
Research Journal of Applied Sciences, Engineering and Technology 8(1): 64-68, 2014
DOI:10.19026/rjaset.8.941
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2014 Maxwell Scientific Publication Corp.

Submitted: February 22, 2014 Accepted: April 09, 2014 Published: July 05, 2014

Corresponding Author: Jianmin Pang, State Key Laboratory of Mathematical Engineering and Advanced Computing,
Zhengzhou, 450001, China

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

64

Research Article

The Optimization of IF-conversion in Whole Function Vectorization

Jianmin Pang, Feng Yue, Zheng Shan, Chao Dai and Jiuzhen Jin
State Key Laboratory of Mathematical Engineering and Advanced Computing,

Zhengzhou, 450001, China

Abstract: In order to get better performance, lots of optimization methods are used in code transformation. When
migrating SPMD to multi-core platform, vectorization is one key optimization to improve performance. Control
flow is the main challenge for vectorization and IF-conversion is usually used to transform control flow into data
flow. In most researches, after IF-conversion both the two branch vector codes have to be executed even the
predications in scalar lane for one branch are all false. This study proposes code bypass technology to improve this
situation in whole function vectorization of SSA from. The region of consecutive instructions guarded by the same
predicate is first identified. Then detecting operation is added to identify if predications in scalar lane are all false
and a jump operation followed to bypass the consecutive instructions region. For loop structure, we add loop mask
to indicate which lane is not alive in loop which could help to treat iteration in loop. The experiment shows our
method could improve performance by 6.8%.

Keywords: Branch, IF-conversion, loop, optimization, vectorization

INTRODUCTION

There are several vectorization methods for using

SIMD units in modern architecture. Most vectorizing
compilers pay attention to vectorize inner loops and get
different degrees of success. Under Single Program
Multiple Data (SPMD) model, programs appear to be
regular serial program but in parallel execution model.
Lots of thread instances could execute across SIMD
lanes on multiple processors like GPU. Some
programming languages, such as CUDA (NVIDIA,
2008a), Open CL (Lee et al., 2010), attempt to assist
the vectorization of loops by stating in outer loop which
have unspecified order and unsynchronized interaction
time. When migrating SPMD programs to multi-core
platform, IF-conversion (Tyson and Farrens, 1994) is
used to solve the problem that there is no un-
synchronized interaction between loop iterations.

SPMD programs use kernel function to express
coarse parallel. When executing, it looks like
synchronized by outer explicit loop. The outer loop is
often distributed across multiple vector lanes. When
implementing SPMD in no-GPU platform, some
technologies are used to undertake vectorization. The
whole function vectorization contains two steps:
Masking and flattening of SPMD code (Karrenberg and
Hack, 2011). First, mask is created for each basic block
in the CFG. Next, each instruction in the program
which has a side-effect is conditioned with a mask.
After masks are assigned to different basic blocks, the
blocks are ordered in linear order.

IF-conversion is a traditional compiler technology

which converts code with control flow into a single

control stream code. It places predicates which control

the execution of instructions. IF-conversion in the

context of scalar CPU code is studied in the context of

their interaction with the processor branch predictor

mechanism. Usually predicted branches are cheaper to

execute than predicated code. A technique to generate

Branches-on-Superword-Condition-Codes (BOSCCs)

automatically is introduced by Jaewook Shin to

overcome this overhead of executing all control paths

(Shin et al., 2009). Because a sequence of consecutive

vector instructions guarded by the same vector

predicate can be bypassed by a BOSCC if all fields of

the guarding vector predicate are false.

In this study, we extend BOSCCs to whole

function vectorization which we call it Branch-on-

Superword-Condition-Code-in-SSA (BOSCCS). We

apply BOSCCS after the stages of masking and

flattening of SPMD code in SSA form.

Through analyzing the relation of mask in

consecutive blocks by conjunction transformation, we

construct the mask region which could be bypass when

all fields of the mask are false. The contributions of this

study are mainly summarized as follow:

• We use conjunction transform to analyze the mask

relation on which consecutive instructions of a

mask could be identified.

Res. J. Appl. Sci. Eng. Technol., 8(1): 64-68, 2014

65

• For loop structure, we use loop mask and entry
mask to indicate the execution of loop.

• For consecutive region, we add mask checking and

jump operation after entry mask created to improve

the performance.

