w                            (14) 

 

Therefore, the cost function in (13) can be rewritten as: 

 

( ) ( ) ( )1
2

L0 L0
0

1
1

2

N
w k

i

i

k e k e
βλ

−  −
 
 

=  

= + −  ∑ J w      (15) 

 

From the first order Taylor series expansion of the 

exponential function: 

 

( ) ( ) ( ) 1
1               when 

0                           otherwise         

w ki
w k w ki i

e
β β β−







− ≤
≈    (16) 

 

The update equation of the l0-norm LMS is given as: 

 

( ) ( ) ( ) ( ) ( )( ) ( )
L01 sgn

k
k k e k k k e

βµ κ β −+ = + − w
w w x w    (17) 

 

where, 
L0 L0

κ µλ= . Unfortunately, the exponential 

function in (17) will also cause high computational 

complexity. To further reduce the complexity, an 

approximation function F [w (k)] is introduced. Thus 

the l0-norm LMS sparse ACE is given as: 

 

( ) ( ) ( ) ( ) ( )L01k k e k k F kµ κ  
  

+ = + −w w x w      (18) 

 

with F [w (k)] defined as: 

 

( )
( ) ( )( ) ( )2 1

2 2 sgn        when 

0                                            otherwise        

k k k
F k

β β β

     


− ≤
=

w w w
w

 (19) 
 

For all i � {1, 2, …, N} 

 

NLMS-based sparse channel estimation algorithms: 

The NLMS-based adaptive sparse CE algorithms 

possess the ability to mitigate the scaling interference of 

the training signal. This effect is due to the fact that 

NLMS-based methods estimate the sparse channel by 
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normalizing the power of the training signal x (k). This 

subsection presents the NLMS adaptive sparse CE 

methods. 

 

ZA-NLMS algorithm: From (9), the update equation 

of the ZA-NLMS algorithm is given as: 

 

( ) ( ) ( )
( ) ( ) ( ) ( )ZAN1 sgn

T

k
k k e k k

k k
µ κ
γ

  + = + −
+
x

w w w
x x

  

(20) 

 

where, 
ZAN ZANκ µλ=  and 

ZAN
λ  are regulation parameters 

of the ZA-NLMS algorithm. 

 

RZA-NLMS algorithm: From (12), the update 

equation of the RZA-NLMS algorithm is given as: 

 

( ) ( ) ( )
( ) ( ) ( )

( )
( )RZAN

RZAN

sgn
1

1
T

kk
k k e k

k k k
µ κ
γ ε

  + = + −
+ +

wx
w w

x x w

 (21)                                                                                   

 

where, 
RZAN RZAN RZANκ µλ ε=  and 

RZAN
λ  are regulation 

parameters of the RZA-NLMS algorithm. 

 

L0-NLMS algorithm: From (18), the update equation 

of the L0-NLMS algorithm is given as: 

 

( ) ( ) ( )
( ) ( )

( ) ( )L0N
1

T

k
k k e k F k

k k
µ κ

γ
 
  

+ = + −
+

x
w w w

x x

 (22) 

 

where 
L0N L0Nκ µλ=  and 

L0N
λ  are regulation parameters 

of the L0-NLMS algorithm. The approximation 

function F [w (k)] is as defined in (19). 

 

RESULTS AND DISCUSSION 

 

The analysis carried out in this study uses wireless 

Channel Impulse Response (CIR) measurements 

conducted by means of Time Domain’s PulsON
®
 410 

Ranging and Communications Module (P410 RCM). It 

is an UWB radio transceiver, which with accompanying 

Channel Analysis Tool (CAT) provides impulse 

responses of an UWB channel. The setup used for 

collecting the Radio Frequency (RF) data is as shown in 

Fig. 2.  

The transceiver transmits in a frequency range of 

3.1-5.3 GHz  and  at  a  center frequency of 4.3 GHz. 

The measurements were conducted in an indoor 

environment. During the measurement, the receiver, 

which was connected to the data collecting computer, 

was held stationary as the transmitter was moved at a 

velocity of 1 m/sec. The transmit gain was set to 44 dB 

with a data packet size of 32 bit. A step size of 32 was 

used which allows one measurement every 61 ps. 

Figure 3 is a CIR for one of the measurements, which is 

sparse in nature. The channel length of the CIR, 

obtained from the measurement, is 1632. 

