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Abstract: In this study an area optimized Dadda multiplier with a data aware Brent Kung adder in the final addition 
stage of the Dadda algorithm for improved efficiency has been described in 45 nm technology. Currently the trend is 
to shift towards low area designs due to the increasing cost of scaled CMOS. An area reduced full adder is the key 
component in our design. It uses lesser number of gates than conventional design and hence lesser area and delay. 
The data aware Brent Kung adder in the final addition stage helps in reducing dynamic power as it reduces 
switching activity depending on the inputs. We have compared the results to the existing benchmark designs and our 
experimental results show that we have been capable of reducing the area by 13.011% and total power by 26.1% 
with only a slight increase in the delay. 
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INTRODUCTION 

 
Column compression multipliers are gaining 

popularity in high performance digital systems due to 
their higher speeds (Parhami, 2000; Swartzlander Jr. 
and Goto, 2002). Wallace and Dadda are the two main 
types of the column compression multipliers. A close 
consideration of the Wallace and Dadda multipliers has 
been carried out since the 2000’s and it’s been proven 
that the Dadda multiplier is faster and hardware 
requirement is lesser in comparison to Wallace 
multiplier (Bickerstaff et al., 2001; Townsend et al., 
2003). Hence we have chosen the Dadda multiplier for 
our design.  

The increasing cost of scaled CMOS and the 
current shift towards smaller chip sizes has increased 
the demand for area reduction in digital systems. The 
main components of the Dadda multiplier is the full 
adder and half adder modules that are used for 
performing the reductions of the partial products 
(Arunachalam Kirubaveni, 2013). Therefore significant 
reductions in area can be made by optimizing the 
conventional full adder and half adder modules. 
 

MATERIALS AND METHODS 
 
Generalized architecture: The Dadda multiplier 
(Parhami, 2000) is a hardware multiplier design 
invented by computer scientist (Dadda, 1965).  

It is similar to the Wallace multiplier, but it is 
slightly faster (for all operand sizes) and requires fewer 
gates (for all but the smallest operand sizes) 
(Bickerstaff et al., 2001; Townsend et al., 2003). Dadda 
partial product reduction scheme is shown in Fig. 1. 

 
 

Fig. 1: Reduction of partial products of 4×4 dadda approach 

 
The three main steps in DADDA are as follows 

(Ramkumar et al., 2011; Dadda, 1965): 
 

• Generation of the partial products in parallel using 
an array of AND gates.  

• Reduction of the partial products using exact 
placement of the (3, 2) counters and (2, 2) counters 
in the maximum critical path delay of the 
multiplier. 

• The final set of partial products remaining after the 
reduction phase are added using a conventional 
adder. 

 

Dadda multipliers do as few reductions as possible. 

Because of this, Dadda multipliers have a less 

expensive reduction phase, but the numbers may be a 
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few bits longer, thus requiring slightly bigger adders in 

the final stage. 
 
Optimized proposed architecture: 
Low area full adder: As mentioned earlier, the full 
adder module is one of the main components of the 
Dadda multiplier. The conventional full adder shown in 
Fig. 2 has 2 EXOR gates, 2 AND gates and 1 OR gate. 

The Sum and Carry formula in conventional full 
adder is:  
 

Sum = (A^B^Cin) 
 

Carry = ((Cin. (A^B)) + (A.B)) 
 

After careful evaluation of the 10 Transistor Full 
adder design mentioned in Rani et al. (2011), we were 
able to design a full adder using just 2 EXNOR gates 
and 1 MUX. 

The Sum and Carry formula for proposed full 
adder is: 
 

X1 = ~(A^B) 
 

Sum = ~(X1^Cin) 
 

Carry = X1? A: Cin ----> {Describes a MUX} 
 

Thus the proposed full adder shown in Fig. 3 not 
only reduces area and number of components but delay 
as well since propagation delay is reduced due to less 
number of components. 
 
Data aware brent kung adder: The Brent-Kung adder 
is a parallel prefix adder. Parallel prefix adders are 
special class of adders that are based on the use of 
generate and propagate signals. Simpler Brent-Kung 
adders have been proposed to solve the disadvantages 
of Kogge-Stone adders. The cost and wiring complexity 
is greatly reduced. But the logic depth of Brent-Kung 
adders increases to 2log (2n-1), so the speed is lower 
(Pudi and Sridharan, 2012). We propose a method to 
reduce delay and power consumed by the Brent Kung 
adder by analyzing and dividing the inputted data into 
blocks that will only be added if it holds any value at 
all. Hence the inputted values are initially compared 
before deciding up to how many of theadder blocks 
should be activated. This approach can easily be 
integrated to the existing design of the Brent Kung 
adder, thus making it more efficient. The block diagram 
of 4-bit Brent-Kung adder is shown in Fig. 4. 
 