MATERIALS AND METHODS

IF-conversion: IF-conversion is one of the common
compiler technologies to improve program performance
(Tyson and Farrens, 1994). With the help of predication
that modern micro-architectures supply, it transforms
the branch statement to predication execution
instruction. In the architecture supporting prediction
execution, instructions are appended a prediction. When
the prediction is true, instruction gets executed.
Otherwise, it is treated as a null instruction. Prediction
execution could remove the branch instructions
effectively, which could convert control flow to data
flow, bring more instruction level parallel.
For example, the following code:

if (a>b) c = c+1
else c = d*e+1

The branch a>b could be removed by adding

prediction code:

pT, pF = compare (a>b)
(pT) c = c+1
(pF) c = d*e+1

When a>b is true, pT is set to 1 and pF is 0. Else pT

is 0 and pF is 1. The control relation of c = c+1 and
c = d*e+1 becomes data relation.

The main work of IF-conversion includes three
steps. First, the basic blocks with same branch are
selected to assign same prediction. Then, remove the
branch instructions between blocks and replace them
with prediction instructions. At last, the instructions in
blocks are replaced by prediction instructions.

Different architecture has different support for
prediction. Some architecture like DEC/Compaq alpha,
SUN SPARC V9 only partly supports prediction in
specific instructions. Some architecture fully supports
prediction such as IA64.

BOSCC: Branch-on- Superword- Condition-Code
(BOSCC) is proposed by Shin et al. (2009) which is a
branch instruction that can be conditionally taken based
on the comparison result of two vector variables. For
example, the predicated vector instruction:

Vdst = vec_add; <Vpred>

Can be bypassed by introducing a BOSCC

instruction as follows:

NotTaken = vec_any_ne (Vpred, ZeroVector)

if (NotTaken) { Vdst = vec add;}

The vec_any_ne instruction returns true if any field
of Vpred does not equal to 0 in Zero Vector which
contains false values in all fields, Not Taken will be set
to false only when all fields of Vpred are false.

Predicate region refers to a sequence of consecutive
instructions guarded by the same predicate and BOSCC
region refer to the sequence of instructions enclosed by
a BOSCC. The BOSCC regions could be bypassed
whenever the guarding vector predicate has all false
values, which is the only case when Not Taken is set to
false. And BOSCC needs additional treatment in loop
iteration (Shin, 2007).

Whole function vectorization in SSA: Traditional
vectorization mainly concern loop structure which has
better optimization potential. But when transform
SPMD to multi-core platform, the whole function
becomes the loop body, which has lots of unsuitable
elements for traditional vectorization such as irregular
variable use and complicated structure.

Under above conditions, Ralf Karrenberg proposes

the whole function vectorization which implements

data-parallel languages on machines with SIMD

instruction sets. They describe an analysis based on a

data-flow lattice approach. The thread instance in SPMD

program becomes the scalar instance in SIMD vector.

The whole-function vectorization algorithm consist

two main tasks, mask generation and CFG linearization.

Mask generation mainly treat with divergent control

flow. Because a condition might be true for some scalar

instances and false for others. In CFG, if a mask of a

CFG edge is true, then the corresponding instance of the

code took the edge branch. Thus, the mask denotes

which elements in a vector contain valid data on the

corresponding control-flow edge. Then select

instructions are used to replace phi function in the

original CFG. Because blend operations are inserted at

control-flow join points.

CFG linearization put blocks into a sequence that

preserves the execution order of the original CFG.

Because after all mask and select operations are

inserted, all control flow, except for loop backedges, is

effectively encoded by data flow and can thus be

removed.

Methods: Above all, we know that the whole function
vectorization of SPMD programs has such
characteristics:

• The different thread has little data dependence

between others. Usually, threads communicate by

explicit synchronization which exchange data in

shared memory space. In addition, in some

hardware the data dependence also is guaranteed by

hardware execution, for example, the NVIDIA

GPU. We don’t concern implicit synchronization

for they can be canceled when programming. In

traditional vectorization, data dependence has to be

Res. J. Appl. Sci. Eng. Technol., 8(1): 64-68, 2014

66

concerned and detected first. From this point, it’s

very convenient to do vectorization.

• Threads have loose synchronization information in

loops. The can execute loop iteration in different

times. It’s very different compared with traditional

vectorization in which the iterations of loop is

divided into several parts and every part execute

same iteration times. This means whole function

vectorization of SPMD programs needs more strict

method to keep synchronization.

Based on the characteristic of whole function

vectorization of SPMD program in SSA, we design the

Branch- on-Superword- Condition-Code -in-SSA

(BOSCCS) technology. This technology bases on the

whole function vectorization method, improves the CFG

linearization. There are three stages: mask relation

analysis, construct bypass field and add jump operation.

Mask relation analysis: After CFG linearization in
original vectorization, all basic block have in sequential
order. We could identify the consecutive basic block or
instructions which have same mask. It’s possible to
bypass there consecutive fields when all lanes in vector
predication are false.

