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Abstract: Electromyography (EMG) is a bio signal that is formed by physiological variations in the state of muscle 
fibre membranes. Pattern recognition is one of the fields in the bio-signal processing which classified the signal into 
certain desired categories with subject to their area of application. This study described the classification of the 
EMG signal based on human body percentile using Self Organizing Mapping (SOM) technique. Different human 
percentile definitively varies the arm circumference size. Variation of arm circumference is due to fatty tissue that 
lay between active muscle and skin. Generally the fatty tissue would decrease the overall amplitude of the EMG 
signal. Data collection is conducted randomly with fifteen subjects that have numerous percentiles using non-
invasive technique at Biceps Brachii muscle. The signals are then going through filtering process to prepare them for 
the next stage. Then, five well known time domain feature extraction methods are applied to the signal before the 
classification process. Self Organizing Map (SOM) technique is used as a classifier to discriminate between the 
human percentiles. Result shows that SOM is capable in clustering the EMG signal to the desired human percentile 
categories by optimizing the neurons of the technique. 
 
Keywords: Biceps brachii, classification, electromyography, human percentile, pattern recognition, self organizing 

map 

 
INTRODUCTION 

 
Research on EMG classification is essential in the 

field of ergonomics, sports science, rehabilitation, 
medical research and human technology interaction. It 
required a strong foundation of the neuromuscular 
system, signal properties and impact of the tools used 
during signal acquisition in order to collect meaningful 
data. 

Historically, human percentile is used to establish 
the portion of user population for specific design. It 
allow the subjects with specific percentile to fit on any 
critical dimensions Human percentile is an 
anthropometric dimensions  for each population that are 
ranked by size.  For instance, 5

th
 percentile represents 

smallest measurement while 95
th
 percentile represents 

largest dimensions (Scott and Erin, 2006). Different 
human percentile definitively varies the arm 
circumference size. Variation of arm circumference is 
due to fatty tissue that lay between active muscle and 
skin. 

There are several external factors that could 
influenced the behaviour of EMG signal such as tissue 
characteristics, physiological cross talk, changes in the 
geometry between muscle belly and electrode site, 
external noise and selection of electrode and amplifiers. 
In this study, the focus is the tissue characteristics. 

Principally, human body is a very good electrical 
conductor but the conductivity is highly dependent to 
the tissue characteristics. Several reasons that affect the 
tissue performance are thickness, type, physiological 
change and temperature. Thus, the EMG signals vary 
from subject to subject that avoid direct quantitative 
comparison of EMG amplitude (Peter, 2006). 

This research used SOM technique to cluster the 
EMG signal according to the human body percentile. 
SOM is an unsupervised learning (learning by 
observation) refers to the method that learns by itself 
according to input attributes and also applies 
competitive learning that made the output nodes to 
compete to be activated. Only one of the node will 
activated at any one time or we called winning neuron 
(Bohari et al., 2014). Such a competition can be 
induced through negative feedbacks between neurons. 
All nodes are forced to be self-organized through the 
feedback path.   
 

LITERATURE REVIEW 
 

EMG classification field has been started since 

early 1970 where elementary classification technique 

such as linear discriminant analysis was used (Graupe 

et al., 1978; Lee and Saridis, 1984). Then in 1990s, 

pattern recognition using Artificial Intelligent technique  
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has been initiate using Artificial Neural Network 
(ANN)  by  analysing  the  nonlinear  map  between  the  
EMG signal and the arm gesture movement (Wang and 
Buchanan, 2002; Hudgins et al., 1993; Kelly et al., 
1990; Chiharu et al., 2012). Tsuji et al. (1992) 
implement neural network based on statistics structure 
while Kentarou et al. (2006) use combination of chief 
ingredient analysis and fast fourier transform. Other 
uses the hybridization of multivariate auto regression 
model and hidden Markov Model (Joyce et al., 2008). 
K-NN algorithm that has been used by Killer et al. 
(1986) is widely is for EMG classification which based 
on the distance similarity matching. This technique has 
advantage of simplicity but it cannot cater complicated 
features.  

Simon (1999) use back propagation neural network 
that seems more robust because it can learn the 
relationship between inputs and desired outputs. 
However the downside of it is the complexity increased 
exponentially when the number of inputs increases. 
Chan et al. (2000) design a fuzzy inference that applied 
back propagation algorithm to train the fuzzy rules for 
classification. Hamedi et al. (2012) used FCM 
techniques due to its flexibility, fast training, easy to 
use and low cost of calculation. 

