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Research Article 

Definition of the Existence Region of the Solution of the Problem of an Arbitrary  
Gas-dynamic Discontinuity Breakdown at Interaction of Flat Supersonic Jets with  

Formation of Two Outgoing Compression Shocks 
 

Pavel Viktorovich Bulat and Mikhail Pavlovich Bulat 
Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics, 

Kronverksky pr., 49, Saint-Petersburg, 197101, Russia 
 
Abstract: We have considered the modern theory of breakdown of an arbitrary gas-dynamic discontinuity for the 
space-time dimension equal to two. The regions of solutions existence for a one-dimensional non-stationary case 
and a two-dimensional stationary case have been compared. The Riemann problem of breakdown of an arbitrary 
discontinuity of parameters of two flat flows angle collision is considered. The problem is solved in accurate setting. 
The problem parameter areas where outgoing waves appear as two jumps are specified. Two depression waves 
solution are not covered. The special Mach numbers of interacting flows dividing the parameter plane into areas 
with different outgoing discontinuities are given. 
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INTRODUCTION 
 

Here we consider the problem of breakdown of an 
arbitrary gas-dynamic discontinuity in space-time with 
dimensionality equal to two. Let’s remind the basics 
received and stated earlier. 

Necessity of solution of the problem of breakdown 
of an arbitrary gas-dynamic discontinuity turns up in 
the numerical methods based on a scheme similar to the 
Godunov one. The requirement of the optimal 
combination of acceptable accuracy of approximation 
with high speed computation demands development of 
approximate methods, e.g., the Osher-Solomon scheme 
where for computation of weak shock-waves isentropic 
compression waves relations are used. In a number of 
technical applications (flow around the airfoil sharp 
edge, shock-wave reflection from an obstacle, shock-
wave processes in jet streams, detonation burning), the 
problem of breakdown of discontinuities needs to be 
solved in accurate setting, with no simplification. This 
is actually especially for study such fine gas-dynamic 
phenomena as the Neumann paradox (Neuman, 1963). 
Let us remind that for the Mach numbers lower than the 
special number: 
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There is no solution for irregular reflection of a 

shock-wave from the wall, nevertheless, it is under 
experimental  observation  (White, 1952).  Over  almost 
40 years there were experiments (Henderson and 
Siegenthaler, 1980; Colella and Henderson, 1990; 
Adachi et al., 1994), subtle at times, carried out which 
definitely demonstrated that the three-wave theory does 
not work (Оlim and Devey, 1992) for reflection of 
weak shock-waves with the Mach number of the 
incoming flow less than MT. For a long time it was 
impossible also to work out a numerical solution for 
such flows until Vasilev (1999) demonstrated that it 
was all about poor accuracy of numerical methods, 
effect of “circuit” computation viscosity and undesired 
oscillation of the solution and the flow meets the 
Guderley “four-wave” model (Guderley, 1960). For that 
e numerical method with separation of discontinuities 
(Vasilev and Olkhovsky, 2009). At interaction of 
stationary gas-dynamic discontinuities problems of 
breakdown of an arbitrary discontinuity appear also, 
which were solved for the first time for some particular 
cases by Kozhemyakin et al. (1999). For example, the 
angle β1-2 collision of two supersonic gas flows with 
different thermodynamic variables (Fig. 1). Suppose, 
for definiteness P1≥P2, that an outgoing discontinuity R1 
depending on relation of values P1v1, P2v2 may be both 
a depression wave and a compression shock. Another 
discontinuity σ2 is always a compression shock. It is 
understandably that nothing prevents interchanging of 
outgoing discontinuities R1 and σ2 and introducing 
designations R2 and σ1, considering that P1≤ P2. 
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Fig. 1: Oblique interaction of two supersonic jets  

P1, P2: Pressure in flows 1 and 2; v1 and v2: Velocity in 
flows 1 and 2; σ2: Compression shock in flow 2; τ: 
Tangential discontinuity separating flows 1 and 2; R1: 
outgoing discontinuity (compression shock or 
depression wave) in flow 1 

 
It is important to know how to specify definite regions 
of existence of Shock-Wave Patterns (SWP) of 
different types and how to create effective algorithms of 
this important problem solutions. In part, these 
problems are solved in the Candidate's dissertation of 
Kozhemyakin (2000) and by Uskov et al. (2000) in the 
book, but there have been considered not all modes and 
SWP possible types and the computation has been 
given fragmentarily. 

The following are qualitative pictures for the 
region of existence of the solution with two outgoing 
jumps. 
 