 
 
Fig. 2: Conventional full adder circuit diagram 

 
 

Fig. 3: Optimized full adder circuit diagram 

 

 
 

Fig. 4: Carry generation of 4-bit Brent Kung adder 

 

 
 

Fig. 5: Preprocess circuit diagram for 4-bit Brent Kung adder 

 
The 4-Bit Brent Kung adder module has 3 main 

stages of operation. They are explained in detail below. 
 

Preprocess-generate and propagate: 

Propagate: A XOR B 
Generate: A and B 

The preprocess stage shown in Fig. 5 calculates the 

initial propagate and generate signals directly from the 

inputs using the formulae mentioned above. Since this 

is 4-bit module, 4 initial propagate and generate signals 

will be calculated as shown in the circuit diagram. 

 

Black dot functionality: 

Propagate: P0 and P1  

Generate: G0 and P1+G1 

The second stage calculates both the internal as 

well as final carry using the initial generate and 

propagate signals and using the black dot operation as 

shown in Fig. 4. The Black dot operation takes in 2 

pairs of generate and propagate signals and gives a 

single pair of generate and propagate signal as output as 



 

 

Res. J. App. Sci. Eng. Technol., 9(1): 53-57, 2015 

 

55 

 
 

Fig. 6: Circuit diagram depicting black dot functionality 

 

 
 

Fig. 7: Postprocess circuit diagram for 4-bit Brent Kung adder 

 

per the formulae mentioned above is shown in Fig. 6. 

Hence at the end of second stage, we would have 

obtained 4 pairs of final propagate and generate signals. 

The final generate signals outputted represent the carry 

of that stage. 

 

Postprocess-sum and carry: 

 

SUM [i] = A [i] ^B [i] ^C [i-1] 

= P [i] ^C [i-1]  

CARRY = FINAL GENERATE SIGNAL 

CALCULATED ON THE MSB 

The post process shown in Fig. 7 uses the generate 

(carry) signals outputted at the end of the second stage 

in calculating the sum and final output carry using the 

formulae that are mentioned above. 

The final stage of the 64-bit Dadda multiplier is the 

addition operation which is usually performed by 

conventional adders. Here we have implemented the 

final stage addition using two 64-bitdata aware Brent 

Kung adders connected in a cascading manner. For the 

case of 64-bit bit data aware Brent Kung adder, 16 four 

bit BrentKung adders, each with its own enable line 

were made and joined such that they could perform a 64 

bit addition operation to generate a 64 bit output.  

Here the adder is made data aware by first 

analyzing the input to find the highest MSB bit in the 

two operands and also to compare as to which operand 

is bigger using the algorithm depicted above. Based on 

the results drawn from it, the 64-bit adder only activates 

up to that many 4-bit Brent Kung adder modules using 

the enable lines (Fig. 8). 

The remaining 4-bit modules are deactivated and 

hence switching activity is reduced leading to reduction 

in dynamic power consumption (Zhou and Guo, 2008) 

making the Dadda multiplier more efficient. 

For example, consider 2 inputs (63:0) A and (63:0) 

B are fed into the Brent Kung adder. A has a higher 

MSB than B and the MSB of A is at the 52
nd
 bit. In this 

case after checking the inputs, the enable lines 0 to 13 

will be activated while 14 and 15 will be deactivated. If 

the MSB bit was at 10
th
 bit, then only enable lines 0 to 

2 will be activated while the remaining enable lines 3 to

 

 
 

Fig. 8: Algorithm used for selection of enable lines based on input (data aware) 

 

 
 

Fig. 9: Sixty four bit Brent Kung adder made of 4-bit Brent Kung modules with specific enable lines for each module 
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15 will be deactivated. Hence depending on the data in 

the inputs, the switching activity varies resulting in 

more efficient dynamic power management. 

The diagram Fig. 9 above depicts a 64-bit data 
aware Brent Kung adder formed by the cascaded 
network of 16 4-bit Brent Kung adder modules, each 
with a specific enable line. 
 

RESULTS AND DISCUSSION 
 

For the RTL synthesis we have used the 
CADENCE RTL compiler. For the process we first 
created a setup file for 45 nm technology using the slow 
library functions for finding the specifications for the 
worst case scenario. In the setup files we called the top 
module of each architecture and giving a virtual clock 
we synthesized to find various stipulations like Time 
Slack, Leakage and Dynamic Power, Total Area and 
The number of cells. The various readings obtained 
from the RTL synthesis of all the architectures are: 

Dadda with conventional Full Adder shown in 
Table 1, Dadda with proposed full adder shown in 
Table 2. Proposed architecture Table 2 values are 
positive to move the architecture further. 

