
Research Journal of Applied Sciences, Engineering and Technology 9(1): 33-39, 2015

DOI:10.19026/rjaset.9.1373

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2015 Maxwell Scientific Publication Corp.

Submitted: June 25, 2014 Accepted: September 20, 2014 Published: January 05, 2015

Corresponding Author: K. Muthumanickam, Department of Computer Science and Engineering, Pondicherry Engineering

College, Puducherry-605 014, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

33

Research Article
An Effective Method for Protecting Native API Hook Attacks in User-mode

K. Muthumanickam and E. Ilavarasan
Department of Computer Science and Engineering, Pondicherry Engineering College,

Puducherry-605 014, India

Abstract: Today, many modern malware developers is taking the advantage of Application Programming Interface
(API) hook technique to take the control of the victim computer which making it difficult to detect their presence.
Because of the sophistication of rootkit tools, a remote attacker can use native API to compromise any computer
which can later be used for many illegal activities such as sniffing network lines, capturing passwords, sending spam
and DDoS attack, etc. Thus to protect end-system by identifying and preventing native API malicious code hooking
is a challenging problem to the defenders. Today, many different malware-analysis tools incur specific features
against malwares but manual and error-prone. In this study, we proposed a behavior-based monitoring detection
system to effectively deal native API hooks in user-mode. Unlike other malware identification techniques, our
approach involved dynamically analyzing the behavior of native API call hooking malwares. Comparing our
experimental evaluation results with existing tools show better performance with no false positive.

Keywords: API hook, dynamic analysis, malicious code, rootkit, user-mode

INTRODUCTION

Today malicious software code which integrates

stealthy rootkit technique has posed a serious challenge
to computer security defenders. Hereafter, we use terms
malicious code and rootkit, interchangeably. As large
number of end users are running Windows operating
system on the Internet, malware writers are taking the
advantage of developing Windows rootkits recently.
According to the history of information produced by
Microsoft, 20% of malicious malware were removed
from Windows XP operating system are stealthy
rootkits (wikipedia). A rootkit is a collection of
programs which enable the remote attacker to
conceal its presence in the victim system without the
user’s consent so that they can able to monitor and
control the compromised system secretly for an
extensive time. In order to achieve their programmed
tasks, rootkits try to alter the customary execution flow
of the Operating System (OS) that can hide system
resources such as processes, threads, files, kernel data
structures and also other key information from the end-
user. Due to the surreptitious character, rootkits are
extremely difficult to detect.

There are two basic classifications of Windows
rootkit: the user mode rootkit and the kernel mode
rootkit. User-mode rootkits work in Ring 3 mode,
which infects the operating system outside the kernel
level. They replace drivers, dynamic linked-library
files and various processes with their own versions,

which don’t show the rootkits’ presence. They also
intercept system calls between the kernel and software
programs, making sure the forwarded information
doesn’t include any evidence of the rootkits. Kernel-
level rootkits are based on the OS core, which controls
all kinds of communications among hardware,
software, processes and itself. They boot with and
sometimes even modify the OS kernel. This lets the
rootkit work above other system elements, giving the
hacker control of the computer. The rootkit can thus
present falsify information about its presence.

Before going further, it is necessary to understand
how the user application is being executed by
Windows operating system. Figure 1 shows the life
cycle of execution path of a user-mode application that
invokes WriteFile() system service routine which is
implemented in kernel space. The following steps
explain the same:

• The user application calls the WriteFile() function
in user mode.

• The WriteFile() calls ZwWriteFile() native API
function which has a stub in ntdll.dll.

• Then, ZwWriteFile() calls KiFastSystemCall

function which in turn executes the SYSENTER

instruction.

• In response to SYSENTER, the program control is

transferred to KiFastCallEntry() which is located

in ntoskrnl.exe as executive service.

Res. J. Appl. Sci. Eng. Technol., 9(1): 33-39, 2015

34

Fig. 1: Life cycle of a system call

• This will cause the KiSystemService dispatcher to

call NtWriteFile() function using the dispatch ID.