Bartuzi et al. (2010) has conducted a study on the 
effect of the fatty tissue on EMG signal in young 
women. They describe the influence of fatty tissue on 
EMG signal as a function of force level. Fatty tissue 
layer also could cause inaccuracy in the measurement 
because it decrease the EMG signal amplitude and 
increase the cross-talk in muscles adjacent to activated 
muscle as well as attenuate the potential distribution 
present at muscle force. The tissue overlying the 
muscle, fatty tissue and skin thickness would change 
the EMG signal shape. When muscle is surrounded by 
fatty tissue, extracellular fluid and skin, the current field 

 
 
Fig. 1: Research strategy 

 
will  be  inflected  and  the  level  of  impedance will be 
varies because the skin tissue acts as a filter for a signal. 
Subject with great body fat will have more signals 
filtered before reaching the electrode that will cause the 
amplitude of the signal greatly drop. 

 
METHODOLOGY 

 
Figure 1 shows a flow diagram of our research 

methodology that consists of four major phases. It 
started with the EMG data acquisition. Second phase is 
EMG signal post processing. Third phase is the time 
domain features extraction and finally classification 
using SOM technique. 
 
EMG data acquisition: Historically, human percentile 
is used to establish the portion of user population for 
specific design. It allows the subjects with specific 
percentile to fit in any critical dimensions. Human 
percentile is calculated based on the distribution of data 
which multiply the standard deviation SD by a factor z 
then add the product to the mean m. The formula is 
given as: 
 

)( SDzmp ×+=                                                    (1) 

 
Table 1: Percentile of upper arm circumference (Frisancho, 1974) 

 Age midpoint 
years  No.  

Arm circumference percentile, mm 
----------------------------------------------------------------------------------------------------- 

Age group  5th 15th 50th 85th 95th 

  Males      
0.0-0.4 0.3 41 113 120 134 147 153 
0.5-1.4 1 140 128 137 152 168 175 
1.5-2.4 2 177 141 147 157 170 180 
2.5-3.4 3 210 144 150 161 175 182 
3.5-4.4 4 208 143 150 165 180 190 
4.5-5.4 5 262 146 155 169 185 199 
5.5-6.4 6 264 151 159 172 188 198 
6.5-7.4 7 309 154 162 176 194 212 
7.5-8.4 8 301 161 168 185 205 233 
8.5-9.4 9 287 165 174 190 217 262 
9.5-10.4 10 315 170 180 200 228 255 
10.5-11.4 11 294 177 186 208 240 276 
11.5-12.4 12 294 184 194 216 253 291 
12.5-13.4 13 266 186 198 230 270 297 
13.5-14.4 14 207 198 211 243 279 321 
14.5-15.4 15 179 202 220 253 302 320 
15.5-16.4 16 166 217 232 262 300 335 
16.5-17.4 17 142 230 238 275 306 326 
17.5-24.4 21 545 250 264 292 330 354 
24.5-34.4 30 679 260 280 310 344 366 
34.5-44.4 40 616 259 280 312 345 371 
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Table 2: Predefined subject details 

Subject 1 2 3 4 5 

Percentile 5th 15th 50th 85th 95th 

Age 30 28 27 27 29 
Arm circumference, mm 260 280 310 344 366 

Label T13 T4 T12 T8 T3 

 
Table 3: Sample subjects 

Subject Label Status 

1 T1 Random data 

2 T2 Random data 

3 T3 Predefined data for 95th percentile 
4 T4 Predefined data for 15th percentile 

5 T5 Random data 

6 T6 Random data 
7 T7 Random data 

8 T8 Predefined data for 85th percentile 

9 T9 Random data 
10 T10 Random data 

11 T11 Random data 

12 T12 Predefined data for 50th percentile 
13 T13 Predefined data for 5th percentile 

14 T14 Random data   
15 T15 Random data 

 

Survey conducted by Frisancho (1974) shows the 

relationship between the human percentiles with the 

right upper arm circumference for male and females. As 

the arm circumference increase, the subcutaneous fat 

also increase which affect the EMG signal behaviour. 

This is proved by the measurement done to the 5637 

males and 6759 females aged 0 to 44 years. This study 

has produced a relationship between human body 

percentiles with average arm circumference size as 

shown in Table 1.  

