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Sliding-mode Controller 
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Abstract: This study presents the design of a Fuzzy Static (FS) and a Fuzzy Dynamic (FD) Sliding-Mode 
Controllers (SMC) for both basic and complete ball on beam system. At first, the FSSMC was designed for the 
simplified and the complete models. Then, the FDSMC was designed on the simplified and the comprehensive 
models of the system in which the ball is placed on a beam as well. In addition, the lyapunov stability and 
linearization were used to check the stability of the system. There is an in-built issue of chattering with (FSSMC). 
However, (FDSMC) counter it well. Also, FDSMC is effective with respect to matched disturbance rejection. It has 
been found out from this research study that the designs of the models which utilize a FDSMC with a 
comprehensive model of the system were more efficient than the designs that utilize the basic system’s prototype. 
Lastly, a comprehensive comparative analysis is provided and MATLAB/SIMULINK outcomes confirm the 
dominance of FDSMC. 
 
Keywords: Fuzzy-dynamic, fuzzy-static, Sliding Mode Control (SMC), under triggered system of a ball on a beam 

 
INTRODUCTION 

 
The issue of the positioning of the ball on a system 

in which the ball is positioned on a beam has been the 

matter of great interest in many previous researches. The 

consideration of the nonlinear system of a ball on a 

beam has created an issue. For example, it was supposed 

that a system of a ball on a beam is not considered as an 

input-output linearizable because the degree related to 

this is not clearly explained (Marton and Lantos, 2006; 

Tomlin and Sastry, 1997). To overcome this problem, a 

simplified nonlinear model (i.e., by neglecting some 

terms in designing a controller) was utilized to estimate 

the real model of a system in which the ball is placed on 

a beam. Applying this technique (a simplified nonlinear 

prototype) of the system in which the ball is placed on a 

beam (Manan Khan et al., 2012; Almutairi and Zribi, 

2010), most of the researchers have presented a variety 

of controllers; as an example, look to Chen and Balance 

(2002) and Li et al. (2003). From the point of view of 

previously carried out researches, the “the linear 

feedback is approximated in the condition if the system 

is near to singularities. On the contrary, an approximate 

sliding mode is used for the controller by changing it to 

the “exact feedback-linearization controller.” The 

changing of the denominator of the control law is 

carried out in order to overcome the issue of singularity. 

Because of this alteration in the control mechanism, the  

resulting bounded sliding surface causes an overall 
efficiency to decrease.  

In 1965 Fuzzy Logic was presented as a new kind 
of mathematical set method by Zadah (Jaradat et al., 
2012), which consists of the fuzzy set theory that was 
proved to be the foundation theory of fuzzy logic. The 
fuzzy control system is basically established on the 
fuzzy logic principle that mainly comprises of three 
phases; fuzzification, inference engine and 
defuzzification. The first phase converts the inputs into 
fuzzy sets. While, the inference engine describes the 
fuzzy rules in the second phase, which is related to the 
outputs via specific rules using the sets of inputs. The 
last phase pools the outcomes of the fuzzy rules and 
infers the decision, which is then transformed from 
fuzzy sets to a sharp value (Magzoub et al., 2013). 

Ball and beam are a practical example which is 
used in many laboratories because it is easy to 
understand. It is an open loop system which is not stable 
due to the unrestricted movement of the ball on the 
beam. Many applications (Chang et al., 2012; Hung and 
Chung, 2006; Nagarale and Patre, 2013a, b) show that 
FLC is superior to conventional controls in terms of 
control performance. It can be developed and 
implemented relatively easily and is capable of 
providing adequate control. The elimination of the need 
for a detailed modeling work is another advantage. 
Moreover, less sensitive, more tolerant to process state 
deviations  and  also  to process  parameter  changes are  
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presented. However, the limitation of the FLC is the 
lack of a sound design methodology. The feedback 
control is required to hold the ball in the actual position 
on the beam. In this research study, a fuzzy-stationary 
and fuzzy-dynamic sliding mode control of the model 
will be applied by considering both simplified and 
complete modes. Moreover, the study of the system 
input, output linearization will be carried out and the 
stability will be monitored by using the lyapunov 
stability theory. Controller designs and the simulation 
results will be shown using a MATLAB/SIMULINK 
program. Figure 1 shows a real system in which the ball 
is positioned on a beam. 
 