Rootkits use several variations of hooking

techniques during its lifetime. There have been many

rootkit detection tools available. Each time such a

tool is run, a log file is generated to keep a list of

detected hooks. The amount of data in these log files is

overwhelming as they hold information about each and

every hook that had been detected on the system. On an

average, each of these log files contains several hundred

lines of data. The main contribution of this study is that

we have devised a new procedure that can be used to

make sense of the vast amount of information in these

log files. In this study, we propose a user-mode native

API hook detection system to protect system resources

from injecting malicious code that uses Import Address

Table (IAT) hook and inline hook. The objective of the

proposed work is API calls to get assistance from

Windows OS. If we can detect any unauthorized use of

these API calls, the malicious code can be detected and

stopped before misusing kernel level system services.

Hooking various API functions into the victim

computer is an important attacking technique employed

by sophisticated malware. To defeat current hook

detectors, modern malware writers maintain discovering

new hooking mechanisms. However, the existing

malware analysis technique is typically manual or error-

prone. This study proposed a behavior based monitoring

mechanism that does not require prior information about

hooking method to defeat user-mode hook attacks.

Background information: This section outlines the

importance of Application Programming Interface in

Windows OS. To launch malicious instructions,

malicious codes need to interact with the OS through

Windows subsystem API libraries. The actual

implementation of the native API functions reside in

ntoskrnl.exe which is located in the kernel. Each native

API has a reference inside ntdll.dll which is isolated in

the user mode. After the malicious instructions are

deposited in a victim computer, code-injection attacks

must use native API calls to do further damage.

Hooking is a set of code which alters the normal

behavior of the operating system by intercepting the

system API functions or information exchange passed

between different system resources. Hooking can be

used for either legal purpose, such as debugging and

extending functionality or to host many illegal activities

with the use of rootkit technique. Hooking can be used

by malicious code such as rootkits, which try to hide

themselves. As mentioned earlier, rootkits use different

types of hooking techniques in order to remain hidden.

In this study, we focus two user-mode API hooking

techniques: IAT hooking and Inline function hooking.

Import address table hooking: The IAT is the most

important call table of the user space modules. The

IAT keeps the references of all routines exported by a

particular Dynamic Link Library (DLL). And each

DLL that an application is linked with, particularly at

load time, will have its own IAT. Many executable

files have embedded one or more IATs in their

structure that are used to store the addresses of existing

libraries that they import from DLLs. Most of the user

land rootkits use the IAT hooking technique to

intercept the API function calls. IAT entries are filled

by the Windows loader at boot time. Thus, to

maneuver an IAT, we have to access the address space

of the request. One way to achieve this is by using

DLL injection technique. Normally rootkits use DLL

injection techniques to modify the address of the

Res. J. Appl. Sci. Eng. Technol., 9(1): 33-39, 2015

35

Fig. 2: IAT hook by malicious rootkit

specific function in the IAT to point to the address of

the rootkit function where it is presented. So when the

application calls a specific function, the rootkit

function is called instead.

Figure 2 shows IAT hook through CreateFile API

function. The rootkits had managed to create a hook by

overwriting the address of the CreateFile function in

the IAT of the user application. If we successfully

modify the entry point of CreateFile in the IAT with

the address of rootkit routine, all native API calls in the

target process are rerouted to rootkit routine. Hooking

a module’s IATs using DLL injection can be

accomplished by calling HookAPI() function as shown

in Fig. 3. It pulls out the module’s starting address and

then parses the memory image to identify necessary

IATs.

The walkImportLists() function checks the

module’s PE signature by adding a Relative Virtual

Address (RVA) to the base address. Then checking each

import descriptor will list all routines that are imported

from the corresponding DLL. If Import Lookup Table

(ILT) and IAT contain entries, then the names in the

descriptor’s IAT are compared against the name of the

function we want to restore. If there is a match,

substitute the address of the hooked function.

