
Research Journal of Applied Sciences, Engineering and Technology 8(2): 263-271, 2014
DOI:10.19026/rjaset.8.969
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2014 Maxwell Scientific Publication Corp.
Submitted: April 15, 2014 Accepted: May 25, 2014 Published: July 10, 2014

Corresponding Author: Muhammad Farooq Umar, Department of Computer Science, COMSATS Institute of Information

Technology, Wah Cantt, Pakistan
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

263

Research Article

Enhancement of Selection, Bubble and Insertion Sorting Algorithm

Muhammad Farooq Umar, Ehsan Ullah Munir, Shafqat Ali Shad and Muhammad Wasif Nisar
Department of Computer Science, COMSATS Institute of Information Technology, Wah Cantt, Pakistan

Abstract: In everyday life there is a large amount of data to arrange because sorting removes any ambiguities and
make the data analysis and data processing very easy, efficient and provides with cost less effort. In this study a set
of improved sorting algorithms are proposed which gives better performance and design idea. In this study five new
sorting algorithms (Bi-directional Selection Sort, Bi-directional bubble sort, MIDBiDirectional Selection Sort,
MIDBidirectional bubble sort and linear insertion sort are presented. Bi-directional Selection Sort and
MIDBiDirectional Selection Sort are the enhancement on basic selection sort while Bidirectional bubble sort and
MIDBidirectional bubble sort are the enhancement on basic bubble sort by changing the selection and swapping
mechanism of data for sorting. Enhanced sorting algorithms reduced the iteration by half and quarter times
respectively. Asymptotically complexities of these algorithms are reduced to O (n2/2) and O (n2/4) from O (n2).
Linear insertion sort is the enhancement of insertion sort by changing the design of algorithm (convert two loops to
one loop). So asymptotically this algorithm is converted to linear time complexity from quadratic complexity. These
sorting algorithms are described using C. The proposed algorithms are analyzed using asymptotic analysis and also
using machine-running time and compared with their basic sorting algorithms. In this study we also discuss how the
performance and complexity can be improved by optimizing the code and design.

Keywords: 2-element insertion sort, 2-way bubble sort, 2-way mid bubble sort, 2-way mid selection sort, 2-way

selection sort, asymptotic analysis, bubble sort, insertion sort, running time, selection sort

INTRODUCTION

In algorithmic engineering Sorting is very
profound area for researchers and algorithmic
engineers. Sorting also improves performance of
logarithms and make suitable, efficient and convenient
for usage data. There are many sorting algorithms are
proposed for sorting data which have some pros and
cons respectively in terms of its efficiency and
algorithmic complexity by Friend (1956). Some sorting
algorithms are considered basic or well known for
sorting the unsorted data like Selection sort, Bubble sort
by Astrachan (2003), Quick sort by Hoare (1962),
Insertion sort by Cormen et al. (2004) and Shell (1959).
But still many researchers are working for the
optimization of these algorithms.

Optimization is much more important factor for
writing or designing algorithms. The output produced
by the algorithm is also most important factor, which
should be reliable and convenient to use, read and
understand by Deitel and Deitel (1998) and Friend
(1956). The output of sorting algorithm should be in
non-decreasing order by using permutation or
reordering concepts by Mansi (2010).

The sorting algorithms can be categorized in two
types, which are called internal sort and external sort.
Internal sort uses the data residing in RAM while in

external sort data is very large so that data may be
resided on external memory by Xiaokai (1995), Weimin
and Weimin (2000) and Min (2010). Results of sorting
algorithm are abundant and are not absolute because
these are specific to some factors. It can be used as
traditional knowledge by Khamitkar et al. (2010).

Analysis of sorting algorithms also depends on the
type of the data. Analysis of algorithms by considering
all input is very difficult. The time complexity of
algorithm can be analyzed by considering just one input
with the help of Kolmogorov complexity by Vitányi
(2007) and Xusong (1996).

Selection, bubble and insertion are characterizes as
comparison sort because these algorithms sort the data
by comparing the data element with each other and
selects the element location and swap on that location.
These all costs O (n2) in worst case scenario which is
the basic limitation of comparison sort techniques.
Another limitation of these algorithms is that these also
has n2 times iteration in worst case but it can be
reduced by optimizing these algorithms and in this
study the approach followed is same.