MATERIALS AND METHODS 
 
Possible types of solution: As you know, simplectic 
geometry specifies the reflection of the gas-dynamic 
variables space, as well as the specifics of 
transformation of shock-waves and wave fronts in the 
even-dimensional space. As for one-dimensional non-
stationary flows and two-dimensional stationary ones 
the problem dimensionality is equal to two, the 
classifications must be equal. Previously it was shown 
that a one-dimensional case goes beyond collision of 
two flows, there can be other possible variants 
including with two outgoing depression waves of 
Riemann    (Volkov,   2005).   Therefore,   in    a    two- 
 

dimensional    case    there    must    be    flows    around  
breakdown of an arbitrary discontinuity with two 
outgoing waves of Prandtl-Mayer.  

On the first glance, it is impossible. And in case of 
converging supersonic jets it is really so. But there can 
be flows in which spreading of supersonic jets happens, 
for example, at gas injection in the flow through the 
porous surface of a return wedge (Fig. 2а), when two 
depression waves ω1 and ω2 are separated with a 
tangential discontinuity τ, or on the axis of supersonic 
under expanded flow in the point of reflection of the 
first discontinuity characteristic ν1 from the symmetry 
axis (Fig. 2b), where are two Prandtl-Mayer ω1 and ω2 
just following it which are separated with the stream 
area similar to the stream from source R and there is no 
contact (tangential) discontinuity. In case of 
discontinuity breakdown originating in the triple point 
of the shock-wave configurations, the picture can be 
even more complicated. Generally, depending on an 
amount incoming discontinuities, there can be outgoing 
discontinuities more than one up to three. 

Figure 2b, the lower insert, shows a stream around 
the nozzle edge scaled-up. A point marks the place of 
origin of a barrel shock (endpoint of a shockwave), 
which forms due to intersection of the performances of 
the v1  family forming a compression wave originating 
on the jet edge and limited with the barrel shock. The 
barrel shock can be compared with one-dimensional 
non-stationary shock-wave travelling along its surface. 
In this case, the point of origin of barrel shock will 
match the shock-wave endpoint. The matching of one-
dimensional non-stationary and two-dimensional 
stationary wave fronts is given in the insert on the right 
below. The arrows show travel of one-dimensional 
wave fronts. The round black labels mark end points. 
Further we consider a special case of the problem of 
discontinuity breakdown-interaction of colliding 
supersonic jets at a set angle (Fig. 1) which results in 
two shocks. The problem for a set angle of interaction 
of flows is finding the region of the Mach numbers M1 
and M2 specifying the region of existing solutions. 

 
 
Fig. 2: Examples of streams with outgoing depression waves 

P1, P2: Pressure in flows 1 and 2; v1 and v2: Velocities in flows 1 and 2; ν1: Front of the depression; ω: One-dimensional 
non-stationary analogs of wave front 
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(a)                                                                           (b) 
 

Fig. 3: Dependences meeting the limit angles of deviation Jl (β) and envelope Je (β)  
 

RESULTS AND DISCUSSION 
 
Analysis of breakdown of discontinuity with 
formation of two outgoing jumps: Suppose, for 
definiteness, that discontinuity R1 is a compression 
shock. Then we need to specify the region of solutions 
existence for the SWP consisting of two jumps and 
tangential discontinuity. 

Let’s plot a polar matching compression shock σ2 
and the Mach number М = М2, from the origin of 
coordinates {Λ = 0, β = 0}. And a polar meeting the 
wave R1 (in this case, a compression shock σ1), we will 
plot from the point with coordinates {Λ1-2, β1-2}. All 
region is divided into three parts with curves Jl (limit 
turn angle for the given М) and Je (envelope) of shock 
polars: 
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where, E = E (J) - the Rankin-Hugoniot adiabat. Area I 
meets the solution with two outgoing compression 
shocks. If point {Λ1-2, β1-2} gets in area I in Fig. 3, 
outgoing discontinuities will be compression shocks. In 
this case, the point of polar cross ("О" in Fig. 4) will 
meet the fulfillment of conditions of dynamic 
compatibility and the problem mathematical solution 
(Fig. 4, on the left). The set of such points built at given 
{Λ1-2, β1-2} for different M1 and M2 forms the region of 
solution existence. To find it, you need to build the 
envelope e1 of polars 1 and the envelope e2 of polar 2 
(Fig. 4). 

Any cross point "О" of polars inside the region 
limited with two envelopes e1 and e2 (shaded in Fig. 4), 

is belonged to the region of existence of solutions. In 
this case, for the set angle of interaction of flows β1-2 

and the set relation of pressures Λ1-2 in these flows 
there are two limit Mach numbers M1e and M2e, limiting 
from above the area of the Mach numbers in the flows 1 
and 2, where is no solution. 

