
Research Journal of Applied Sciences, Engineering and Technology 8(2): 188-196, 2014    

DOI:10.19026/rjaset.8.958          

ISSN: 2040-7459; e-ISSN: 2040-7467 

© 2014 Maxwell Scientific Publication Corp. 

Submitted: March  13,  2014                         Accepted: April  11,  2014 Published: July 10, 2014 

 

Corresponding Author: Khaddouj Ben Meziane, Department of Physics, Faculty of Sciences, LESSI Laboratory, University of 

Sidi Mohammed Ben Abdellah, Dhar Mehraz, Fez, Morocco 
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

188 

 

Research Article 

Fuzzy Sliding Mode Control Design and Particle Swarm Optimization Based PSS for 

Multimachine Power System 
 

Khaddouj Ben Meziane, Faiza Dib and Boumhidi Ismail 

Department of Physics, Faculty of Sciences, LESSI Laboratory, University of Sidi Mohammed Ben 

Abdellah, Dhar Mehraz, Fez, Morocco 

 

Abstract: The aim of this study is to design nonlinear robust controllers for multimachine power systems. A 

technique for the optimal tuning of Power System Stabilizer (PSS) by integrating the Particle Swarm Optimization 

(PSO) combined with the Fuzzy Sliding Mode Control (FSMC) is proposed in this study. The fuzzy tuning schemes 

are employed to improve control performance and to reduce chattering in the sliding mode. The objective of this 

method is to enhance the stability and the dynamic response of the multimachine power system operating in 

different operating conditions. In order to test the effectiveness of the proposed method, the simulation results show 

the damping of the oscillations of the angle and angular speed with reduced overshoots and quick settling time. 
 
Keywords: Fuzzy logic, multimachine power system, particle swarm optimization algorithm, power system 

stabilizer, sliding mode control, stability 

 
INTRODUCTION 

 
Stability of power systems is one of the most 

important aspects in electric system operation. The size 
and complexity of modern electric power systems 
necessitates the construction of reduced-order dynamic 
models, or dynamic equivalents (Amin and Hemmati, 
2012). Determination of transient stability is one of the 
major items of power system operation and planning 
(Mendiratta and Jayapal, 2010). 

Most controllers PSSs used in electric power 
systems employ the linear control theory approach based 
on a linear model of a fixed configuration of the power 
system and thus tuned at a certain operating condition. 
The fixed parameter PSS, called conventional PSS, is 
widely used in power systems, it often does not provide 
satisfactory results over a wide range of operating 
conditions (Ben-Meziane et al., 2013) Overcome these 
drawbacks, a lot of different techniques have been 
reported in the literature pertaining to coordinated 
design problem of the PSS (Abido, 2010). 

A Power System Stabilizer based on Particle 
Swarm Optimization (PSO) is proposed in this study. 
PSO technique is used for optimal tuning of PSS 
parameter to reduce the convergence time. Unlike the 
other heuristic techniques, it has a flexible and well-
balanced mechanism to enhance the global and local 
exploration abilities. Also, it suffices to specify the 
objective function and to place finite bounds on the 
optimized Parameters (Shayeghi et al., 2008). 

The Sliding Mode Control (SMC) is essentially a 
switching feedback control where the gains in each 
feedback path switch between two values according to 
some rule. The switching feedback law drives the 
controlled system’s state trajectory in to specified 
surface called the sliding surface which represents the 
desired dynamic behavior of the controlled system (Al-
Duwaish and Al-Hamouz, 2011). The SMC has been 
reported as one of the most effective control 
methodologies for nonlinear power system applications 
due to its disturbance rejection, strong robustness 
subject to system parameter variations, uncertainties and 
external disturbances (Al-Duwaish and Al-Hamouz, 
2011). The control gain of sliding mode may be selected 
high value, which causes the chattering on the sliding 
surface, or, this gain may be chosen smaller, which 
cause increasing of tracking error (Ha et al., 2001). 
Using Mamdani fuzzy inference method to adjust the 
corrective gain in sliding mode control. The fuzzy logic 
is used to overcome the disadvantages of the sliding 
mode control, while the FSMC provides better damping 
and reduced chattering. The effectiveness of the 
proposed method is tested on a multimachine power 
system under different operating conditions. The results 
evaluations show that the proposed method achieves 
good robust performance for damping low frequency 
oscillations under different operating conditions. 