After estimating and analyzing the various 
parameters of the design shown in Table 3 and 4 after 
synthesis, we can come to the conclusion that area 
optimized  Dadda  multiplier  performs  better  than  the  

 
Table 1: Dadda with conventional full adder 

Size Area (um2) Delay (nsec) Power (mW) 

8×8 517 3.800 0.194 

16×16 2183 6.310 0.708 

32×32 8641 11.440 2.068 
64×64 38412 21.673 5.933 

 

Table 2: Dadda with proposed full adder 

Size Area (um2) Delay (nsec) Power (mW) 

8×8 449 3.700 0.181 

16×16 1954 6.278 0.679 

32×32 8110 11.386 2.048 
64×64 33029 21.606 5.743 

 

Table 3: Area optimized 64-bit dadda with conventional adder in 
final stage 

Parameters 64-bit dadda  

Area (um2) 33029 

Delay (nsec) 21.606 
Power (mW) 5.743 

 

Table 4: Area optimized 64-bit dadda with proposed adder in final 

stage 

Parameters 64-bit dadda  

Area (um2) 33414 

Delay (nsec) 30.400 

Power (mW) 4.444 

 

Table 5:  Comparison between conventional dadda and area 

optimized dadda multipliers 

Size Area (%) Delay (%) Power (%) 

8×8 -13.15 -2.60 -6.70 

16×16 -10.40 -0.51 -4.10 

32×32 -6.14 -0.47 -0.96 
64×64 -14.01 -0.31 -3.16 

 
 

Fig. 10: Physical view of area optimized dadda multiplier 

with data aware Brent Kung adder in final stage  
 

conventional Dadda multiplier. The percentage 

decrease in the parameters between the conventional 

Dadda and area optimized Dadda multipliers are shown 

Table 5. 

 

CONCLUSION 

 

By using the proposed data aware Brent Kung 

Adder in the final stage of the area optimized 64 bit 

Dadda multiplier, we were able to reduce total power 

by 26.1 and 22.6% when compared to conventional 64 

bit Dadda multiplier and area optimized 64 bit Dadda 

multiplier. Hence the proposed final Dadda multiplier is 

more efficient in terms of power management and area 

when compared to the conventional Dadda multiplier. 

The proposed area efficient Dadda multiplier with 
data aware Bret Kung adder in its final addition stage 
was taken to the backend process and the final physical 
view just before the generation of the GDSII file was 
obtained. 

The backend process of power plan, floor plan, 
optimization and placement were all done in cadence 
encounter tool using 45 nm technology. The total die 
size was found to be 47733.97 um

2
. Figure 10 shown 

above depicts the physical view of the area optimized 
Dadda multiplier with Data aware Brent Kung adder in 
final stage obtained using the Cadence encounter 
software. 

 
REFERENCES 

 
Arunachalam, T. and S. Kirubaveni, 2013. Analysis of 

high speed multipliers. Proceeding of International 
Conference on Communications and Signal 
Processing (ICCSP, 2013), pp: 211-214. 

Bickerstaff, K.C., E.E. Swartzlander and M.J. Schulte, 

2001. Analysis of column compression multipliers. 

Proceeding of 15th IEEE Symposium on Computer 

Arithmetic, pp: 33-39. 

Dadda, L., 1965. Some schemes for parallel multipliers. 

Alta Freq., 34: 349-356. 

Parhami, B., 2000. Computer Arithmetic. Oxford 

University Press, New York. 



 

 

Res. J. App. Sci. Eng. Technol., 9(1): 53-57, 2015 

 

57 

Pudi, V. and K. Sridharan, 2012. Low complexity 

design of ripple carry and Brent-kung adders in 

QCA. IEEE T. Nanotechnol., 11(1): 105-119. 

Ramkumar, B., V. Sreedeep and H.M. Kittur, 2011. A 

Design Technique for Faster Dadda Multiplier. 

Retrieved form: http://arxiv.org/ftp/arxiv/papers/ 

1110/1110.3281.pdf. 

Rani, T.E., M.A. Rani and R. Rao, 2011. Area 

optimized low power arithmetic and logic unit. 

Proceeding of 3rd International Conference on 

Electronics Computer Technology (ICECT, 2011), 

pp: 224-228.  

Swartzlander Jr., E. and G. Goto, 2002. Computer 
Arithmetic. In: Oklobdzija, V.G. (ed.), the 
Computer Engineering Handbook. CRC Press, 
Boca Raton, FL. 

Townsend, W.J., E.E. Swartzlander and J.A. Abraham, 
2003. A comparison of Dadda and Wallace 
multiplier delays. Proceeding of SPIE Advanced 
Signal Processing Algorithms, Architectures and 
Implementations XIII, 5205: 552-560. 

Zhou, Y. and H. Guo, 2008. Application specific low 
power ALU design. Proceeding of IEEE/IFIP 
International Conference on Embedded and 
Ubiquitous Computing (EUC’08), pp: 214-220. 

 