METHODOLOGY 
 
Modeling of the system in which the ball is placed on 
the beam: Considering the Fig. 1, which shows a 
system of a ball on beam, there is a ball on a beam 
which is allowed to move freely over the length of the 
beam with one degree of freedom. One end of the beam 
is fixed with a lever arm and the other side with a servo 
gear. By changing the servo gear with an angle (θ), the 
beam angle is altered by the lever with an angle (α). By 
altering the angle horizontally, the ball is rolled over on 
the beam due to gravity. Mathematically, the system 
comprises of the dynamic prototype of the system and 
the dynamics of DC servomotor in which the ball is 
positioned on a beam. The equations from are described 
as equations of motion which describe the system of the 
ball  placed  on  a  beam  are presented by Manan Khan 
et al. (2012) and Almutairi and Zribi (2010) (Fig. 2): 
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where, 
α (t) :  Angle of the beam 
r (t) :  Position of the ball 
θ (t) :  Angle of servo gear 
g :  Gravitational constant 
m :  Mass occupied by ball 
M :  Mass occupied by beam 
L :  Beam length 
 

The system’s parameters are: 
Rm :  Resistance of an armature of the motor 
Jm :  Operative inertial moment 
Km :  Torque constant of motor 
Kg :  Ratio of gear 
d  :  Level arm offset 
Kb :  Back EMF constant 
J1 :  Moment of inertia of the beam 
 

The factors k1, k2, k3 and k4 are the functions of the 
system parameter as below: 
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νin :  Voltage given as input of motor 
u (t) = K3vin (t) : Control input to the ball on a beam 

system 
 
Modeling of the system by utilizing the simplified 
prototype: This section presents the designing of 
dynamic mode controllers and the stationary for the 
system of a ball on the beam by utilizing the simplified 
method (i.e., neglect the term 2α&r ). The Eq. (1) and (2) 

can be revised as:  
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State space model of the system: After the term 2α&r  is 

ignored in Eq. (4), now the condition of the system can 
be presented as:  
 

α=1x , α&=2x , rx =3
 and rx &=4

 

 
A model after the simplification of the system will 

be redrafted as:  

 
 

Fig. 1: Real ball on a beam system 
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Fig. 2: Schematic diagram of the ball on a beam system 
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And suppose that the system’s output is presented as:  
 

3xy =
                                                                (5)

 

 
Linearization of the system model: Jacobian method 
has been used to get the linear model around the origin 
Xe = [0 0 0 0]

T
, which is the stable point of the system. 

So the linear model will be as the following:  
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After the stability is checked around this point 

(local stability), the system is found locally unstable 
then globally will be unstable. 
 

DESIGN OF A FSSMC AND FDSMC BY 
UTILIZING THE SIMPLE MODEL 

 
The general design procedure of FSSMC and 

FDSMC is discussed in this section. The basic block 
diagram for a ball on a beam with FSSMC and FDSMC 
are illustrated in Fig. 3. These proposed controllers are 
approximates the discontinuous control and minimizes 

the chattering problem of SMC. And they are an 
extension of an SMC with the boundary layer as shown 
in Fig. 4. This extension will guarantee asymptotic 
stability of fuzzy controllers, which they lack in them. 
 
Fuzzy logic controller: The system has a Single-input-

Single-output. The linguistic variables for the 

components of input membership functions si are 

developed in Table 1. The output membership function 

is a singleton function, whose fuzzy sets are described 

on the normalized universe of discourse as:  

 

k±= euu  

 

where, ue is an equivalent control derived using 

equivalent control technique and k is the gain of the 

control, the output and input membership functions are 

revealed in Fig. 5. The singleton membership function 

is given as: 
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where, ui is an element of a universe of discourse. The 

general fuzzy rule for the FSSMC and FDSMC is 

defined as:  
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and ���

� are fuzzy sets. The compositional 

rule of inference, which determines the impact of the 

antecedent measure of the fuzzy rule on ensuing part of 

the fuzzy rule, is described as:  
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The crisp output value is taken out from the fuzzy 

output via the center of an area defuzzification principle 
known as:  
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Fig. 3: The block diagram of FSSMC/FDSMC for a ball on a beam system 

 
Table 1: Table of the fuzzy rules 

si PB PM Z NM NB 

ui Smaller  Small  Medium Big Bigger 

 

 
 

Fig. 4: The main idea of FSSMC and FDSMC schematic 
diagram 

 

 
 

Fig. 5: Membership functions of the fuzzy rules 

 
 

Fig. 6: State trajectory of sliding mode control 
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The outcome of the defuzzified output for fuzzy 

inputs has the form:  

 

))((/)( xsFDSMCFSSMCxsKu ffn ==             (8) 

 

Fuzzy static sliding mode controller: The SMC 

theory (Chen and Balance, 2002; Li et al., 2003) 

utilizes uneven control action to stimulate state 

trajectories toward a particular hyperplane in the state 

space and to preserve the state trajectories sliding on 

the particular hyperplane until stable equilibrium state 

is reached (Fig. 6). This standard offers assistance to 

design a FSSMC. The first controller with a sliding 

mode for a system of a ball on a beam will be designed 

by utilizing the basic prototype of the system which 

consists of a ball on a beam in Eq. (5). This controller 

aims to adjust the position of r to the required constant 

value defined as rd while causing α to reach to its 

stability value αe = 0. 

For FSSMC let the regulation error to be: 

 

dr ree −=
                                                            (9)

 

 

Then, a slidcharacterizede can be characterized as: 
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)( 33421121 drxbxbxbxs −+++=
                      (10)

 

 

where, b1, b2 and b3 are the sliding hyperplane 

parameters. In order to design the control input u (t) so 

that the state trajectories are determined and enticed 

toward the sliding hyperplane and then keep sliding on 

it, the following inequality must be satisfied: 

 

011 〈ss &
                                                              (11) 

 

So that implies: 

 

)( 12111 ssignksks −−=                               (12) 

 

where, k1 and k2 constants chosen strictly positive. 

