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Abstract: Today, many modern malware developers is taking the advantage of Application Programming Interface 
(API) hook technique to take the control of the victim computer which making it difficult to detect their presence. 
Because of the sophistication of rootkit tools, a remote attacker can use native API to compromise any computer 
which can later be used for many illegal activities such as sniffing network lines, capturing passwords, sending spam 
and DDoS attack, etc. Thus to protect end-system by identifying and preventing native API malicious code hooking 
is a challenging problem to the defenders. Today, many different malware-analysis tools incur specific features 
against malwares but manual and error-prone. In this study, we proposed a behavior-based monitoring detection 
system to effectively deal native API hooks in user-mode. Unlike other malware identification techniques, our 
approach involved dynamically analyzing the behavior of native API call hooking malwares. Comparing our 
experimental evaluation results with existing tools show better performance with no false positive. 
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INTRODUCTION 

 
Today malicious software code which integrates 

stealthy rootkit technique has posed a serious challenge 
to computer security defenders. Hereafter, we use terms 
malicious code and rootkit, interchangeably. As large 
number of end users are running Windows operating 
system on the Internet, malware writers are taking the 
advantage of developing Windows rootkits recently. 
According to the history of information produced by 
Microsoft, 20% of malicious malware were removed 
from Windows XP operating system are stealthy 
rootkits (wikipedia). A rootkit is a collection of 
programs which enable the remote attacker to 
conceal its presence in the victim system without the 
user’s consent so that they can able to monitor and 
control the compromised system secretly for an 
extensive time. In order to achieve their programmed 
tasks, rootkits try to alter the customary execution flow 
of the Operating System (OS) that can hide system 
resources such as processes, threads, files, kernel data 
structures and also other key information from the end-
user. Due to the surreptitious character, rootkits are 
extremely difficult to detect. 

There are two basic classifications of Windows 
rootkit:  the user mode rootkit and the kernel mode 
rootkit. User-mode rootkits work in Ring 3 mode, 
which infects the operating system outside the kernel 
level. They replace drivers, dynamic linked-library 
files and various processes with their own versions, 

which don’t show the rootkits’ presence. They also 
intercept system calls between the kernel and software 
programs, making sure the forwarded information 
doesn’t include any evidence of the rootkits. Kernel-
level rootkits are based on the OS core, which controls 
all kinds of communications among hardware, 
software, processes and itself. They boot with and 
sometimes even modify the OS kernel. This lets the 
rootkit work above other system elements, giving the 
hacker control of the computer. The rootkit can thus 
present falsify information about its presence. 

Before going further, it is necessary to understand 
how the user application is being executed by 
Windows operating system. Figure 1 shows the life 
cycle of execution path of a user-mode application that 
invokes WriteFile() system service routine which is 
implemented in kernel space. The following steps 
explain the same: 

 

• The user application calls the WriteFile() function 
in user mode. 

• The WriteFile() calls ZwWriteFile() native API 
function which has a stub in ntdll.dll.  

• Then, ZwWriteFile() calls KiFastSystemCall 

function which in turn executes the SYSENTER 

instruction. 

• In response to SYSENTER, the program control is 

transferred to KiFastCallEntry() which is located 

in ntoskrnl.exe as executive service. 



 

 

Res. J. Appl. Sci. Eng. Technol., 9(1): 33-39, 2015 

 

34 

 
 

Fig. 1: Life cycle of a system call 

 

• This will cause the KiSystemService dispatcher to 

call NtWriteFile() function using the dispatch ID. 

 

Rootkits use several variations of hooking 

techniques during its lifetime. There have been many 

rootkit detection tools available. Each time such a 

tool is run, a log file is generated to keep a list of 

detected hooks. The amount of data in these log files is 

overwhelming as they hold information about each and 

every hook that had been detected on the system. On an 

average, each of these log files contains several hundred 

lines of data. The main contribution of this study is that 

we have devised a new procedure that can be used to 

make sense of the vast amount of information in these 

log files. In this study, we propose a user-mode native 

API hook detection system to protect system resources 

from injecting malicious code that uses Import Address 

Table (IAT) hook and inline hook. The objective of the 

proposed work is API calls to get assistance from 

Windows OS. If we can detect any unauthorized use of 

these API calls, the malicious code can be detected and 

stopped before misusing kernel level system services. 