In this study five algorithms are presented two
algorithms are the extension of selection sort and two
algorithms are the extension of bubble sort and one
algorithm is the enhancement of insertion sort. These

Res. J. Appl. Sci. Eng. Technol., 8(2): 263-271, 2014

264

presented algorithms are optimized, efficient
asymptotically as well as running time wise.

LITERATURE REVIEW

Selection sort: In the basic selection sort algorithm we
sort the data by selecting (maximum or minimum)
element in the selected list by decreasing the list size
from n to 2 with the decrement of size by one in each
iteration. This has the two loops outer and inner loop.
Outer loop manages the size of list to be processed for
finding maximum or minimum number and the inner
loop is for finding the smallest or biggest number from
list selected by outer loop.

The asymptotic complexity of basic selection sort
in worst case is O (n2) which is due to comparisons of
each data element with each other and its number of
iterations. So these algorithms can be improved or
enhanced by reducing the number of iterations or
comparisons. In this study two enhancement of
selection sort algorithms have been discussed which
have been discussed below.

Bi-directional selection sort algorithm:

Concept: In this enhancement of selection sort
algorithm we sort the data by selecting (maximum and
minimum) elements in the selected list by decreasing
the list size from n to 2 with the decrement of two in the
size. This has the two loops outer and inner loop. Outer
loop manages the size of list to be processed for finding
maximum and minimum number and the inner loop is
for finding the smallest and biggest number from list
selected by outer loop.

Pseudo code: Pseudo code for bi-selection sort is given
below:

Function Bi Selection Sort (array, size)
1 var i, j
2 var min, max, temp
3 for i: = 0 to size/2 do
4 min: = max: = i
5 for j: = i+1 to size-i do
6 if array (j) <array (min)
7 min: = j
8 end if
9 if array (j) >array (max)
10 max: = j
11 end if
12 end for j
13 if array (i) <> array (min)
14 temp: = array (i)
15 array (i): = array (min)
16 array (min): = temp
17 if i <> max
18 temp: = array (i)
19 array (i): = array (max)

20 array (max): = temp
21 end for i

In this pseudo code we use array subscript form

where Array () is the array to be sort, min is the
variable for smallest number selected from the selected
list from outer loop and temp is a temporary variable
used for swapping.

Running time: The recurrence for Bi-selection sort
algorithm is:

T (n) = 0 n = 0
 = T (n - 2) + n n>0
T (n) = n + T (n - 2)
 = n + n - 1 + T (n - 4)
 = n + n - 1 + n - 2 + T (n - 6)
 = n + n - 1 + n - 2 + n - 3 + T (n - 8)
 = …
 = n + n - 1 + n - 2 + n - 3 + … + (n - k + 1) + T (n

- 2k) for n≥k

To terminate the recursion, we should have n-2k = 0
=> 2k = n.

By solving this recurrence with the help of any
algorithm gives its order of growth as:

T (n) = O ((n2)/2
T (n) = O (n2)

Bi-directional mid selection sort algorithm:
Concept: In this enhancement of selection sort
algorithm we sort the data by selecting (maximum and
minimum) elements by starting searching from middle
to both sides in the selected list by decreasing the list
size from n to 2 with the decrement of two in the size.
This has the two loops outer and inner loop. Outer loop
manages the size of list to be processed for finding
maximum and minimum number and the inner loop is
for finding the smallest and biggest number from list
selected by outer loop.

Pseudo code: Pseudo code for basic selection sort is
given below:

Function BiMID Selection Sortn (array, size)
1 var i, j, left, right
2 var min, max, temp
3 If limit <2
4 return
5 right: = left: = limit/2
6 if limit mod 2
7 right++
8 for j: = 0 to size/2 do
9 if array [left] > array [right]
10 max: = left
11 min: = right
12 if array [left] <= array [right]
13 min: = left

Res. J. Appl. Sci. Eng. Technol., 8(2): 263-271, 2014

265

14 max: = right
15 for i: = j to (size-j)/2 do
16 if array (left-i) <array (min)
17 min: = left-i
18 end if
19 if array (left - i) >array (max)
20 max: = left-i
21 end if
22 if array (right + i) <array (min)
23 min: = right + ii
24 end if
25 if array (right + i) >array (max)
26 max: = right + i
27 end if
28 end for i
29 if array (j) <> array (min)
30 temp: = array (j)
31 array (j): = array (min)
32 array (min): = temp
33 if size-1-j <> max
34 temp: = array (size - 1 - j)
35 array (size - 1 - j): = array (max)
36 array (max): = temp
37 end for j

In this pseudo code we use array subscript form
where Array() is the array to be sort, min is the variable
for smallest number selected from the selected list from
outer loop and temp is a temporary variable used for
swapping.