Detour hooking: Detour patching is another technique
to divert the predefined execution path to malicious code
without altering IAT call table entries. This technique is
implemented by inserting a JUMP statement into the
target routine to divert the execution path. So, whenever
the currently executing thread executes this jump
instruction, the control is transferred to a detour routine.
The original portion of the code from the target function
which we want to redeposit, in coincidence with the
jump instruction returns back to the target code, is
known as ‘trampoline’. So the initial jump in the
trampoline replaces a certain code when it is inserted
and at the end, we execute the necessary instructions
which was replaced and then bounce back to the target
code. Figure 4 depicts this technique. Using this

Fig. 3: Hook API function

Fig. 4: Inline function hook by detour code

technique we can arbitrarily intercept the flow of
execution.

LITERATURE REVIEW

There have been few ideas proposed to detect native
API hooks in Windows operating system. Ye et al.
(2007) described an association mining based technique
to analyze API execution flow. By associating API
sequence using Portable Executable (PE) parser, they
construct association rules and finally the malicious
malware is identified. But this approach did not focus on
various characteristic of a stealthy rootkit. As most
computer malware has developed with the intent of
infecting a Windows operating system, Kumar (2010)
proposed a cross-view comparison based method to

HookAPI (File *fptr, char* apiName)

{
DWORD bAddress;

bAddress = (DWORD) GetModuleHandle (NULL)

return (walkImportLists (fptr, bAddress, apiName))
}

Res. J. Appl. Sci. Eng. Technol., 9(1): 33-39, 2015

36

identify hidden processes in user-mode. Liu et al. (2012)
presented a review of rootkit detection techniques. Also,
the authors developed X-Anti, a multi-way based
detection method to detect different rootkits. In order to
maintain their system, each node’s information needs to
be updated frequently and timely. Yi et al. (2010)
presented a review to analyze Windows rootkits and
various stealth techniques to attack the windows system.
They also discussed various detection techniques that
have been used by the detection tools today.
Unfortunately, these techniques also bring new
challenges to the detection and defense against rootkits.

White et al. (2012) developed a plug-in to
effectively identify the contents of all user allocations.
But it will not describe every possible allocation.
Additionally paging issues, data structure invariant and
some undocumented APIs in Windows environment
were not discussed. Hejazi et al. (2009) reviewed API
calls on the stack to locate some data structure,
especially those which handles encryption. Their
approach works without knowing the structure of data
which was in user space. This limits their ability to
retrieve user data. Deng et al. (2012) developed
IntroLib, a tool to reveal user-level library call and
behaviors which are generated by a malware based on
hardware virtualization. In order to intercept library calls
made by malware, IntroLib used page-table mechanism
at the hypervisor level. This, however fails to detect
malware that could obfuscate its memory structure and
library calls directly invoked by malware.

Researchers have proposed a few solutions to

protect Windows APIs. Wang et al. (2006) presented a

static analysis method to detect malicious programs.

Their method collects the calling sequences of native

APIs from legitimate programs and sets up a data model

using Support Vector Machine (SVM). Then, it detects

malicious code by analyzing its calling sequences.

Unfortunately, this method is unable to stop malicious

code in real time and malicious code an easily mimic a

legitimate calling sequence.

A kernel-mode protection system, named WHIPS

introduced in Windows environment (Battistoni et al.,

2004). WHIPS inspect every system request in the

kernel. It validates the caller’s the service it requests,

process name and the parameters of the requests using a

predefined access control database. It blocks requests

that are invalid. The major challenge in using WHIPS is

to define the access control database appropriately, in

particular to decide the parameters safeness.
Malware is the commonly used weapon by

attackers to compromise the victim machine in a
network. As signature-based detection is not good
against unknown malware, Ma et al. (2012) developed
compiler level prototype tool (Auto Shadow) to generate
the shadow process of malware related to original
malware. This can be accomplished by generating a
behavior-based sequence graph of the system call. Their
solution detects malicious behavior by matching the
system call with existing malicious behavior. This

technique is more robust and more evade detecting
known attacks.

