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Abstract: In this study, a fault diagnostic system in a multi-level inverter using a MLP network is developed. Using 
a mathematical model, it is difficult to diagnose a Multilevel-Inverter Drive (MLID) system, because MLID system 
complexity has a non-linear factor and it consist of many switching devices. Therefore neural network classification 
is applied to fault diagnosis of MLID system. Multilayer perceptron networks (MLP) are used to identify the type 
and location of occurring faults from inverter output voltage measurement. Here, MLP network based fault 
identification system for five level cascade H-bridge Multilevel Inverter (MLI) is analyzed. The proposed system 
identifies the fault with a greater accuracy and the results to various input patterns are presented for easy 
comprehension. 
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INTRODUCTION 

 
Demanding higher power ratings is a future scope 

for industry and MLID systems have become a solution 
for high power applications. Multilevel inverter is 
enabling the use of renewable energy sources and also 
achieves higher power ratings. Two topologies of 
multilevel inverters for electric drive application have 
been discussed in Tolbert et al. (1999). As an essential 
qualities fault should be identified as soon as possible, 
as this persist for a long time, subsequent fault is 
generated. Ex. If a motor drive runs continuously under 
abnormal conditions, the drive (or) motor may quickly 
fails. 

The various fault modes of a conventional PWM 
Voltage Source Inverter (VSI) system for an induction 
motor are investigated in Kastha and Bose (1994). 
Three level inverters are now conventional apparatus 
but other topologies have been attempted this last 
decade  for  different kinds of applications (Rodriguez 
et al., 2002). Among them flying capacitors inverters, 
Neural Point Clamped (NPC), inverter also called 
imbricated cells and series connected cells inverters 
called cascaded inverters (Manjrekar, 1999). Cascaded 
H-bridge MLI is most commonly used due to its 
flexibility in decreasing and enhancing the no. of output 
levels required, less number of components to realize a 
certain levels. MLI as compared to diode clamped (or) 
flying capacitor MLI’s and the provision of using 
separate DC sources for each module, enhances the 
stability  and  performance  of the system (Malinowski 
et al., 2010; Ebrahim and Seyed Hossein, 2009). 

Figure 1 shows a single phase multilevel inverter 
system. 

Faults on any system lead to instability of the 
system as it is unavoidable. Hence the system should be 
built fault-tolerant and should have the ability to 
recognize the type of faults (Lezana et al., 2010). A 
new topology for a low cost VSI in which true phase 
current information exists with the use of only one dc 
link current sensor has been proposed by Blaabjerg and 
Pedersen (1997). A comparison of features, cost and 
limitations of fault tolerant three phase AC motor drive 
topology is investigated in Welchko et al. (2004). 
Practical implementation of Harmonics Elimination 
Strategy method [HES] method requires memorizing all 
the firing angles which is complex and needs 
considerable computational costs. Mathematical 
solutions with limited computational costs are therefore 
preferred for real time applications. The approached can 
be achieved with neural networks which are known as 
passimonious universal approximators, its learning 
from examples leads to robust generalization 
capabilities (Haykin, 1999). 

Figure 2 Depicts a m-level cascade MLI with [(m-
1)/2-1] modules of conventional four switch inverters 
with individual DC sources.  

MLD drives is an effective drives in the industries 
in recent times. Many types of multilevel inverter 
topologies is been discussed (Khomfoi and Tolbert, 
2010; Khoucha et al., 2010) and for the medium power 
rating machines the H-bridge multilevel inverter 
becomes most efficient drive. The industries are relying 
upon the induction motors for their manufacturing 
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Fig. 1: A single phase multilevel inverter system 

 

 
 

Fig. 2: Depicts a m-level cascade MLI 
 

process and the multilevel inverters are used as the 

drives for the induction motors. This may lead to affect 

the production of the industry which incurs loss. So a 

fault diagnosis method becomes mandatory for the 

industries when some kind of faults occur in the 

multilevel inverter drives. Research on fault diagnosis 

of the inverters initially focused on the voltage source 

inverters in which some of the fault modes is been 

discussed in Neelam (2011). Classification of fault for 

each MLI topology and its remedial action are 

described in Lezana et al. (2010). Neural point coupling 

inverter play an important role in industrial drives, so 

the fault tolerant operation of this inverter is 

compulsory. ANPC inverter is introduced, which 

operates in faulty condition (Jun et al., 2012). 

Intelligent  systems  incorporated  with meta heuristic  

algorithm are highly applicable in electrical control 

system, as it deserves it. Application from neural 

network to genetic algorithm training has many 

advantages like fast operation of neural network and 

provides accurate results. But in this approach Direction 

of Arrival (DOA) is the problem, which can be solved 

by Multilayer Perception Neural Network (MLP-NN). 