Running time: The recurrence for Bi-MIDselection
sort algorithm is:

T (n) = 0 n = 0
 = T (n - 2) + n/2 n>0
T (n) = n/2 + T (n - 2)
 = (n + n - 1) /2 + T (n - 4)
 = (n + n - 1 + n - 2) /2 + T (n - 6)
 = (n + n - 1 + n - 2 + n - 3) /2 + T (n - 8)
 = …
 = (n + n - 1 + n - 2 + n - 3) /2 + … +
 (n - k + 1) /2 + T (n - 2k)
 =, for n≥k

To terminate the recursion, we should have n/2 - 2k = 0
=> 4k = n.

By solving this recurrence with the help of any
algorithm gives its order of growth as:

T (n) = O ((n^2) /4)
T (n) = O (n^2)

The bubble sort algorithm: In the basic bubble sort
algorithm we sort the data by finding and replacing the
(maximum or minimum) elements in the selected list by
decreasing the list size from n to 2 with the decrement

of size by one. This has the two loops outer and inner
loop. Outer loop manages the size of list to be
processed for finding and replacing maximum or
minimum number and the inner loop is for finding and
replacing the smallest or biggest number from list
selected by outer loop.

The asymptotic complexity of basic bubble sort in
worst case is O (n2) which is due to comparisons of
each data element with each other and its number of
iterations. So these algorithms can be improved or
enhanced by reducing the number of iterations,
comparisons or swapping. In this study two
enhancement of bubble sort algorithms have been
discussed which are given below.

Bi-directional bubble sort algorithm:

Concept: In this enhancement of bubble sort algorithm
we sort the data by finding and replacing (maximum
and minimum) elements in the selected list by
decreasing the list size from n to 2 with the decrement
of two in the size. This has the two loops outer and
inner loop. Outer loop manages the size of list to be
processed for finding maximum and minimum number
and the inner loop is for finding and replacing the
smallest and biggest number from list selected by outer
loop.

Pseudo code: Pseudo code for basic bubble sort is
given below:

Function Bi Bubble Sort (array, size)
1 var i, j
2 var temp
3 for i: = 0 to size/2 do
4 for j: = i+1 to size-i do
5 if array (j) < array (i)
6 temp: = array (j)
7 array (j): = array (i)
8 array (i): = temp
9 end if
10 if array (j) >array (limit-1-i)
11 temp: = array (j)
12 array (j): = array (limit-1-i)
13 array (limit-1-i): = temp
14 end if
15 end for j
16 end for i

In this pseudo code we use array subscript form
where Array() is the array to be sort, min is the variable
for smallest number selected from the selected list from
outer loop and temp is a temporary variable used for
swapping.

Running time: The recurrence for Bi-bubble sort
algorithm is:

Res. J. Appl. Sci. Eng. Technol., 8(2): 263-271, 2014

266

T(n) = 0 n = 0
 = T (n - 2) +n n>0
T(n) = n + T (n - 2)
 = n + n - 1 + T (n - 4)
 = n + n - 1 + n - 2 + T (n - 6)
 = n + n - 1 + n – 2 + n - 3 + T (n - 8)
 = …
 = n + n - 1 + n - 2 + n - 3 + … +

 (n - k + 1) + T (n - 2k)
 =, for n≥k

To terminate the recursion, we should have n-2k = 0
=> 2k = n.

By solving this recurrence with the help of any
algorithm gives its order of growth as:

T (n) = O ((n^2) /2)
T (n) = O (n^2)

Bi-directional mid bubble sort algorithm:
Concept: In this enhancement of bubble sort algorithm
we sort the data by finding and replacing (maximum
and minimum) elements by starting searching from
middle to both sides in the selected list by decreasing
the list size from n to 2 with the decrement of two in the
size. This has the two loops outer and inner loop. Outer
loop manages the size of list to be processed for finding
maximum and minimum number and the inner loop is
for finding and replacing the smallest and biggest
number from list selected by outer loop.