Hooking various API functions into the victim 

computer is an important attacking technique employed 

by sophisticated malware. To defeat current hook 

detectors, modern malware writers maintain discovering 

new hooking mechanisms. However, the existing 

malware analysis technique is typically manual or error- 

prone. This study proposed a behavior based monitoring 

mechanism that does not require prior information about 

hooking method to defeat user-mode hook attacks. 

 

Background information: This section outlines the 

importance of Application Programming Interface in 

Windows OS. To launch malicious instructions, 

malicious codes need to interact with the OS through 

Windows subsystem API libraries. The actual 

implementation of the native API functions reside in 

ntoskrnl.exe which is located in the kernel. Each native 

API has a reference inside ntdll.dll which is isolated in 

the user mode. After the malicious instructions are 

deposited in a victim computer, code-injection attacks 

must use native API calls to do further damage. 

Hooking is a set of code which alters the normal 

behavior of the operating system by intercepting the 

system API functions or information exchange passed 

between different system resources. Hooking can be 

used for either legal purpose, such as debugging and 

extending functionality or to host many illegal activities 

with the use of rootkit technique. Hooking can be used 

by malicious code such as rootkits, which try to hide 

themselves. As mentioned earlier, rootkits use different 

types of hooking techniques in order to remain hidden. 

In this study, we focus two user-mode API hooking 

techniques: IAT hooking and Inline function hooking. 

 

Import address table hooking: The IAT is the most 

important call table of the user space modules. The 

IAT keeps the references of all routines exported by a 

particular Dynamic Link Library (DLL). And each 

DLL that an application is linked with, particularly at 

load time, will have its own IAT. Many executable 

files have embedded one or more IATs in their 

structure that are used to store the addresses of existing 

libraries that they import from DLLs. Most of the user 

land rootkits use the IAT hooking technique to 

intercept the API function calls. IAT entries are filled 

by the Windows loader at boot time. Thus, to 

maneuver an IAT, we have to access the address space 

of the request. One way to achieve this is by using 

DLL injection technique. Normally rootkits use DLL 

injection techniques to modify the address of the
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Fig. 2: IAT hook by malicious rootkit 

 

specific function in the IAT to point to the address of 

the rootkit function where it is presented. So when the 

application calls a specific function, the rootkit 

function is called instead. 

Figure 2 shows IAT hook through CreateFile API 

function. The rootkits had managed to create a hook by 

overwriting the address of the CreateFile function in 

the IAT of the user application. If we successfully 

modify the entry point of CreateFile in the IAT with 

the address of rootkit routine, all native API calls in the 

target process are rerouted to rootkit routine. Hooking 

a module’s IATs using DLL injection can be 

accomplished by calling HookAPI() function as shown 

in Fig. 3. It pulls out the module’s starting address and 

then parses the memory image to identify necessary 

IATs.  

The walkImportLists() function checks the 

module’s PE signature by adding a Relative Virtual 

Address (RVA) to the base address. Then checking each 

import descriptor will list all routines that are imported 

from the corresponding DLL. If Import Lookup Table 

(ILT) and IAT contain entries, then the names in the 

descriptor’s IAT are compared against the name of the 

function we want to restore. If there is a match, 

substitute the address of the hooked function. 

 

Detour hooking: Detour patching is another technique 
to divert the predefined execution path to malicious code 
without altering IAT call table entries. This technique is 
implemented by inserting a JUMP statement into the 
target routine to divert the execution path. So, whenever 
the currently executing thread executes this jump 
instruction, the control is transferred to a detour routine. 
The original portion of the code from the target function 
which we want to redeposit, in coincidence with the 
jump instruction returns back to the target code, is 
known as ‘trampoline’. So the initial jump in the 
trampoline replaces a certain code when it is inserted 
and at the end, we execute the necessary instructions 
which was replaced and then bounce back to the target 
code.    Figure   4   depicts   this   technique.  Using   this  

 

 

 

 

 

 
 
Fig. 3: Hook API function 

 

 
 
Fig. 4: Inline function hook by detour code 

 
technique we can arbitrarily intercept the flow of 
execution. 
 