 
 

Fig. 2: Setup for collecting RF propagating data during the 

measurements 

 

 
 

Fig. 3: Channel impulse response (scan #10, thresh = 25 dB) 

 

 
 

Fig. 4: MSE performance comparison for LMS-based 

algorithms when the measured CIR is dense at SNR of 

10 dB 

 

Khong and Naylor (2006) defines sparseness 

measure of a CIR as: 

 

( )
( )

( )
1

2

1
kN

k
N N N k

ξ
 
 
 
 

= −
−

w

w

                      (23) 

 

where, N is the length of the channel vector w (k). Note 

that  for  any given CIR, 0≤ξ (k) ≤1, where ξ (k) = 1 and 
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ξ (k) = 0 refers to highly sparse and least sparse 
respectively. From our measurement results, the 
minimum and maximum sparseness measure values 
were found to be 0.756 and 0.94606, respectively. 

We conducted several simulations for the analysis. 
Each simulation result is the steady-state statistical 
average of 200 runs, with 30000 iterations in each run. 
The received Signal-to-Noise Ratio (SNR) is defined as 

( )2

010log nE σ , where E0 = 1 is the received signal 

power and the noise power is given by 2 SNR 1010nσ −= . We 

compared the performance of the algorithms for three 
separate SNR values: 10, 20 and 30 dB, respectively. 

The channel estimators are evaluated by averaging 
the Mean Square Error (MSE) which is defined as (Li 
and Hamamura, 2014): 

 

( ) ( ) 2

2
ˆMSE Ek k = −    

w w w                           (24) 

 

where, w and ��  (�) are the actual and the k
th

 iterative 

channel update, respectively and �∙�� is the Euclidean 

norm operator. 

In the first experiment, we assess the estimation 

performance of the LMS-based algorithms. The 

performance comparison of the LMS, ZA-LMS, RZA-

LMS and L0-LMS algorithms when the measured CIR 

is dense is shown in Fig. 4 to 6 and that of when the 

measured CIR is sparse is also shown in Fig. 7 to 9. A 

step-size of 0.0005 was used for this experiment. Other 

parameter values used for the experiment are given in 

Table 1. A cursory look at Fig. 4 to 9 shows that the 

sparse algorithms performs better in the sparse 

channels. Additionally, in both cases, performance 

improves considerably with increasing SNR values but 

with deteriorating convergence performance. In the 

dense CIR scenario, shown in Fig. 4 to 7, L0-LMS 

provides the best performance in all three SNR   

regimes with  the  best  convergence  when  SNR  is  

either  10 or  20  dB.  Ironically,  LMS  performs  better  

than ZA-LMS when SNR is 10 dB but with poor 

convergence. 

In the second experiment, we evaluate the 

estimation performance of the NLMS-based algorithms.

 
Table 1: Simulation parameters of the (N) LMS algorithms at different SNR values 

Experiment 

Simulation parameters for different SNR values 

-------------------------------------------------------------------------------------------------------------------------- 
SNR = 10 dB SNR = 20 dB SNR = 30 dB 

LMS simulation parameters when  

CIR is dense (ξ (k) = 0.756) 

µ = 5×10-4 

κZA = κRZA = κL0 = 1×10-5 

εRZA = 1 

β = 0.09 

µ = 5×10-4 

κZA = κRZA = κL0 = 1×10-6 

εRZA = 1 

β = 0.9 

µ = 5×10-4 

κZA = κRZA = κL0 = 1×10-6 

εRZA = 1 

β = 0.1 

LMS simulation parameters when  

CIR is sparse (ξ (k) = 0.94606) 

µ = 5×10-4 

κZA = κRZA = κL0 = 5×10-6 

εRZA = 1 

β = 0.9 

µ = 5×10-4 

κZA = κRZA = κL0 = 5×10-6 

εRZA = 1 

β = 0.5 

µ = 5×10-4 

κZA = κRZA = κL0 = 1×10-6 

εRZA = 1 

β = 0.5 

NLMS simulation parameters when 

CIR is dense (ξ (k) = 0.756) 

µ = 0.8 γ = 1×10-5 

κZAN = κRZAN = κL0N = 1×10-5 

εRZAN = 1 

β = 0.05 

µ = 0.8 γ = 1×10-5 

κZAN = κRZAN = κL0N = 9×10-7 

εRZAN = 1 

β = 0.99 

µ = 0.8 γ = 1×10-5 

κZAN  = κRZAN = κL0N = 9×10-7 

εRZAN = 1 

β = 0.9 

NLMS simulation parameters when 

CIR is sparse (ξ (k) = 0.94606) 