Asymptotically causes the system’s output to become 

stable y = x3 = r to its required value rd and it results in 

stabilizing all the other states of the system. The 

simulation is carried out to form the controller and the 

surface into the MATLAB to form s-function and after 

that, a SIMULINK is used to achieve the required 

results and it is supposed that α, ��  and �� are reaching to 

zero while t→∞ otherwise r→rd. The designed 

controller encounters the undesirable and unwanted 

issue of chattering which is also faced by all the other 

variable-structure controllers. A schematic of the 

dynamic sliding-mode controller is suggested which 

resolves the issue of chattering as follows. 

 

Fuzzy dynamic sliding mode controller: For FDSMC 

defining the error sliding hyperplane as: 

 

)( 3443122122 drxaxaxaxaxs −++++= &
        (13)

 

 

Then the resultant is: 

 

)( 24232 ssignksks −−=&
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This is guaranteed that: 

 

022 〈ss &
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Hence, it is verified that the controller with a 

FDSMC ensures the asymptotic convergence of all the 

conditions of the system to their required values. This 

causes a condition of the system to become 

asymptotically stabile to their required states after the 

application of the system of a ball on a beam. 

 

Design of a FSSMC and FDSMC by utilizing the 

comprehensive model: A FDSMC and a FSSMC for 

the system of a ball on a beam, by utilizing the precise 

model of the system, are presented without ignoring the 

part 2α&r . Similar to design of FSSMC and FDSMC by 

utilizing simplified model, the error sliding hyperplane 

and the sliding hyperplane can be defined. As noticed 

previously from the earlier discussed section the 

proposed static controller was encountering the problem 

of noise in the control signal, which is practically not 

desirable. So these types of controllers with 

comprehensive model have been presented in this 

portion to resolve this issue. So that it causes the states 

of the system to become steady asymptotically up to the 

required values, once implemented in the system of a 

ball on a beam. 

 

SIMULATION RESULTS 

 

The controllers will be designed by using 

MATLAB/SIMULINK software. Parameters of the 

system are extracted from the Quanser ball on a beam 

apparatus (Motion, Rotary and Servo Plant, Year). In 

the Table 2, the detailed values of the parameters of the 

system in which the ball is placed on a beam are 

presented for simulation purpose. 

Figure 7 to 9 shows the simulation results of ball 

position rd, the output of the system controller and the 

angle of the beam α output with respect to time 

respectively, when simplified model has been used. It is 

clear that the issue of chattering has been resolved up to 

a greater extent and the desired output ball position is 

being achieved faster when FDSMC have been used in 

comprehensive models compare to FSSMC and 

conventional SMC. 

From Fig. 10 to 12, it can be concluded from the 

above observations that ball was positioned at the 

positive responses in all the circumstances are 

satisfactory and the problem of chattering has been 

overcome in the case of using the FDSMC in a 

complete model. Also, the system is healthy for the 

coordinated  disturbances  under  the design control law 

 
Table 2: Values of the parameters of the ball on a beam system  

Parameter  Value 

m kg064.0  

g 
281.9

s
m  

L m43.0  

M kg15.0  

Rm Ω9  

Jm 

2

410*35.7

s
rad

Nm−
 

Km 
A

Nm0075.0  

Kg 75 

d m3.0  

J1 2001.0 kgm  

Kb 

s
rad

V
5625.0

 



 

 

Res. J. App. Sci. Eng. Technol., 8(2): 288-295, 2014 

 

293 

 
 

Fig. 7: The response of the system for ball position in a simplified model  

 

 
 

Fig. 8: The output of the system controller in a simplified model  

 

 
 

Fig. 9: The angle of the beam output with respect to time in a simplified model 
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Fig. 10: The response of the system for ball position in a comprehensive model 

 

 
 

Fig. 11: The output of the system controller in a comprehensive model  
 

 
 

Fig. 12: The angle of the beam output with respect to time in a comprehensive model 
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and the desired reference is tracked by the ball position 

well. 

 

CONCLUSION 

 

This study presents a method to create a schematic 

of a Fuzzy Static (FS) and Fuzzy Dynamic (FD) 

Sliding-Mode Controllers (SMC) for both a complete 

and a simplified system of a ball on the beam. Firstly, a 

FSSMC is designed on the simplified and the complete 

and model. Then, a FDSMC is designed for the 

complete and the simplified Ball on a Beam system as 

well. In addition, the lyapunov stability and 

linearization have been used to check the system’s 

stability. The result drawn from this research study is 

that the design which uses the FDSMC in 

comprehensive prototype of the system is more 

efficient than the ones that were designed by utilizing 

the basic conventional prototype of the system. 

Simulations are shown using MATLAB/SIMULINK 

program. 
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