LITERATURE REVIEW 
 

There have been few ideas proposed to detect native 
API hooks in Windows operating system. Ye et al. 
(2007) described an association mining based technique 
to analyze API execution flow. By associating API 
sequence using Portable Executable (PE) parser, they 
construct association rules and finally the malicious 
malware is identified. But this approach did not focus on 
various characteristic of a stealthy rootkit. As most 
computer malware has developed with the intent of 
infecting a Windows operating system, Kumar (2010) 
proposed a cross-view comparison based method to 

HookAPI (File *fptr, char* apiName) 

{ 
DWORD bAddress; 

bAddress = (DWORD) GetModuleHandle (NULL) 

return (walkImportLists (fptr, bAddress, apiName)) 
} 
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identify hidden processes in user-mode. Liu et al. (2012) 
presented a review of rootkit detection techniques. Also, 
the authors developed X-Anti, a multi-way based 
detection method to detect different rootkits. In order to 
maintain their system, each node’s information needs to 
be updated frequently and timely. Yi et al. (2010) 
presented a review to analyze Windows rootkits and 
various stealth techniques to attack the windows system. 
They also discussed various detection techniques that 
have been used by the detection tools today. 
Unfortunately, these techniques also bring new 
challenges to the detection and defense against rootkits. 

White et al. (2012) developed a plug-in to 
effectively identify the contents of all user allocations. 
But it will not describe every possible allocation. 
Additionally paging issues, data structure invariant and 
some undocumented APIs in Windows environment 
were not discussed. Hejazi et al. (2009) reviewed API 
calls on the stack to locate some data structure, 
especially those which handles encryption. Their 
approach works without knowing the structure of data 
which was in user space. This limits their ability to 
retrieve user data. Deng et al. (2012) developed 
IntroLib, a tool to reveal user-level library call and 
behaviors which are generated by a malware based on 
hardware virtualization. In order to intercept library calls 
made by malware, IntroLib used page-table mechanism 
at the hypervisor level. This, however fails to detect 
malware that could obfuscate its memory structure and 
library calls directly invoked by malware. 

Researchers have proposed a few solutions to 

protect Windows APIs. Wang et al. (2006) presented a 

static analysis method to detect malicious programs. 

Their method collects the calling sequences of native 

APIs from legitimate programs and sets up a data model 

using Support Vector Machine (SVM). Then, it detects 

malicious code by analyzing its calling sequences. 

Unfortunately, this method is unable to stop malicious 

code in real time and malicious code an easily mimic a 

legitimate calling sequence. 

A kernel-mode protection system, named WHIPS 

introduced in Windows environment (Battistoni et al., 

2004). WHIPS inspect every system request in the 

kernel. It validates the caller’s the service it requests, 

process name and the parameters of the requests using a 

predefined access control database. It blocks requests 

that are invalid. The major challenge in using WHIPS is 

to define the access control database appropriately, in 

particular to decide the parameters safeness. 
Malware is the commonly used weapon by 

attackers to compromise the victim machine in a 
network. As signature-based detection is not good 
against unknown malware, Ma et al. (2012) developed 
compiler level prototype tool (Auto Shadow) to generate 
the shadow process of malware related to original 
malware. This can be accomplished by generating a 
behavior-based sequence graph of the system call. Their 
solution detects malicious behavior by matching the 
system call with existing malicious behavior. This 

technique is more robust and more evade detecting 
known attacks. 

Host level intrusion detection mechanism is used 
for detecting the general classes of malicious code. 
Malicious code can interact with Windows OS through 
Windows API. Rabek et al. (2003) presented a static 
analysis approach to monitor system calls at run 
time and to identify software executables. This approach 
is simple, practical and effective for user land malware 
detection. But it fails to perform, if malicious code 
directly invokes the kernel level service request. 
Wagner and Soto (2002) proposed a method to handle 
mimicry attacks in Linux environment. Their method 
records addresses of system call services into Interrupt 
Address Table (IAT). Whenever a process is waiting to 
get system service it was intercepted by their framework 
and checks whether the caller address is in the IAT. This 
method was not tested over Windows systems. Method 
such as Mansoori et al. (2012) can also be used to 
understand the activities of a malware that comes from 
un-trusted outside network using Honeypot. 