Electronic devices and components have limited 

switching-frequencies. High frequency carriers are 

therefore limited by this constraints. The HES allows 

cancelling the critical harmonic distortions and 

therefore controlling the fundamental component of the 

signal by using electronic device with low switching 

frequencies (Taleb et al., 2008). Neural networks 

provide efficient response to any kind of input pattern 

(Rodriguez et al., 2005). They adapt themselves to the 
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input pattern by continuously training themselves by 

adjusting the weights between the neurons or the layer 

of neurons. The complex interconnection of the neurons 

make the ANN fault tolerant as a set of neurons can 

take over the load of the faulted set of neurons without 

any change in performance of whole system. A method 

of operating cascaded multilevel inverters when one or 

more power H- bridge cells are damaged has been 

proposed in Khomfoi and Tolbert (2007). The method 

is based on the used of additional magnetic contactors 

in each power H- Bridge cell to bypass the faulty cell. 

Multilayer perceptron networks (MLP) are used to 

identify the type and location of occurring faults from 

inverter output voltage measurement. The objective of 

the proposed system is to analyze MLP network based 

fault identification system for five level cascade H-

bridge multilevel inverter (MLI). The proposed system 

identifies the fault and the results to various input 

patterns with a greater accuracy.  

 

GENERAL CONCEPTION OF FAULT 
DIAGNOSTIC SYSTEM 

 

Structure of fault diagnostic system: The fault 

diagnosis system is used to diagnose the fault location. 

The structure of fault diagnostic system is illustrated in 

Fig. 3. 
The system consist of 4 stages feature extraction, 

Neural network classification, fault diagnosis and 
switching pattern calculation with gate signal output. 
The networks are trained with both normal and 
abnormal data for the MLID. Thus the output of this 
network is nearly 0 and 1 as binary code. The binary 
code is sent to fault diagnosis to decode the fault type 
and its location. Then, the switching pattern is 
calculated. 

 
Feature extraction system: Simulink is used to 
simulate data of fault features with 0.7 modulation 
index (ma) out of 1.0 is illustrated in Fig. 4 and short 
circuit faults shown in Fig. 5. 

 
 

Fig. 3: Structure of fault diagnostic system 

 

 
 

Fig. 4: Simulation of fault feature 
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(a) 

 

 
(b) 

 

Fig. 5: Simulation of output voltages signals; (a): open circuit faults; (b): short circuit faults showing fault features at S, S, S and 

S of H-bridge 2 with modulation index = 0.8 out of 1.0 

 

Output voltage waveform with MLID with open 

circuit (Fig. 5). The signals in Fig. 5 are difficult to rate 

as an important characteristics and have high 

correlation coefficient for classifying a fault hypothesis. 

Therefore signal transformation technique is required. 

An appropriate selection of the feature extractor is to 

provide MLP network with adequate significant details 

in the pattern set, so that the highest degree of accuracy 

in MLP network performance can be obtained. One 

possible technique for implementation with FFT. 

Computational savings of FFT becomes N logarithmic 

time (N log2N) compared to quadratic time for DFT. 

 

RADIAL BASIS FUNCTION MULTI LAYER 

PERCEPTRON NETWORKS:  

ARCHITECTURE AND LEARNING 

 

RBF MLP network architecture: As the concept of 

ANN evolved, various architectures of the artificial 

neural networks were developed that expertise in a 

given kind of applications (Son et al., 2004; Kim et al., 

1996). For instance, the perceptron network works 

flawlessly with the data that is linearly seperable. 

Whereas, the ADALINE and MADALINE networks 

work good with hard problems, the BAM, Elman 

Architecture work better as memory units or data 

storage networks. The feed forward, Cascade forward 

architectures (Taleb and Meroufel, 2009; 

http://en.wikipedia.org/wiki/Backpropagation) and the 

RBF network can be employed for applications where 

the network has to deal with continously varying inputs 

that take continous values ranging over the real domain. 

In this study, RBF network architecture is 

implemented. The RBF network as shown in Fig. 6 has 

three layers, one input layer, a hidden layer and an 

output layer. The neurons in the input layer are linked 

to those in the hidden layer through unit weights. The 

number of neurons in the input layer equals to the 

number of samples taken in the input data. The hidden 

layer neurons consist of non-linear radial basis function  
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Fig. 6: RBF Network architecture 

 

type activation as shown in Fig. 7, which computes its

output value based on the Euclidean distance of the 

weighted sum of the samples from the center vector of 

the neuron. The number of neurons in the hidden layer 

is a variable parameter. The neurons are added and 

removed from the hidden layer during the tra

process and the optimum number of neurons is fixed 

along with their centers and the spread factor of the 

activation function. 