The challenge for consecutive fields identify is the

mask relation analysis. Because in whole function

vectorization, entry mask and edge mask are introduced

for single block. As Fig. 1 shows, three block A, B, C

have three entry mask mA, mB, mC. Basic block B has

only one entry edge A→ B, so mB←mA→ B. And mA→

B←mA∧¬c, so mB←mA∧¬c. It means mA is one element

of mB. Basic block C has two entry edge A→B and

B→C, so mC←mA→ C∨ mB→C. And we know that

mA→C←mA∧c and mB→C←mB, mB←mA→ B, so mC←

(mA∧c) ∨ (mA∧¬c). We transform mC to mC←mA∧

(c∨¬c). It also means mA is one element of mC. Based on

the analysis, we can conclude that if mA is false, then mB

and mC must be false. A formalized description of this

relation is:

¬mA→¬ mB and ¬mA→¬ mC

The above analysis is the no-loop situation. In the

loop structure, mask relation becomes complicated for

loop iteration.

In loop structure, for whole function vectorization,

loop mask mphi is introduced to indicate which lane has

exit from loop. But entry mask of block is still enough to

dominate the vector execution in loop. In loop structure,

mphi and the parter mexit both phi nodes. The mphi just

needs to be treated in the header block of loop. The mexit

just needs to be treated in the exit block of loop.

In Fig. 2 it is a simple loop structure which has

irreducible CFG graph. Basic block A, B, C have the

entry mask mA, mB, mC. Block B is in loop structure, is

has a loop mask mphi. Because B is loop header, entry

Fig. 1: Entry mask for basic block

Fig. 2: Entry mask for loop structure

mask mB indicate s the lane execution of vector. We add
a mphi to indicate which lane has exit the loop. To check
if one iteration is executed in a lane, just to conform the
corresponding bit in mB.

Note that in block C, the entry mask is mexit which is

the disjunction of loop mask mphi and edge mask mB→C.

In each iteration, mexit gets updated by the last mexit and

mB→C in current iteration.

But in loop we also could conclude that:

¬mA→¬mB and ¬mB→¬ mC

¬mA→¬mB is easy to confirm. We explain ¬mB→¬ mC

in detail.

Res. J. Appl. Sci. Eng. Technol., 8(1): 64-68, 2014

67

Fig. 3: Construct bypass region

For we only concern the beginning of basic block,

all lanes in mB are false only take place after executing

edge A→B. If this situation happens after edge B→B,

that means all lanes in mB→B are false in which condition

edge mB→C should be executed. So it’s conflictive. And

now mC←mexit←mphi∨mB→C ←mB∧¬cB, so ¬mB→¬ mC.

So we can see that in loop mask has same relation

as no-loop structure. So a general method could be

designed to identify the region of mask.

Construct bypass region: According to the relation, we

design a linear scan algorithm to identify the

consecutive instruction field for same mask. The

algorithm is as in Fig. 3.

After the algorithm done, every entry mask of basic

block contains a region which could be bypassed when

every lane of mask is false (Fig. 3).

Note that we use conjunction transform to analyze

the relation of different mask. When identify the relation

of mask A and B, we just compare the equivalence of

elements in A and B.

Add jump operation: Based on the consecutive region,

we can add jump operation to the original code.

Although there are lots of branch instructions in

most instruction set, in whole function vectorization of

SSA we have remove the branch instructions in CFG

linear stage. So the jump operation adding becomes

easy.

In each basic block, after the place of mask

creation, we add an operation to detect whether all lanes

are false and a jump instruction. The target of jump is

the end of mask’s dominated region.

RESULTS AND DISCUSSION

We implement our BOSCCS algorithm based on

Ralf Karrenberg’s whole function vectorization method.

After CFG linear stage, we apply BOSCCS algorithm on

Table 1: Benchmarks for testing

Case Data set Kernels Block dimensions

MM 512*512 1 (16, 16, 1)

Transpose 512*512 1 (16, 16, 1)
Convolve 512*512 1 (16, 16, 1)

Histogram 2 M 2 (192, 1, 1), (256, 1, 1)

Mandelbrot 512*512 1 (16, 16, 1)

Fig. 4: The speedup results

flattened blocks. Then we take the test on some cases

from CUDA SDK (NVIDIA, 2008b).

Benchmarks: The test suit include a 2D image filter
with 5×5 kernel (Convolve), Matrix Multiply (MM),
256-bin histogram (Histogram), fractal generation
(Mandelbrot) and matrix transpose (Transpose). Table 1
lists data sizes and characteristics for all benchmarks.

Test methodology: With the above benchmarks, we get
two versions of programs. One version is original whole
function vectorization program. The second version is
our BOSCCS algorithm.

The executing circumstance is Intel Pentium Dual

CPU E2200 @2.2.0 Ghz, 1 GB DDR-1333 DRAM and

Fedora 10 OS.