Pseudo code: Pseudo code for Bidirectional mid
bubble sort is given below:

Function BiMID Bubble Sort (array, size)
1 var i, j, left, right
2 var min, max, temp
3 If limit <2
4 return
5 End if
6 right: = left: = limit/2
7 if limit mod 2
8 right++
9 End if
10 for j: = 0 to size/2 do
11 if array [left] >array [right]
12 max: = left
13 min: = right
14 if array [left] <= array [right]
15 min: = left
16 max: = right
17 for i: = j to (size-j) /2 do
18 if array (left-i) <array (j)
19 temp: = array (j)
20 array (j): = array (left-i)
21 array (left-i): = temp
22 end if
23 if array (left-i) >array (size-1-j)

24 temp: = array (size-1-j)
25 array (size-1-j): = array (left-i)
26 array (left-i): = temp
27 end if
28 if array (right+i) <array (j)
29 temp: = array (j)
30 array (j): = array (right+i)
31 array (right+i): = temp
32 end if
33 if array (right+i) >array (size-1-j)
34 temp: = array (size-1-j)
35 array (size-1-j): = array (right+i)
36 array (right+i): = temp
37 end if
38 end for i
39 end for j

In this pseudo code we use array subscript form
where Array() is the array to be sort, min is the variable
for smallest number selected from the selected list from
outer loop and temp is a temporary variable used for
swapping.

Running time: The recurrence for Bi-MIDBubble sort
algorithm is:

T (n) = 0 n = 0

 = T (n - 2) + n/2 n>0
T (n) = n/2 + T (n - 2)

 = (n + n - 1) /2 + T (n - 4)
 = (n + n - 1 + n - 2) /2 + T (n - 6)
 = (n + n - 1 + n - 2 + n - 3) /2 + T (n - 8)
 = …
 = (n + n - 1 + n - 2 + n - 3) /2 + … +
 (n - k + 1) /2 + T (n - 2k)
 =, for n≥k

To terminate the recursion, we should have n/2 - 2k = 0
=> 4k = n.

By solving this recurrence with the help of any
algorithm gives its order of growth as:

T (n) = O ((n^2) /4)
T (n) = O (n^2)

Insertion sort algorithm:

Concept: In basic insertion sort algorithm we sort the
data by inserting each element one by one in sorted list
to its location according to its order starting list size
from one to n. This has the two loops outer and inner
loop. Outer loop manages the size of sorted list which
increases by one after each iteration in which new
element has to be inserted and the inner loop is for
finding and inserting at the location according to
sorting.

Res. J. Appl. Sci. Eng. Technol., 8(2): 263-271, 2014

267

The asymptotic complexity of basic insertion sort
in worst case is O (n2) which is due to inserting each
data element to its specific location and two loops. So
this algorithm can be improved or enhanced by
reducing the number of iterations, comparisons or loop.
In this study one enhancement of insertion sort
algorithm have been discussed which are given below.

Linear order insertion sort algorithm:

Concept: In this enhancement of insertion sort
algorithm we sort the data by inserting an element one
by one in sorted list to its location according to its order
starting list size from one to n. This has just one loop
outer and inner loop. Outer loop manages the size of
sorted list in which new element has to be inserted and
the inner loop is for finding and inserting at the location
according to sorting.

Pseudo code: Pseudo code for linear insertion sort is
given below:

Function Linear Insertion Sort (array, size)
1. temp = true
2. for i = 1 to size
3. if temp == true
4. Y = array (i)
5. index←i
6. End if
7. if array (i-1) >y
8. array (i) = array (i-1)
9. If i == 1
10. array (i-1) = y
11. temp = true
12. i = index
13. else
14. i = i-2
15. temp = false
16. End if
17. else if temp == false
18. array (i) = y
19. i←index
20. temp←true
21. End if
22. End for

In this pseudo code we use array subscript form
where Array() is the array to be sort, size is the variable
for representing the array size to be sorted.

Running time: The recurrence for linear insertion sort
algorithm is:

T (n) = 0 n = 0

 = T (n - 1) + k n>0
T (n) = k + T (n - 1)

 = k + k + T (n - 2)
 = k + k + k + T (n - 3)

 = k + k + k + k + T (n - 4)
 = …
 = k + k + k + k + … + (n - y + 1) + T (n - y)
 =, for n≥y and n≥k

To terminate the recursion, we should have n - k = 0
=> y = n.