 

Multimachine power system model: Under some 

standard assumptions, the dynamics of n interconnected 
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generators through a transmission network can be 

described by classical model with flux decay dynamics. 

The network has been reduced to internal bus 

representation assuming loads to be constant 

impedances and considering the presence of transfer 

conductance. The dynamical model of the i
th
 machine is 

represented by the classical third order model (Colbia-

Vegaa et al., 2008): 
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Iqi and Idi 
represent currents in d-q reference frame 

of the i
th
 generator, E'qi is the transient EMF in the 

quadrature axis, Efi (t) is the equivalent EMF in the 

excitation coil, Xdi 
and X'di 

are direct axis reactance and 

direct axis transient reactance, respectively: 
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where, Pmi 
is the mechanical input power assumed to be 

constant, Di is the damping factor; all parameters are in 

p.u., Hi is the inertia constant, in seconds, T'di 
is the 

direct axis transient short circuit time constant, in 

seconds, δi is the rotor angle, in radians, ωi 
is the relative 

speed, ωs = 2πf is the synchronous machine speed, in 

rad/sec and Gij, Bij is the i
th

 row and j
th

 column element 

of the nodal conductance matrix and nodal susceptance 

matrix respectively, which are symmetric, at the internal 

nodes after eliminating all physical buses in p.u. We 

consider Efi (t) 
as the input of the system (Colbia-Vegaa 

et al., 2008). The state representation of the i
th
 machine 

of a multimachine power system can be written in the 

following form: 
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For i = 1, 2, .., n, represents the state vector of i
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subsystem and the control applied is given by: 
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and, 
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PARTICLE SWARM OPTIMIZATION  

BASED ON PSS DESIGN 

 

The PSO method is a member of wide category of 

Swarm Intelligence methods for solving the 

optimization problems (Sidhartha and Ardil, 2008). It 

employs an appropriate model of fitness for particle, to 

evaluate fitness value of each particle and to record the 

particle that is the highest fitness value in an iterative 

procedure (Liang et al., 2011). The position 

corresponding to the best fitness is known as pbest and 

the overall best out of all the particles in the population 

is called gbest (Sidhartha and Ardil, 2008). The 

modified velocity and position of each particle can be 

calculated using the current velocity and the distance 

from the pbestj,g to gbestg as shown in the following 

formulas (Gaing, 2004): 
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where, n is the number of particles in a group, m is the 

number of members in a particle, t is pointer of 

iterations (generations), v is the velocity, x is the 

position of each particle, c1, c2 are positive constants 

referred to as acceleration constants and must be c1 + 

c2≤4, usually c1 = c2 = 2, r1, r2 are random numbers 

between 0 and 1 and w is the inertia weight, which 

produces a balance between global and local 

explorations requiring less iteration on average to find a 

suitably optimal solution. It is determined by the 

following equation (Gaing, 2004): 

 

max min
max

max

w w
w w iter

iter

−
= −                (8) 

 

where, wmax 
is the initial weight, wmin 

is the final 

weight, iter is the current iteration number, is the
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Fig. 1: Particle swarm optimization algorithm 

 

maximum iteration number. The typical range of w 

from 0.9 at the beginning of the search to 0.4 at the end 

of the search, Fig. 1 shows the flowchart of the PSO 

algorithm (Rajendraprasad and Panda, 2013). In this 

study, the PSS design problem is formulated as an 

optimization problem and solved by PSO method to 

improve optimization synthesis and find the global 

optimum value of the fitness function. Selection of a 

desirable fitness function is very important to optimize 

PSS parameters. Because, different fitness functions 

promote different PSO based on PSS behaviors 

(Manisha et al., 2013). 

The PSS controller is optimized by minimizing the 

objective function (J) in order to improve the system 

response in terms of oscillation and settling time. 