Host level intrusion detection mechanism is used
for detecting the general classes of malicious code.
Malicious code can interact with Windows OS through
Windows API. Rabek et al. (2003) presented a static
analysis approach to monitor system calls at run
time and to identify software executables. This approach
is simple, practical and effective for user land malware
detection. But it fails to perform, if malicious code
directly invokes the kernel level service request.
Wagner and Soto (2002) proposed a method to handle
mimicry attacks in Linux environment. Their method
records addresses of system call services into Interrupt
Address Table (IAT). Whenever a process is waiting to
get system service it was intercepted by their framework
and checks whether the caller address is in the IAT. This
method was not tested over Windows systems. Method
such as Mansoori et al. (2012) can also be used to
understand the activities of a malware that comes from
un-trusted outside network using Honeypot.

PROPOSED METHODOLOGY

To monitor and detect native API hooking in the

user space, we intercept native API calls in user mode
and looking the traces of IAT entry modification and
inline hooking. This section describes the principle and
architecture of the proposed method. The proposed
system is supposed to be installed in a clean system. The
proposed system seizes native API system calls in user
mode before they get service from the kernel. Figure 5
shows the proposed architecture of our system which
consists of three important modules: DLL classification,
IAT hook detector and inline hook detector.

DLL classification: Intercepting every system service
calls that use native API is a tedious and time

Fig. 5: Bare bones of the architecture

Res. J. Appl. Sci. Eng. Technol., 9(1): 33-39, 2015

37

consuming process. So in order to allow legitimate
system service calls to be serviced as normal, we have
developed a new algorithm named it as “DLL
Classification Algorithm”:

/*DLL Classification Algorithm*/
Input(s): Imported DllName
Output: Classification of DLL’s either as legitimate or
malicious returntype FunctionName (DLL)
{

//declarations
Get dllName and handle
using GetFileVersionInfo() check whether

((szDllName, dwHandle, dwCount, pBuffer) ! = 0)
{

If not, use VerQueryValue() extract VarFileInfo and
ValueLen;

if (bVer && dwValueLen ! = 0)
{

print dll file informations
if (extracred dll informations are valid)
{
legitimate dll
}

}
}

malicious dll
}

Since most of the malicious code cannot include

properties such as vendor name, description and version

details, the DLL/process classification algorithm

verifies their properties to check whether the given

process is malicious or not. To get the vendor name of

the process, the GetFileVersionInfo() function is called

to get the file version information buffer which contains

all the property values of a dll. To get the specified

property value of a dll, the VerQueryValue() function is

invoked. Finally VerQueryValue function tells whether

the dll is either legitimate or malicious.

IAT hook detector: The IAT Hook Detector (IHD) is
the first level of defense module against native API
hook in the user-mode. All processes which are
classified as suspicious are given as input to this
module. To detect native API hooks in IAT, the IHD
performs the following steps:

• The IHD obtains a list of currently running

processes by calling the EnumProcesses function.

• For each process, the PrintProcessNameAndID
function is called by passing it to the process
identifiers which in turn call functions
OpenProcess to get the process handle,
EnumProcessModules to extract the module
handles and GetModuleBaseName to find the name
of the executable file along with process id.

• Then IHD compares each process with unknown
processes. If legitimate, the LoadLibrary function

is invoked to load the process into memory. After
reading the MS-DOS header (MZ), PE, PE
extended and section header from the executable,
IHD determines DLL of an application which has
been loaded and also the address range of each
DLL in memory. Then IHD examines the IAT of
the executable to examine the entries in each IAT.

• Finally, if any entry drops outside of the module’s
address collection, the IHD stop executing the
DLL; otherwise it will be serviced as a legitimate
system service call.