Three male subjects that represent five arm 

circumference percentiles which are 5, 15, 50, 85 and 

95
th
,
 
respectively are selected based on guidelines in 

Table 1. The EMG signals from these subjects are used 

as predefined data for signal classification later on. The 

subject’s particular detail is tabulated in Table 2. 

The predefined data is included randomly into 

sample  of  15  healthy  male  subjects as shown in 

Table 3. From the human anatomy studies, the 

movements of upper limb with elbow as the reference is 

depend on relation of agonist and antagonist. In this 

study is focusing on the behaviour of biceps muscle as 

agonist and the triceps as the antagonist, respectively. 

Muscle that involved in this movement is biceps and 

triceps, however in this study to understand the 

electrical activity during muscle contraction, the biceps 

is the only muscle that taking into account. The 

movements’ ranges in between position of arm flexion 

until arm fully extend.  

The environment is in a room with low lighting 

especially the fluorescent light, any electromagnetic 

devices is away from the experiment equipment and the 

environment is in silent room. Then, the experimental is 

set up with the subject sit on the chair while the hand is 

on the table. The assistive devices (white in colour on 

Fig. 2a)  helps  to  keep  the  position  of the elbow joint  

 
 

(a) 

 

 
 

(b) 

 

Fig. 2: (a) subject is set-up with arm assistive device for 

experiment, (b) simulation of subject’s to lift up the 

dumbbell 2.268 kg of weight  

 

and the wrist joint in line. Mostly, the EMG signal is 

obtained after several trials of the movements. These 

movements are specified from angle of 0° (arm in rest 

position), up to 120° (arm is fully flexion). The subject 

has to complete the task of lift up the dumbbell with 

2.268 kg of weigh in Fig. 2b. Normally, the appearance 

of EMG signal is chaos and noisy depends on the type 

of electrodes also the noise factor. To simplify the 

difference of amplitude response for the motion, the 

dumbbell is functioned to amplify the amplitude in 

analysing the electrical activity during rest and contract. 

These electrodes are connected to the combination of 

Olimex EKG-EMG-PA and Arduino Mega for data 

collection (Jali et al., 2014). 

 

EMG signal post processing: After acquiring the raw 

EMG data as shown in Fig. 3a, post processing need to 

be performed to remove any unwanted noise. Noise 

comes from the environment need to be filtered 

accordingly to obtain the clean features. An extremely 

narrow notch filter in the range of 59.5-60.5 Hz is
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                                                      (a)                                                                                               (b) 

 

 
                                               

                                                         (c)                                                                                            (d) 

 

Fig. 3: (a) raw EMG signal, (b) power spectral density, (c) rectified signal, (d) smooth signal  

 
applied to eliminate the interference from line AC and 
radio frequency. Then, a high pass filter in a range of 5-
10 Hz is applied for DC offset. The filter preserves the 
wave shape of any filtered signals across the group 
delay in the pass band. The DC offset of the EMG 
signal is removed and rectified to obtain its absolute 
value as shown in Fig. 3c. In order to observe the 
variation of signal in different frequency components, 
the FFT signal is represented by Power Spectral 
Density (PSD). From the PSD we can describes how 
the signal energy or power is distributed across 
frequency. Figure 3b shows that most of the power is in 
the range of below 10 Hz, Finally, the signal is 
smoothed and normalized passing it through a 5

th
 order 

Butterworth type low-pass filter with cut off frequency 
10 Hz as shown in Fig. 3d. 

 

Time-domain features extraction: In order to achieve 

an efficient EMG pattern recognition, multiple  features 

need to be employed as input to the classifier. Each 
feature reflects a unique character individually. 
Therefore, a combination of several features capable to 
describe the classification system more accurately 
(Ahsan, 2011). A feature extraction is very important to 
transform the raw signal into reduced representation set 
of features. These features could complement each 
other to exhibit the behavior of the EMG signal itself 
which is very useful for classification process. Five 
time domain feature extraction methods which are 
Standard Deviation (STD), Root Mean Square (RMS), 
Mean Absolute Value (MAV), Variance (VAR) and 
Zero Crossing (ZC) are chosen for this study.  

The time domain features are the most commonly 

used by the researchers. One of the advantages of using 

time domain is it can be implemented in real time. 