By solving this recurrence with the help of any
algorithm gives its order of growth as:

T (n) = O (kn)
T (n) = O (n)

RESULTS AND DISCUSSION

Analysis: The behavior of algorithms can be analyzed
by determining their order of growth in terms of big-O
notation for west case scenario.

Basic selection sort has the order of growth O (n2)
but the presented two enhancements of selection sort
have the order of growth as O (n2/2) and O (n2/4) which
is shown in Fig. 1.

In Fig. 1 it is clearly is showing that the enhanced
algorithms have the much better order of growth. This
order of growth of basic and enhanced selection sort
can be described as Fig. 2.

From Fig. 2 it can be easily noticed that number of
iterations (order of growth) has been reduced to half in
Fig. 2b and quarter in Fig. 2c.

Basic bubble sort has the order of growth O (n2)
but the presented two enhancements of bubble sort have
the order of growth as O (n2/2) and O (n2/4) which can
be shown using chart as below.

In Fig. 3 it is clearly is showing that the enhanced
algorithms have the much better order of growth. This
order of growth of basic and enhanced selection sort
can be described as Fig. 4.

From Fig. 4 it can be easily noticed that number of
iterations (order of growth) has been reduced to half in
Fig. 4b and quarter in Fig. 4c.

Basic insertion sort has the order of growth O (n2)
and has two nested loops but the presented
enhancement of insertion sort have the order of growth
as O (n + k) which can be says as O (n) which can be
shown using chart as below in Fig. 5.

In Fig. 5 it is clearly is showing that the enhanced
algorithms have the much better order of growth. This
order of growth of basic and enhanced selection sort
can be described as Fig. 6.

From Fig. 6 it can be easily noticed that number of
iterations (order of growth) has been reduced to linear
from quadratic in Fig. 6b.

Running time: All mentioned basic sorting algorithms
with their enhancements are implemented using c++ on
windows 7. The pc used for this purpose

Res. J. Appl. Sci. Eng. Technol.,

Fig. 1: Comparison of order of growth of basic selection sort and its enhancements

(a)

Fig. 2: Comparison of order of growth of basic selection sort and its enhancements

selection sort, (c) MIDBiDirectional

Fig. 3: Comparison of order of growth of basic bubble

Res. J. Appl. Sci. Eng. Technol., 8(2): 263-271, 2014

268

Comparison of order of growth of basic selection sort and its enhancements

 (b) (c)

Comparison of order of growth of basic selection sort and its enhancements, (a) standard selection sort
MIDBiDirectional selection sort

basic bubble sort and its enhancements

selection sort, (b) bi-directional

Res. J. Appl. Sci. Eng. Technol.,

(a)

Fig. 4: Comparison of order of growth of

bubble sort, (c) MIDBiDirectional bubble

Fig. 5: Comparison of order of growth of basic insertion

Fig. 6: Comparison of order of growth of basic

sort

Res. J. Appl. Sci. Eng. Technol., 8(2): 263-271, 2014

269

 (b) (c)

Comparison of order of growth of basic bubble sort and its enhancements, (a) standard bubble s
bubble sort

basic insertion sort and its enhancements

Comparison of order of growth of basic insertion sort and its enhancements, (a) standard insertion sort

3 5 1

1 3 5

1 2 3

1 2 3

bubble sort, (b) bi-directional

insertion sort, (b) linear insertion

2 6 4

2 4 6

4 5 6

4 5 6

Res. J. Appl. Sci. Eng. Technol., 8(2): 263-271, 2014

270

Fig. 7: Graph of machine running time of basic and their proposed sorting algorithms (best case)

Table 1: Machine running time of basic and their proposed sorting algorithms (best case)

Data set size Selection sort
E selection
sort

EMID
selection sort Bubble sort E bubble sort

EMID bubble
sort Insertion sort

 L insertion
 sort

10000 0.171 0.110 0.140 0.109 0.078 0.141 0.016 0.016
20000 0.671 0.421 0.702 0.453 0.343 0.577 0.016 0.016
30000 1.030 0.624 0.936 0.593 0.405 1.014 0.015 0.016
40000 2.496 1.389 2.059 1.700 1.451 2.230 0.016 0.016
50000 3.307 2.137 3.183 2.823 1.857 3.744 0.016 0.016

Table 2: Machine running time of basic and their proposed sorting algorithms (worst case)