 
PROPOSED METHODOLOGY 

 
To monitor and detect native API hooking in the 

user space, we intercept native API calls in user mode 
and looking the traces of IAT entry modification and 
inline hooking. This section describes the principle and 
architecture of the proposed method. The proposed 
system is supposed to be installed in a clean system. The 
proposed system seizes native API system calls in user 
mode before they get service from the kernel. Figure 5 
shows the proposed architecture of our system which 
consists of three important modules: DLL classification, 
IAT hook detector and inline hook detector. 
 
DLL classification: Intercepting every system service 
calls   that   use   native   API   is   a   tedious   and   time 
 

 
 

Fig. 5: Bare bones of the architecture 
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consuming process. So in order to allow legitimate 
system service calls to be serviced as normal, we have 
developed a new algorithm named it as “DLL 
Classification Algorithm”: 
 
/*DLL Classification Algorithm*/ 
Input(s): Imported DllName 
Output: Classification of DLL’s either as legitimate or 
malicious returntype FunctionName (DLL) 
{ 

//declarations 
Get dllName and handle  
using GetFileVersionInfo() check whether 

((szDllName, dwHandle, dwCount, pBuffer) ! = 0) 
{ 

If not, use VerQueryValue() extract VarFileInfo and 
ValueLen; 

if (bVer && dwValueLen ! = 0) 
{ 

print dll file informations 
if (extracred dll informations are valid) 
{ 
legitimate dll 
} 

}   
} 

malicious dll 
} 
 

Since most of the malicious code cannot include 

properties such as vendor name, description and version 

details, the DLL/process classification algorithm 

verifies their properties to check whether the given 

process is malicious or not. To get the vendor name of 

the process, the GetFileVersionInfo() function is called 

to get the file version information buffer which contains 

all the property values of a dll. To get the specified 

property value of a dll, the VerQueryValue() function is 

invoked. Finally VerQueryValue function tells whether 

the dll is either legitimate or malicious. 
 
IAT hook detector: The IAT Hook Detector (IHD) is 
the first level of defense module against native API 
hook in the user-mode. All processes which are 
classified as suspicious are given as input to this 
module. To detect native API hooks in IAT, the IHD 
performs the following steps: 
 

• The IHD obtains a list of currently running 

processes by calling the EnumProcesses function.  

• For each process, the PrintProcessNameAndID 
function is called by passing it to the process 
identifiers which in turn call functions 
OpenProcess to get the process handle, 
EnumProcessModules to extract the module 
handles and GetModuleBaseName to find the name 
of the executable file along with process id. 

• Then IHD compares each process with unknown 
processes. If legitimate, the LoadLibrary function 

is invoked to load the process into memory. After 
reading the MS-DOS header (MZ), PE, PE 
extended and section header from the executable, 
IHD determines DLL of an application which has 
been loaded and also the address range of each 
DLL in memory. Then IHD examines the IAT of 
the executable to examine the entries in each IAT. 

• Finally, if any entry drops outside of the module’s 
address collection, the IHD stop executing the 
DLL; otherwise it will be serviced as a legitimate 
system service call. 

 
Inline hook detector: As an alternative approach to 
IAT hooking, many malware writers keep call table 
entries within the requested range and instead modify 
the code that it points to. Inline Hook detector (LHC) is 
another level of defense to strengthen our system. First, 
LHC reads the executable file to reach the Export 
Address Table (EAT). So it calls the ExportAddrTable 
function to get addresses of each function in EAT 
which are invoking native APIs. To detect the detour 
patches in every DLL’s function, LHC uses the 
CheckForOutside function to trap 0xE9 or 0xEA which 
will be opcode for the unconditional near and far jump 
respectively, in the first five bytes of the DLL’s API 
function. Finally LHC will get the address where the 
CPU will jump to the function and then checks the CPU 
jump address with the acceptable range to determine 
whether it lies outside the address range of the DLL. If 
any function which are not in the predetermined address 
range is considered to be malicious. 
 