Despite there are several methods to come up with the 

improvement of the performance of the control system 

(GirirajKumar et al., 2010), such as Integral of Squared 

Error (ISE), Integral of Time weighted Squared Error 

(ITSE), Integral of Absolute Error (IAE) and Integral of 

Time weighted Absolute value of Error (ITAE): 
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In this study, the ITSE of the speed deviation ∆ω is 

used as the fitness function (J) which is determined as: 
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For which ∆ω is the speed deviation in radians per 

seconds and tsim is the range of time for the simulation. 

The nonlinear model was conducted for the time domain 

simulation over the simulation period which is aimed at 

minimizing the fitness function so that the system 

response such as settling time and overshoots and the 

constraints are the boundaries of PSS parameters. The 

transfer function of the i
th
 PSS is given by (Hasan et al., 

2012): 
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where, 

K  = PSS gain 

Twi  = Washout Time constant 

T1i, T2i, T3i, T4i = Time constants 

 

Time Constants T1i = T3i, T2i = T4i (Identical Phase 

Compensator Block). 

The block diagram of the conventional PSS is 

shown in Fig. 2, in which case the generator rotor speed
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Fig. 2: Block diagram of the conventional power system stabilizer 

deviation is used as the only stabilizing signal. The 

Conventional PSS consists of an amplifier, a washout 

filter and two lead-lag compensators (Hasan et al., 

2012). 

The PSS parameters to be tuned within their 

boundaries are formulated as follows (Sanjeev and 

Chaturvedi, 2013). 

Optimize J. 

Subject to: 
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where,  

K
min

i 
and K

max
i = The lower and upper bounds of gains 

PSS  

T
min

ji and T
max

ji = The lower and upper bounds of the 

time constants of all controllers 

 

Fuzzy sliding mode controller: Fuzzy controller 
design includes the definition the following parameters: 
Number of partitions of input space and output 
membership functions, rule base, inference method, 
fuzzification and defuzzification (Ben-Meziane et al., 
2013). 

In this section, the fuzzy sliding mode controller 

with varying control gain αf
 

is presented. More 

specifically, a fuzzy inference system is used to 

adjusting the control gain αf
 
in order to improve the 

performance of the controller. The rules in the rule base 

are in the following form (Amer et al., 2011):  

 

              ,        m m m

i i i iIf e is A and e is B Then is Cα&  

 

where, A
m

i, B
m

i and C
m

i are fuzzy sets. The fuzzy 

variables  input  are  defined  for  the  rule  base as, (e, 

��) = {NB, NM, NS, Z, PS, PN, PB}
 
and the fuzzy output 

is (αf) = {VVS, VS, S, M, B, VB, VVB}. 

The membership functions for input and output 

variable are triangular given in Fig. 3 to 5. The 49 rules 

described presented in a matrix called matrix inference 

given in the following Table 1 (Amer et al., 2011). 

 
 

Fig. 3: Membership functions of error    

 

 
 

Fig. 4: Membership functions of change of error 
 

 
 

Fig. 5: Membership functions of αf
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Table 1: Rule matrix of the fuzzy inference system 

αf  e�  (t) 

e (t) 
----------------------------------------------------------------------------------------------------------------------------------------------------------

 

NB NM NS Z PS PM PB 

NB M S VS VVS VS S M 
NM B M S VS S M B 
NS VB B M S M B VB 
Z VVB VB B M B VB VVB 
PS VB B M S M B VB 
PM B M S VS S M B 
PB M S VS VVS VS S M 

 

THE PROPOSED CONTROL DESIGN 

 
Sliding mode control: Sliding mode control is a 
nonlinear control solution and a Variable Structure 
Control (VSC) derived from the variable structure 
system theory (Ouassaid et al., 2011). SMC is known to 
be robust against fluctuations. It was successfully 
applied to electric motors, robot manipulators, power 
systems and power converters. In this section, we will 
present the general principle of the SMC and the 
controller design principle. Let us consider the nonlinear 
system represented by the following state equation 
(Abera and Bandyopadhyay, 2008): 

 

( , ) ( , ) ( )x f x t g x t u t= +&               (15) 

 
The continuous component insures the motion of 

the system on the sliding surface whenever the system is 
on the surface. The equivalent control that maintains the 
sliding mode satisfies the condition: 
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For i = 1, 2 … n. 

Let the tracking error vector be ( 1), ,....., n

i
e e e e − =  & .  