Data set size Selection sort
E selection
sort

EMID
selection sort Bubble sort E bubble sort

EMID bubble
sort Insertion sort

 L insertion
 sort

10000 0.172 0.140 0.187 0.375 0.094 0.187 0.375 0.390
20000 0.484 0.374 0.484 0.889 0.234 0.406 0.983 0.889
30000 0.593 0.515 0.717 1.467 0.748 1.092 3.214 3.016
40000 1.856 1.685 1.716 2.886 1.373 2.481 6.287 5.054
50000 3.167 2.808 3.697 6.599 1.887 3.541 8.705 8.298

Fig. 8: Graph of machine running time of basic and their

proposed sorting algorithms (worst case)

has the core i3 processor with 2 gb RAM. In this
experiment, inputs are used in sorted order in best case
while in reverse order in worst case. For both cases,
results have been gotten for 10, 20, 30, 40 and 50 k
number of data sets, respectively. The results of these
algorithms are the machine running times which are
given below in the form of two tables and charts as
shown in Table 1 and Fig. 7 for each case.

Best time: As from above table and chart, it shows that
in case of sorted datasets (best case) all enhancements
of basic sorting algorithms performs better than their
basic sorting algorithms for each set of data sets except
EMID bubble sort which takes little more time.

Worst case: As shown in Table 2 and Fig. 8 it shows
that in case of reversed sorted datasets (worst case) all
enhancements of basic sorting algorithms performs
better than their basic sorting algorithms for each set of
data sets.

CONCLUSION

In this study five new sorting algorithms are
presented by enhanced the selection, bubble and
insertion sort algorithms. These are named as E
selection Sort, E Mid Selection Sort, E Bubble Sort, E
Mid Bubble Sort and linear insertion Sort. As from
experiments by using integers as inputs it is showed
that these enhanced algorithms are much better in terms
of order of growth as well as machine running time by
using Intel core i3 processor. These are implemented
and executed on Intel core i3 processors. In these

0
1

2
3
4
5

6

7
8
9

10

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

No of data sets

R
ui

ni
ng

 ti
m

e
(m

s)

Selection sort
E selection sort
E MID selection sort
Bubble sort
E b sort ubble
E MID b sort ubble

Res. J. Appl. Sci. Eng. Technol., 8(2): 263-271, 2014

271

algorithms the complexity of algorithm, order of growth
and machine running time has been improved by
improving the algorithm's design and execution.

REFERENCES

Astrachan, O., 2003. Bubble sort: An archaeological

algorithmic analysis. Proceeding of the 34th
SIGCSE Technical Symposium on Computer
Science Education (SIGCSE '03), 35(1): 1-5.

Cormen, T., C. Leiserson, R. Rivest and C. Stein, 2004.
Introduction to Algorithms. 1st Edn., McGraw Hill,
USA.

Deitel, H.M. and P.J. Deitel, 1998. C++ How to
Program. 1st Edn., Prentice Hall, Upper Saddle
River, NJ.

Friend, E., 1956. Sorting on electronic computer
systems. J. ACM (JACM), 3(3): 134-168.

Hoare, C., 1962. Quick sort. Comput. J., 5(1): 10-16.
Khamitkar, S., P. Bhalchra, S. Lokhe and

N. Deshmukh, 2010. The folklore of sorting
algorithms. Int. J. Comput. Sci. Issues, 7(4).

Mansi, R., 2010. A new algorithm for sorting small
integers. Int. Arab J. Inf. Techn., 7(2).

Min, W., 2010. Analysis on bubble sort algorithm
optimization. Proceeding of International Forum on
Information Technology and Applications (IFITA,
2010), 1: 208-211.

Shell, D., 1959. A high-speed sorting procedure.
Commun. ACM, 2(7): 30-32.

Vitányi, P., 2007. Analysis of Sorting Algorithms by
Kolmogorov Complexity (a Survey). In: Csiszár,
I., G.O.H. Katona and G. Tard ́os (Eds.), Entropy
Search Complexity. Number 16 in Bolyai Society
Mathematical Studies, pp: 209-232.

Weimin, Y. and W. Weimin, 2000. Data Structures. 1st
Edn., Tsinghua Universit Press, Beijing, pp:
263-268.

Xiaokai, X., 1995. Simple Data Structure Tutorial. 1st
Edn., Tsinghua University Press, Beijing, pp:
l93-196.

Xusong, X., 1996. Introduction to Data Structures and
Algorithms. 1st Edn., Electronics Industry Press,
Beijing, pp: 162-164.