There are many of features that related to time domain, 

below is described more on features in this study 

(Angkoon et al., 2009). 
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Root mean square: The RMS represents the square 
root of the average power of the EMG signal for a 
given period of time. It is known as a time domain 
variable because the amplitude of the signal is 
measured as a function of time: 
 

∑ =
=

N

i
iEMG

N
RMS

1

2)(
1                                    (2) 

 
Mean absolute value: The MAV is the computer 
calculated equivalent of the Average Rectified Value 
(ARV). The MAV is known as a time domain variable 
because it is measured as a function of time. It 
represents the area under the EMG signal once it has 
been rectified, it is defined by the negative voltage 
values have been made positive. The mean absolute 
value is calculated using a moving window. It is 
calculated for each window of data according to the 
equation: 
 

��� =  �
� � 	
(�)	��                                               (3)       

 
Standard deviation: The STD of a set of data is the 
square root of the variance, where �� refers to the mean 
of the sample. The STD is often used as the fluctuation 
for a sample when data is being collected in an 
experiment. The results taken from data are frequently 
written as the mean±STD: 
 

������ =  � �
��� � (�� − ��)�����                        (4) 

 

Variance: VAR is a feature that utilizes the EMG 

signal power. It takes the mean value of the square of 

the deviation. However, mean of EMG signal is close to 

zero. In consequence, variance of EMG can be 

calculated by: 

 

��� = �
��� � �������                                              (5) 

 

Zero crossing: ZC is a feature that represents the 

number of times that the amplitude value of EMG 

crosses the zero y-axis. It provides an approximation of 

frequency domain properties. The threshold condition is 

used to abstain from the background noise. It can be 

formulated as: 

 

�� =  �  �!"(�� × ��$�) ∩ 	�� − ��$�	
≥ 'ℎ)*�ℎ+,- .������   

 

where, 

 

�!"(�) =   /1,     2
 � ≥ 'ℎ)*�ℎ+,-
0,                  +'ℎ*)42�*5                    (6) 

 

Classification using SOM: Based on neurological 

studies, all human sensory inputs are mapped onto 

certain areas at the cerebral cortex that form a map 

called Topographic Map (Bohari et al., 2014). It has 

two most essential assets: 

 

• At each stage of processing, every each 
information is reserved in its proper environment. 

• Close related information nodes will be close to 

each other to ensure short synaptic connections. 
 

SOM primary purpose is to transform incoming 
input patterns into a one or two dimensional discrete 
map. This process must be performing in orderly 
approach. In this study, SOM is used to classify the 
EMG signal that has been randomly collected from 15 
subjects according to their body percentile. 

For this SOM clustering hexagonal lattice is 
selected and numbers of neurons is increased from 100 
to 300 to optimize SOM result. Normalization method 
used in this research in ‘range’ normalization. The 
performances of each combination of feature are 
evaluated according to their quantization error, 
topographic error and training time.  

 
Architecture of SOM network: SOM structure built 
from two main layers; input and output layer that sort in 
two-dimensional preposition. SOM algorithms 
resemble Learning Vector Quantization (LVQ). In LVQ 
all neurons are arranged on a grid together with selected 
neurons whereas SOM has a feed-forward structure 
with a single computational layer arranged in rows and 
columns. Each neuron is fully connected to all the 
source nodes in the input layer. Neighbouring nodes 
will be updated to perform neurons order. This 
indicates that SOM as a multidimensional scaling 
method from input space to two-dimensional output 
space. Visual format of SOM help researcher to define 
clusters, relations and structures in complex input 
database (Bohari et al., 2014). 

 
Best Matching Unit (BMU): Number of neuron may 
vary from a few dozen up to several thousands. Each 
neuron is represented by a d-dimensional weight vector 
(prototype vector, codebook vector) m = [m1,...., md], 
where d is dimension of input vectors. Neurons 
connected to the adjacent neurons through 
neighbourhood relation that dictates its topology.  

SOM is then subjected to iteration for training the 
network. In the iteration process, one sample vector s 
from the input data will be selected randomly and the 
distances between all the nodes are then calculated by 
particular distance measures. The neurons that have 
closest weight vector to the selected sample sis called 
Best Matching Unit (BMU) and denoted by c: 

 

6� − 786 = 72"�6� − 7�6                                 (7) 
 
where,  
c: Euclidean distance measure 
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Upon determining BMU, SOM weight vectors are 

updated so that the BMU will be closer to the input 

vector in input space. This adaptation process will 

stretch the BMU and its topological neighbours towards 

the sample vector (Bohari et al., 2014). 