Apparently that they meet contact of the polar 1 of 
the polar envelope e2 and, on the contrary, contact of 
the   polar   2  released  from  point  {Λ1-2,  β1-2}  of  the 
envelope  of  the  polar e1. Figure 4 shows two such 
polars Λ = Λ (M1e, β)

 
and Λ = Λ (M2e, β). Therefore, 

for the Mach numbers M1<M1e there is no solution at 
any value M2. And on the contrary, for the Mach 
numbers M2<M2e there is no solution at any value M1. If 
the angle β1-2 is more than the maximal for the given 
gas turning angles on jumps 1, 2: 
 

lim

1
( )

2
arctg

 



                              (3) 

 
The envelopes e1 and e2 cannot cross under no 

Mach numbers and there is no solution. In the points of 
contact of two curves a condition of equality of 
ordinates and equality of partial derivative difference to 
zero is carried out. For the contact point of the polar 1 
and the envelope e2, it results in the equation system: 
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For the polar 2 and the envelope e1 you can 
similarly find the point of contact, but indices 1 in 
expressions for all derivatives should be changed for 2. 
Suppose that the Mach number M2>M2e and a solution 
is possible. We find the Mach numbers M1 range when 
the problem possesses a solution. At small Mach 
numbers, the polars 1 and 2 do not cross (Fig. 5), and 
there is no solution. With increase of the Mach number, 
there comes a moment when the polars 1 and 2 contact 
in the point (M = M1t). With further increase of М, the 
curves cross in two points, the lower one corresponds to 
a physically realizable solution. Further, with increase 
of M1, two cross points merge together in one point (M 
= M2t) and at M>M2t polars don`t cross any more. The 
range (M1t, M2t) is a definitional domain. The range 
(M1t, M2t) for the number M2 is defined similarly. It is 
obvious that if an interaction angle β1-2 is more than the 
limit angle βlim for the given γ which is calculated 
according to the formula 2, then the polar 2 will never 
cross the ordinate and   the   Mach   number   M2t    
always    exists.    And 
conversely, if β1-2 is less than the limit angle βlim for the 
given γ, the Mach number Ml exists at which the polar 2 
touches the ordinate. In this case, M2t → ∞, and at 
M2>Ml a solution exists for any Ml. The number Ml is 
defined under the formula: 
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The special numbers M1t, M2t are defined from the 

equation system meeting the condition of two polars 
contact. The system possesses two solutions meeting 
M1t, M2t: 
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Partial derivatives in (8) are computed with the 
help of formulae (6) with substitution of appropriate 
values 

1 2 1 2, , ,J J   . The  analysis  result  is  given  in 

Fig. 6. 
The greatest challenge of finding regions of 

solution existence is solution of two nonlinear systems 
of Eq. (4)-(6) and (8). If it is known in advance that 
interaction is regular, the problem becomes simpler, as 
the nature of variable change is monotonic and the 
equation system I solved by any standard numerical 
method, e.g., the tangent method.

 

 
 
Fig. 4: Region of existence of the solution with two outgoing compression shocks at the given angle of interaction of flows β1-2 

and relation of pressures Λ1-2 

 

 
 
Fig. 5: Picture of solution on the polar plane at different mach numbers М1<Μ1t<M2<M2t 
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Fig. 6: Regions of solution existence for the problem of breakdown of an arbitrary discontinuity with formation of two outgoing 

compression shocks 
 

CONCLUSION 
 

The development of new algorithms for 
computation of regions of existence of different 
solutions is topical. In a two-dimensional case, the 
conditions dynamic compatibility are not enough for 
solution selection. The developed by the Russian 
mathematicians geometrical theory of shock-waves and 
wave front transformation allows not only uniquely to 
select physically realizable solutions from the set of 
solutions meeting the dynamic compatibility conditions, 
but also to take into account the hysteresis depending 
on a direction of change of the problem parameter. 
Analysis of one-dimensional non-stationary problems 
and their revealed full analogy to a flat stationary case 
have shown that breakdown of an arbitrary 
discontinuity can originate not only with formation of 
two jumps, but also with development of depression 
waves. As the three-wave theory of non-regular 
interaction of a shockwave with an angled wall 
corresponds to a case with two outgoing jumps, it is 
obviously important during the numerical study of such 
fine phenomena as the Neumann paradox and the 
Guderley four-wave reflection to know how accurately 
and with no simplifications to select the case with two 
outgoing jumps. In this study the analysis of regions of 
existence of such solutions for a two-dimensional case 
is given. In the form of comfortable diagrams, the basic 
dependences permitting completely to define a type of 

outgoing discontinuities and a nature of the problem of 
breakdown of an arbitrary discontinuity are presented. 
The qualitative appearance of the region of existence of 
the solution with two outgoing jumps for four variants 
of combination of the flow interaction angle and 
adiabatic index in two flows is presented. 
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