The relative degree is r = 3 then, the switching 
function can be written as (Abera and Bandyopadhyay, 
2008): 
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where, k = [k1, k2, 1]

T 
are the coefficients of the Hurwitz 

Polynomial: 
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If f (x) and g (x) are known, we can easily construct 

the sliding mode control: 
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The fuzzy sliding mode control term is:  
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The control input usmc to get the state δ to track δr is 

then made to satisfy the Lyapunov-like function:  
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By the following sliding condition: 
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Fuzzy sliding mode control combined with PSS 

based on PSO: The control law used in this study is 

composed of three terms, the nominal control ueq, the 

robust term represented by the fuzzy sliding mode 

controller ufsmc and the regulator PSS optimized by the 

PSO algorithm u
*
pss: 
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where, αf  is the gain of sliding mode controller tuned by 

a fuzzy logic rule base: 
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The combination between the two controllers, fuzzy 
sliding mode controller with Power System Stabilizer 
based on PSO algorithm, enhances the damping of the 
oscillations and the stability of the network. 
 

SIMULATION OF MULTIMACHINE  
POWER SYSTEM 

 
To evaluate the performance of the proposed 

control, we performed simulation for the three-machine 
nine-bus power system as in Fig. 6, with the aim to 
compare the performance of the proposed controller 
with SMC controller and the conventional PSS. Detail 
of  the  system  data  are given in Table 2 (Colbia-Vegaa 
et al., 2008). 

The following equilibrium point: 

Xir = (xi1r, xi2r, xi3r) = [δi ∆ωi E'qi] for i = 1, 2, 3 of 

the three-machine system is considered: 

 

11r 12 13

21 22 23

31 32 33

x = 0.0396, x = 0, x = 1.0566

x = 0.3444, x = 0, x = 1.0502

x = 0.2300, x = 0, x = 1.017

r r

r r r

r r r  
 

Furthermore, the topology of the network has been 

represented by the conductance nodal matrix G and by 

the susceptance nodal matrix B: 

 

0.8453 0.2870 0.2095

0.2870 0.4199 0.2132   

0.2095 0.2132 0.2770

ijG G

 
  = =   
     

 

-2.9882 1.5130 1.2256

1.5130 -2.7238 1.0879

1.2256 1.0879 -2.3681

ij
B B

 
  = =   
    

 

In this case, the control law used constituted by the 
nominal control, sliding mode control and power system 

stabilizer. The control parameters of sliding mode 

control used are αi = 0.03 for i = 1, 2, 3. The specified 

parameters of the PSS that are used  in  this  study  given 

 

 
 

Fig. 6: Three-machine nine-bus power system 

Table 2: Nominal parameters values 

Parameters Gen 1 Gen 2 Gen 3 

H 23.6400 6.4000 3.0100

Xd 0.1460 0.8958 1.3125
X’d 0.0608 0.7798 0.1813

D 0.3100 0.5350 0.6000

Pm 0.7157 1.6295 0.8502
T’do 8.9600 6.0000 5.8900

 

Table 3: Conventional PSS parameters 

Parameters Kp T1 T2 Tw 

PSS-1 7.39 0.17 0.29 10 

PSS-2 5.46 0.11 0.26 10 

PSS-3 5.33 0.10 0.27 10 

 
Table 4: Performance indices of the controllers 

 The proposed 

control H infinity control PSS control 

ITAE 0.7678 2.4944 13.2693 
ITSE 3.850e-005 4.7880e-004 9.9515e-004 

 

Table 5: Parameters used PSO algorithm 

PSO parameters Value 

Swarm size 50 

Iteration-max 100 

c1, c2 2.0, 2.0 
wmax, wmin 0.9, 0.4 

 

in Table 3. The coefficients of the Hurwitz Polynomial 

used in this study for the multimachine power system 

are: k1i = 6; k2i = 9; k3i = 1. 

The simulation results presented in Fig. 7 to 9 

shows the occurrence of chattering caused by a poor 

choice of controller gain.  