Inline hook detector: As an alternative approach to
IAT hooking, many malware writers keep call table
entries within the requested range and instead modify
the code that it points to. Inline Hook detector (LHC) is
another level of defense to strengthen our system. First,
LHC reads the executable file to reach the Export
Address Table (EAT). So it calls the ExportAddrTable
function to get addresses of each function in EAT
which are invoking native APIs. To detect the detour
patches in every DLL’s function, LHC uses the
CheckForOutside function to trap 0xE9 or 0xEA which
will be opcode for the unconditional near and far jump
respectively, in the first five bytes of the DLL’s API
function. Finally LHC will get the address where the
CPU will jump to the function and then checks the CPU
jump address with the acceptable range to determine
whether it lies outside the address range of the DLL. If
any function which are not in the predetermined address
range is considered to be malicious.

Limitation: Even though our system successfully
defeat native API hooks in user-mode, it still suffers
from the following limitations. First, the proposed
system is assumed to be installed in a clean system.
Any hook which attempts to alter some bytes randomly
instead of the first five bytes of a DLL function could
not be detected as malicious. Additionally, the
proposed method cannot detect malicious code attacks
that directly target kernel-mode data structures,
specifically System Service Dispatch Table (SSDT).
Hence, to provide a tight protection, it needs to work
with anti kernel hooking mechanism.

RESULTS AND DISCUSSION

We have setup an assorted experimental
environment in a computer with Microsoft Windows 7

Table 1: Malware family with hook type

Malware family name Type of hook

Papras IAT
Bacalid/DetNat IAT
Haxdoor-B INLINE
Agent IAT
Feebs-A INLINE
Qukart INLINE
Virut INLINE
Alman-B IAT
ProAgent INLINE
Alman-A IAT

Res. J. Appl. Sci. Eng. Technol., 9(1): 33-39, 2015

38

Fig. 6: Total number of hooks generated by different malwares

88
0 5 10 15

False positive rate (%)

T
ru
e
po

si
tv
e
ra
te
 (
%
)

90

92

94

96

98

100 Black light

Ice sword

VICE

R3 hook scanner

Proposed system

Fig. 7: ROC performance analysis using ROC

Table 2: Malware detection analysis

 Tool

Malware BlackLight IcsSword VICE R3 hook scanner Proposed system

Papras Yes Yes Yes Yes Yes
Bacalid/DetNat Yes No Yes No Yes
Haxdoor-B No No No No No
Agent Yes Yes Yes No Yes
Feebs-A Yes Yes No Yes Yes
Qulart No No Yes No Yes
Virut Yes No No No No
Alman-B No Yes Yes Yes Yes
ProAgent No No No No Yes
Alman-A No No Yes No Yes

SP3 with ACER core 2 Duo 2.93 GHz CPU and 2 GB

RAM. The virtual machine runs windows XP. In

order to evaluate the effectiveness and performance

of the proposed mechanism, we have obtained 20

user-mode malware samples (two samples from

each family) as shown in Table 1 from

http://www.offensivecomputing.net.

We have run each malware sample in a controlled

environment to detect the hooks generated by them in

the victim machine. Few malware executable does not

hook library functions when it starts running. But, as

time increases, the number of hooks also increased.

Figure 6 shows the result of the total number of hooks

generated by each malware sample.

To test the precision rate of the presented approach,

we have run the malware samples against existing tools

BlackLight, IceSword, VICE tool, R3 Hook scanner

and also against the proposed mechanism. Table 2

shows the resulting data.

We also tried to assess the number of False

Positive (FP) that the proposed prototype would

fabricate. In order to determine FP, we have taken 10

legitimate API hooks which implemented as a C++ file

in Microsoft Visual studio. Every time we executed a

C++ file, our proposed method identifies all with no

false positives. We have produced the standard ROC

curve analysis to estimate the accurateness of our

approach. Generating a ROC curve is a useful model to

estimate the transaction between the false positive rate

and the true positive rate. We have shown ROC curve

in Fig. 7 for different existing methods, including our

system.