µ = 0.8 γ = 1×10-5 

κZAN = κRZAN = κL0N = 9×10-7 

εRZAN = 1 

β = 0.9 

µ = 0.8 γ = 1×10-5 

κZAN = κRZAN = κL0N = 9×10-7 

εRZAN = 1 

β = 0.9 

µ = 0.8 γ = 1×10-5 

κZAN = κRZAN = κL0N = 9×10-7 

εRZAN = 1 

β = 0.99 

 

 
 

Fig. 5: MSE performance comparison for LMS-based 

algorithms when the measured CIR is dense at SNR of 

20 dB 

 
 

Fig. 6: MSE performance comparison for LMS-based 

algorithms when the measured CIR is dense at SNR of 

30 dB 
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Fig. 7: MSE performance comparison for LMS-based 

algorithms when the measured CIR is sparse at SNR 

of 10 dB 

 

 
 

Fig. 8: MSE performance comparison for LMS-based 

algorithms when the measured CIR is sparse at SNR 

of 20 dB 

 

 
 

Fig. 9: MSE performance comparison for LMS-based 

algorithms when the measured CIR is sparse at SNR 

of 30 dB 

 

The performance comparison of the NLMS, ZA-

NLMS, RZA-NLMS and L0-NLMS algorithms when 

the measured CIR is dense is shown in Fig. 10 to 12 

and  that  of  when  the  measured  CIR  is sparse is also 

 
 

Fig. 10: MSE performance comparison for NLMS-based 

algorithms when the measured CIR is dense at SNR 

of 10 dB 

 

 
 

Fig. 11: MSE performance comparison for NLMS-based 

algorithms when the measured CIR is dense at SNR 

of 20 dB 

 

 
 

Fig. 12: MSE performance comparison for NLMS-based 

algorithms when the measured CIR is dense at SNR 

of 30 dB 

 

shown in Fig. 13 to 15. In this experiment, we used a 

step-size of 0.8. Other parameter values used for the 

experiment are also present in Table 1. In this 

experiment, similar to the LMS experiment, 

performance improves as SNR values increase but with 

deteriorating  convergence   performance.  Figure 10  to 
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Fig. 13: MSE performance comparison for NLMS-based 

algorithms when the measured CIR is sparse at SNR 
of 10 dB 

 

 
 
Fig. 14: MSE performance comparison for NLMS-based 

algorithms when the measured CIR is sparse at SNR 
of 20 dB 

 

 
 
Fig. 15: MSE performance comparison for NLMS-based 

algorithms when the measured CIR is sparse at SNR 
of 30 dB 

 
12, L0-NLMS performance is best for SNR of 10 dB 
(Fig. 10)  and  20  dB (Fig. 11), but worst for 30 dB 
(Fig. 12) even though it has the best convergence. In 
addition, the RZA-NLMS performs best for dense CIR 
when SNR is 30 dB. Similarly, in Fig. 13 to 15, L0-
NLMS performs best in all three scenarios. It is worth 
noting that the NLMS algorithm performed better than 

ZA-NLMS and RZA-NLMS in the sparse CIR and in 
the dense CIR case, better than L0-NLMS and same as 
ZA-NLMS when the SNR is 30 dB but with bad 
convergence behavior. 

For the dense CIR, L0-NLMS performance 
remained almost constant when SNR is 20 dB (Fig. 11) 
or 30 dB (Fig. 12). In comparison to the sparse CIR, the 
MSE performance is about -30 dB when SNR is 20 dB 
(Fig. 14). Therefore, for the time-varying UWB 
channel, using L0-NLMS with an SNR of 20 dB will be 
the best option. 
 

CONCLUSION 
 

In this study, we presented the adaptive channel 
estimation of time-varying UWB channels in an indoor 
environment using sparsity-constraint LMS and 
Normalized LMS (NLMS) algorithms for different 
sparsity measures. Computer simulations show that for 
the time-varying UWB channel, using L0-NLMS with 
an SNR of 20 dB will be the best option. As future 
work, we will exploit the method of partial updating 
channel coefficients to help reduce the computational 
complexity of these algorithms. 
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