Limitation: Even   though   our   system   successfully 
defeat native API hooks in user-mode, it still suffers 
from the following limitations. First, the proposed 
system is assumed to be installed in a clean system. 
Any hook which attempts to alter some bytes randomly 
instead of the first five bytes of a DLL function could 
not be detected as malicious. Additionally, the 
proposed method cannot detect malicious code attacks 
that directly target kernel-mode data structures, 
specifically System Service Dispatch Table (SSDT). 
Hence, to provide a tight protection, it needs to work 
with anti kernel hooking mechanism. 
 

RESULTS AND DISCUSSION 
 

We have setup an assorted experimental  
environment in a computer with  Microsoft  Windows 7 

 
Table 1: Malware family with hook type 

Malware family name Type of hook 

Papras IAT 
Bacalid/DetNat IAT 
Haxdoor-B INLINE 
Agent IAT 
Feebs-A INLINE 
Qukart INLINE 
Virut INLINE 
Alman-B IAT 
ProAgent INLINE 
Alman-A IAT 
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Fig. 6: Total number of hooks generated by different malwares 
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Fig. 7: ROC performance analysis using ROC 

 
Table 2: Malware detection analysis 

 Tool 
--------------------------------------------------------------------------------------------------------------------------------------- 

Malware BlackLight IcsSword VICE R3 hook scanner Proposed system 

Papras Yes Yes Yes Yes Yes 
Bacalid/DetNat Yes No Yes No Yes 
Haxdoor-B No No No No No 
Agent Yes Yes Yes No Yes 
Feebs-A Yes Yes No Yes Yes 
Qulart No No Yes No Yes 
Virut Yes No No No No 
Alman-B No Yes Yes Yes Yes 
ProAgent No No No No Yes 
Alman-A No No Yes No Yes 

 

SP3 with ACER core 2 Duo 2.93 GHz CPU and 2 GB 

RAM. The virtual machine runs windows  XP.  In  

order  to  evaluate  the  effectiveness  and  performance  

of the proposed mechanism, we have obtained 20   

user-mode  malware  samples  (two  samples  from   

each family) as shown in Table 1 from 

http://www.offensivecomputing.net. 

We have run each malware sample in a controlled 

environment to detect the hooks generated by them in 

the victim machine. Few malware executable does not 

hook library functions when it starts running. But, as 

time increases, the number of hooks also increased. 

Figure 6 shows the result of the total number of hooks 

generated by each malware sample. 

To test the precision rate of the presented approach, 

we have run the malware samples against existing tools 

BlackLight, IceSword, VICE tool, R3 Hook scanner 

and also against the proposed mechanism. Table 2 

shows the resulting data. 

We also tried to assess the number of False 

Positive (FP) that the proposed prototype would 

fabricate. In order to determine FP, we have taken 10 

legitimate API hooks which implemented as a C++ file 

in Microsoft Visual studio. Every time we executed a 

C++ file, our proposed method identifies all with no 

false positives. We have produced the standard ROC 

curve analysis to estimate the accurateness of our 

approach. Generating a ROC curve is a useful model to 

estimate the transaction between the false positive rate 

and the true positive rate. We have shown ROC curve 

in Fig. 7 for different existing methods, including our 

system. 

The ROC curve confirms that the proposed system 

achieves 100% accuracy rate with no false positive 

while detecting native API hooks in user-mode, 

especially in Windows operating system. 

 

CONCLUSION 
 

With an increasing amount of malware adopting 

rootkit techniques to evade antivirus software, further 

research into defenses against rootkit attacks is 

absolutely essential. In this study, we have devised a 

method to trace and prevent user-mode malware with 

native API hook functionality in windows operating 

system. There are several tools available which can be 

used to detect these types of hooks, but these tools 

cannot focus rootkits with native API hooks. We have 

evaluated our work using 10 real-world windows user-

mode malware rootkit samples. The performance shows 

that the proposed approach incurs 20% better 

performance. With an increasing amount of malware 

adopting rootkit technologies to evade antivirus 

software, further research into defenses against rootkit 

attacks is absolutely essential. In the future, we plan to 

design a kernel level Process Authentication 

Mechanism (PAM) to prevent malicious code attacks. 

To optimize our PAM, we plan to devise a novel 

System Call Classification algorithm that will verify 

only suspected processes. 
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