The ROC curve confirms that the proposed system

achieves 100% accuracy rate with no false positive

while detecting native API hooks in user-mode,

especially in Windows operating system.

CONCLUSION

With an increasing amount of malware adopting

rootkit techniques to evade antivirus software, further

research into defenses against rootkit attacks is

absolutely essential. In this study, we have devised a

method to trace and prevent user-mode malware with

native API hook functionality in windows operating

system. There are several tools available which can be

used to detect these types of hooks, but these tools

cannot focus rootkits with native API hooks. We have

evaluated our work using 10 real-world windows user-

mode malware rootkit samples. The performance shows

that the proposed approach incurs 20% better

performance. With an increasing amount of malware

adopting rootkit technologies to evade antivirus

software, further research into defenses against rootkit

attacks is absolutely essential. In the future, we plan to

design a kernel level Process Authentication

Mechanism (PAM) to prevent malicious code attacks.

To optimize our PAM, we plan to devise a novel

System Call Classification algorithm that will verify

only suspected processes.

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12

Malware samples

N
u
m
b
er
 o
f
h
o
o
k
s
g
en
er
a
te
d

Res. J. Appl. Sci. Eng. Technol., 9(1): 33-39, 2015

39

REFERENCES

Battistoni, R., E. Gabrielli and L.V. Mancini, 2004. A

host intrusion prevention system for windows

operating systems. Proceeding of 9th European

Symposium on Research in Computer Security

(ESORICS ’04), pp: 352-368.

Deng, Z., D. Xu, X. Zhang and X. Jiang, 2012.

IntroLib: Efficient and transparent library calls

introspection for malware forensics. Digit. Invest.,

9: S13-S23.

Hejazi, S.M., C. Talhi and M. Debbai, 2009. Extraction

of forensically sensitive information from

windows physical memory. Digit. Invest., 6:

S121-S131.

Kumar, E.U., 2010. User-mode Memory Scanning on

32-bit & 64-bit windows. J. Comput. Virol., 6(2):

123-141.

Liu, L., Z. Yin, S. Yuli, H. Lin and H. Wang, 2012.

Research and design of rootkit detection method.

Phys. Proc., 33: 852-857.

Ma, W., P. Duan, S. Liu, G. Gu and J.C. Liu, 2012.

Automatically evading system-call-behavior based

Malware detection. J. Comput. Virol., 8: 1-13.

Mansoori, M., O. Zakaria and A. Gani, 2012.

Improving exposure of intrusion deception system

through implementation of hybrid honeypot. Int.

Arab J. Inf. Techn., 9(5).

Rabek, J.C., R.I. Khazan, S.M. Lewandowski and

R.K. Cunningham, 2003. Detection of Injected,

dynamically generated, and obfuscated malicious

code. Proceeding of the 2003 ACM Workshop on

Rapid Malcode, pp: 76-82.

Wagner, D. and P. Soto, 2002. Mimicry attacks on

host-based intrusion detection systems. Proceeding

of 9th ACM Conference on Computer and

Communications Security, pp: 255-264.

Wang, M., C. Zhang and J. Yu, 2006. Native API

based windows anomaly intrusion detection

method using SVM. Proceeding of IEEE

International Conference on Sensor Networks,

Ubiquitous and Trustworthy Computing

(SUTC’06), 1: 514-519.

White, A., B. Schatz and E. Foo, 2012. Surveying the

user space through user allocations. Digit. Invest.,

9: S3-S12.

Ye, Y., D. Wang, T. Li and D. Ye, 2007. IMDS:

Intelligent malware detection system. Proceeding

of the 13th ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining, pp: 1043-1047.

Yi, X., H. Da-Rong and S. Jun, 2010. Analysis of

windows rootkits stealth and detection

technologies. Proceeding of the 2nd International

Conference on Applied Robotics for Power

Industry, 2010.