To demonstrate performance robustness of the 

proposed method, two performance indices: the Integral 

of the Time multiplied Absolute value of the Error 

(ITAE) and the Integral of Time weighted Squared Error 

(ISTE) based on the system performance characteristics 

are being used as: 

 

1 2 3

0
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ITAE t dtω ω ω= ∆ + ∆ + ∆∫              (31) 

 

( ) ( ) ( )( )2 2 2

1 2 3
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. .
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More than the values of the performance indices 
ITAE and ISTE are lower, the response of the system in 
time domain is better. Numerical results of these indices 
for all cases are presented in Table 4. 

The parameters used in PSO algorithm are given in 
Table 5. Control parameters and their boundaries are 
given below: 

 

1

2

    0 70

0.01 1

0.01 1

i

i
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K

T

T

< <

< <
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The aim is to compare the performance of the 

conventional PSS, the sliding mode control and the
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Fig. 7: Deviation speed ∆w1 

 

 
 

Fig. 8: Deviation speed ∆w2   

 

 
 

Fig. 9: Deviation speed ∆w3 

 
Table 6: Optimized PSS parameters by PSO algorithm 

Parameters Kp T1 T2 

PSS-PSO-1          7.6881 0.2395 0.4550
PSS-PSO-2 3.4404 0.3615 0.2119
PSS-PSO-3 0.8489 0.4417 0.1612

 

control law proposed in this study composed by the 

three terms: the nominal control, the robust term FSMC 

and the PSS optimized by PSO algorithm. The nonlinear  

 
 

Fig. 10: Rotor angle δ1 

 

 
 

Fig. 11: Rotor angle δ2 
 

 
 

Fig. 12: Rotor angle δ3 

 

simulation results demonstrated that the proposed 

control is capable of guaranteeing the robust 

performance of the multimachine power system for a 

wide range of operating conditions (Table 6). 

In this case, the washout time of the PSS Twi = 10
 

and the control parameters of sliding mode control used 

are αi = 0.0001 for i = 1, 2, 3. 

With the proposed control, the mechanical 

variables such as the angles rotor (δ1, δ2) and the 

deviation speed (∆ω1, ∆ω2)  in  the  generators  (G1 and 
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Fig.13: Deviation speed ∆w1 

 

 
 

Fig. 14: Deviation speed ∆w2 

 

 
 
Fig. 15: Deviation speed ∆w3   

 

G2) are stabilized in 2.5 sec; see Fig. 10 to 14. For the 

third generator (G3), the angle rotor δ3 
and the 

deviation speed ∆ω3 are stabilized in 2 and 1.5 sec, 

respectively; see Figure 12 and 15. The conventional 

PSS controller requires more time and more oscillations 

before the same variables are stabilized. Implemented 

results in this section have demonstrated a superior 

performance of FSMC in terms of chattering or 

smoother control action as compared with the normal 

SMC design. 

 

CONCLUSION 

 

In this study, the proposed control provides an 

efficient solution to damp the Low frequency 

oscillations in the multimachine power system and 

eliminates the chattering in sliding mode control. The 

design problem of the robustly PSS parameters selection 

is solved by a PSO algorithm, which enhances the 

stability of the power system. Also, the robustness and 

the performance of the fuzzy sliding mode controller 

design has been proved and evaluated by the dynamic 

simulation responses of the multimachine power 

system. 
 

NOMENCLATURE 

 

δ :  Rotor angle 

ω :  Rotor speed (pu) 

∆ω :  The speed deviation 

Pm : Mechanical input power 

Pe :  Electrical output power (pu) 

M :  System inertia (Mj/MVA) 

E’q :  Internal voltage behind x’d (pu) 

Efd :  Equivalent excitation voltage (pu) 

X’d : Transient reactance of d axis (pu) 

Xq :  Steady state reactance of q axis (pu) 

Xd : Steady state reactance of d axis (pu) 

T’do :  Time constant of excitation circuit (s) 

Tsim :  Simulation time (s) 

Tw : Washout filter (s) 

T1-T4 : Time constants of lead-lag dynamic 

compensator (s) 

K : Gain of the Stabilizer 

PSS :  Power System Stabilizer  

PSO :  Particle Swarm Optimization 

SMC :  Sliding Mode Controller  

FSMC :  Fuzzy Sliding Mode Controller  
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