 

RESULTS AND DISCUSSION 
 

In order to optimize the SOM performance, 

different numbers of neurons are simulated until 

achieved the satisfactory results. Satisfactory result is 

defined as the best tradeoff between each performance 

variable. For instance, the lowest value of topographic 

error, quantization error and training time does not 

mean the number of neurons is the best performance 

unless the U-Matrix mapping result shows the best 

quality in term of clarity of separation and boundary 

between the SOM clustering. 

From Table 4, it can be seen that training time keep 

on rising when the number of neurons increase. 

However based on simulation, training time surge 

abruptly up to 8 sec when the number of neurons larger 

than 300. Thus, the simulation stops at the number of 

neurons 300. Training time of 5 sec is still acceptable 

because it produce value of both quantization and 

topographic error around zero. Further investigation 

need to be conducted in term of U-Matrix mapping to 

select the best number of neurons. 

Figure 4a to f depicted U-Matrix mapping result 

that represent the number of neurons of 100, 150, 200, 

250, 280 and 300, respectively. By using hexagonal 

topology, it can be observed that the clarity of 

  

  
 

                                      (a)                                                            (b)                                                            (c) 

 

 
 

                                     (d)                                                             (e)                                                            (f) 

 

Fig. 4: U-matrix for number of neurons (a) 100, (b) 150, (c) 200, (d) 250, (e) 280, (f) 300  
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Table 4: SOM clustering performance 

No. of 

neurons 

Quantization 

error Topographic error 

Training 

time (sec) 

100 0.017 0.000 0 

130 0.004 0.067 1 

150 0.004 0.000 1 

180 0.004 0.133 1 

200 0.001 0.000 2 

230 0.001 0.000 3 

250 0.000 0.067 3 

280 0.000 0.133 4 

300 0.000 0.067 5 

 

Table 5: Distribution of samples for each percentile 

Group Label Status 

1 T13 5th percentile 

2 T4, T14 15th percentile 

3 T1, T2, T12, T15 50th percentile 

4 T5, T6, T7, T8, T9, T10, T11 85th percentile 

5 T3 95th percentile 

 

 
 

Fig. 5: U-matrix that has clustered into five groups 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6: Maximum EMG amplitude of the subjects and band 

categories of human percentile 

 

separation and boundary of the mapping is improved 

when the number of neurons increases. Since we were 

targeting to classify the EMG signal into five 

categories, Fig. 4f that represents number of neurons of 

300 is the best contender for the U Matrix mapping 

result. The clarity and quality of mapping is the best 

since it produce the clearest boundary or separation 

between different categories produced by SOM 

clustering. Figure 5 shows a clearer view of U-Matrix 

that has been clustered into five groups. 

Next, the predefined data that has been declared 

earlier is utilized to identify the group that has been 

clustered fall under which categories of human 

percentile. Table 5 summarize that the distribution of 

the samples is distinguishable for each percentile. 

Finally, the SOM classification result needs to be 

verified to ensure that all subjects have been clustering 

in an appropriate category. Based on the literature that 

has been described in the early section, the higher 

human percentile would definitively have the bigger 

arm circumference size. The size of the arm 

circumference is due to the fatty tissue lay between skin 

and active muscle. Fatty tissue would cause the 

amplitude of EMG signal decreased. Figure 6 shows the 

maximum amplitude of each subject. It shows direct 

relationship between EMG signal amplitude and the 

human percentile by taking into account the subject that 

has been clustered in a group by SOM techniques in 

Table 5. The subject above the green band represent 5
th
 

percentile, green band represent 15
th
 percentile, yellow 

band represent 50
th
 percentile, blue band represent 85

th
 

percentile and finally below the blue band is 95
th
 

percentile.  

 

CONCLUSION 

 

Based on the experimental result, it can be 

concluded that the SOM technique has successfully 

classify the EMG signal into the appropriate human 

percentile categories. The number of neurons needs to 

be optimized to produce the best SOM clustering result. 

In this research, number of neurons of 300 has 

produced the best tradeoff between the performance 

parameters as well as the U-Matrix mapping result. In 

addition, the clustering result also has been verified 

with the correlation of EMG signal amplitude with the 

human percentile size. Thus, it is proven that the SOM 

classification technique is capable to clustering the 

EMG signal based on the human percentile. It is 

recommended to enhance the features extraction for the 

classifier input to improve the U-Matrix clarity on the 

separation and boundary for each cluster. 
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