Figure 4 shows the speedup result. Compared with
original whole function vectorization, the normalized
speedup of our BOSCCS is obvious. The result shows
that our optimization is effective for the performance
could improve by 6.8%.

Nowadays, many compilers support SIMD

instructions generation automatically. But the vector

ability is limited by several factors, one of which is

control flow. Usually, vectorization in the presence of

control flow involves if-conversion followed by

generating vector instrucions guarded by vector

predicates.

Park and Schlansker developed an if-conversion

technique that is optimal in the number of predicates

used and in the number of predicate-defining

instructions (Joseph et al., 1991). Shin et al. (2005) used

this technique to generate SIMD instructions for modern

microprocessors in the presence of arbitrarily complex

cyclic control flow.

To overcome this overhead of executing all control

paths, Shin et al. (2009) introduced a technique to

generate Branches-on-Superword- Condition-Codes

Res. J. Appl. Sci. Eng. Technol., 8(1): 64-68, 2014

68

(BOSCCs) automatically. A sequence of consecutive

vector instructions guarded by the same vector predicate

can be bypassed by a BOSCC if all fields of the

guarding vector predicate are false. For the loops with

complex control flow where if-statements are nested, a

technique to nest BOSCC instructions so that multiple

BOSCCs and the vector instructions enclosed within

them can be bypassed by a single BOSCC instruction

(Shin, 2007).

Rotem and Ben-Asher (2012)

present an IF-

conversion method for unifying basic blocks by merging

similar instructions using operand selection, for

reducing the number of predicated instructions in the

code. They use a polynomial time algorithm for finding

the optimal pairing between similar instructions that

reduces the overall predication cost.

CONCLUSION

Whole function vectorization is a new

vectorization technology which takes the thread

instance in SPMD program as scalar instance in SIMD

vector. In order to improve the IF-conversion in

vectorization, we apply the similar technology to

BOSCCs in SSA. By analyzing the entry mask relation,

we identify the mask region conveniently. Then we add

jump operation to the end of mask region. So if all field

of entry mask are false, the mask region could be

bypassed. The experiment also shows the effect of our

algorithm.

ACKNOWLEDGMENT

R. B. G. thanks the sporting of State Key

Laboratory of Mathematical Engineering and Advanced

Computing and China National Digital Switching

System Engineering and Technological Research

Center. This project is supported by National High

Technology Research and Development Program of

China under Grant No. 2009AA012201 and the China

Henan Municipal Science and Technology Project

under Grant No. 092101210501.

REFERENCES

Joseph, C., H. Park and M. Schlansker, 1991. On

predicated execution. Technical Report HPL-91-

58, Software and Systems Laboratory.

Karrenberg, R. and S. Hack, 2011. Whole-function

vectorization. Proceeding of the 9th Annual

IEEE/ACM International Symposium on Code

Generation and Optimization. The IEEE Computer

Society, pp: 141-150.

Lee, J., J. Kim, S. Seo, S. Kim, J. Park, H. Kim,

T.T. Dao, Y. Cho, S.J. Seo, S.H. Lee, S.M. Cho,

H.J. Song, S.B. Suh and J.D. Choi, 2010. An

opencl framework for heterogeneous multicores

with local memory. Proceeding of the 19th

International Conference on Parallel Architectures

and Compilation Techniques. ACM, New York,

USA, pp: 193-204.

NVIDIA, 2008a. NVIDIA CUDA Compute Unified

Device Architecture. 2nd Edn., NVIDIA

Corporation, Santa Clara, California.

NVIDIA, 2008b. NVIDIA CUDA SDK 2.1. 2nd Edn.,

NVIDIA Corporation, Santa Clara, California.

Rotem, N. and Y. Ben-Asher, 2012. Block unification

If-conversion for high performance architectures.

IEEE Comput. Archit. Lett., 1(9): 1.

Shin, J., 2007. Introducing control flow into vectorized

code. Proceeding of the 16th International

Conference on Parallel Architecture and

Compilation Techniques (PACT '07). IEEE

Computer Society, pp: 280-291.

Shin, J., M.W. Hall and J. Chame, 2005. Superword-

level parallelism in the presence of control flow.

Proceeding of the International Symposium on

Code Generation and Optimization, pp: 165-175.

Shin, J., M.W. Hall and J. Chame, 2009. Evaluating

compiler technology for control-flow optimizations

for multimedia extension architectures.

Microprocess. Microsy., 33(4): 235-243.

Tyson, G. and M. Farrens, 1994. Evaluating the effects

of predicated execution on branch prediction.

Proceeding of the 27th International Symposium

on Microarchitecture, pp: 196-206.