 

Training of a radial basis function network: 

training of an RBFN involves updating of three main 

parameters apart from the weights as done in other 

networks, the parameters being the center vectors of the 

activation functions, the spread or width parameter of 

the activation functions and the number of neurons in 

the hidden layer (Neelam, 2011). The optimal number 

of hidden layer neurons can be obtained from 

optimization algorithms such as the particle swarm 

optimization, evolutionary programming, genetic 

algorithm, modified genetic algorithm, etc. or they can 

Fig. 7: RBF activation functions with centers at c1 = 0.72 and c2 = 3.35
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type activation as shown in Fig. 7, which computes its 

output value based on the Euclidean distance of the 

weighted sum of the samples from the center vector of 

the neuron. The number of neurons in the hidden layer 

is a variable parameter. The neurons are added and 

removed from the hidden layer during the training 

process and the optimum number of neurons is fixed 

along with their centers and the spread factor of the 

Training of a radial basis function network: The 

training of an RBFN involves updating of three main 

the weights as done in other 

networks, the parameters being the center vectors of the 

activation functions, the spread or width parameter of 

the activation functions and the number of neurons in 

the hidden layer (Neelam, 2011). The optimal number 

layer neurons can be obtained from 

optimization algorithms such as the particle swarm 

optimization, evolutionary programming, genetic 

algorithm, modified genetic algorithm, etc. or they can 

also be determined by adding a fixed number of 

neurons (preferably one or two neuron) per epoch, 

updating the weights and validating the patterns. The 

number of neurons that give the best fit are considered 

to be the optimal number of neurons in the hidden 

layer.  

The  training  algorithm  for  the 

et al., 2010; Jun et al., 2012) as stated involves:

  

Step 1 : Computing the number of hidden neurons 

various optimization techniques

Step 2 : Compute the cluster centers

K-means clustering technique

random subsets of the training points. 

Step 3 : Interpolate the weights using the relation:

 

w = G −1x                                      

 

where, 

 

G = gij = ρ(xj−ci)                 

  

And ρ xj−ci is the Gaussian function given by:

  

ρ xj−ci = exp[−β xj−ci
2
]  

 

where, β is the spread parameter. 

 

Step 4 : Compute the output of the network given by:

  

 φx = wiρ xj− ciNi = 1                                    

 

Step 5 : Repeat steps 1 to 4 until the best fit between the 

output φx and the targets is reached.

 

 
 

7: RBF activation functions with centers at c1 = 0.72 and c2 = 3.35 

also be determined by adding a fixed number of 

y one or two neuron) per epoch, 

updating the weights and validating the patterns. The 

number of neurons that give the best fit are considered 

to be the optimal number of neurons in the hidden 

the  RBFN  (Lezana 

., 2012) as stated involves: 

the number of hidden neurons N by 

techniques mentioned.  

centers ciusing either the 

technique or using the 

random subsets of the training points.  

Interpolate the weights using the relation: 

                                                       (1) 

                            (2) 

is the Gaussian function given by: 

                            (3) 

Compute the output of the network given by: 

                             (4)  

Repeat steps 1 to 4 until the best fit between the 

and the targets is reached. 
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TESTCIRCUITS AND METHODS 

 
Figure 8 shows the general block diagram of a 

fault diagnostic system. The output voltages are 
measured and given as inputs to the ANN controller 
which identifies the type of fault and provides the 
gating pulses accordingly to compensate for the fault.  

The 5-level cascaded multi-level inverter is 
simulated for various irregularities in MLI outputs due 
to misfiring of the switches using Simulink as shown in 
Fig. 9. The pulses are generated in such a manner that, 
when a switch is misfired or triggered before it is 
actually meant to be triggered, there exists a conduction 
overlap with these conduction switch from the same leg 
which leads to appreciable distortion in the output 

waveform of the MLI. This distortion is noticed to be 
unique to faults due to misfiring. 

The firing pulses and the simulated output 
waveforms of the healthy MLI are shown in Fig. 10 and 
11, respectively. The upper and the lower waveforms in 
Fig. 11 depict the output of the individual stages and 
the middle waveform gives the total output of the MLI. 
 
Simulations of training patterns: The output 
waveform patterns of the MLI under faulty 
conditions are obtained by generating the firing 
pulses to the MLI in such a manner that combinations 
of switches are fired prior to their actual instant. To 
obtain the input data to train the neural network, the 
following combinations of misfiring are simulated: 

 

 
 
Fig. 8: General block diagram of an ANNcontroller based fault diagnostic system 

 

 
 

Fig. 9: (a): Single stage of an MLI; (b): Simulink model of a5-level cascaded MLI 
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Fig. 10: Firingpulses to the healthy MLI 

 

 

Fig. 11: Output wave forms of a healthy 5-le

 

                                                        (a)                                                                                                 

 
Fig. 12: Triggering pulses and output wavefor
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level cascaded MLI 

 
 

                                                                                                 (b) 

orms when the Switch S13 is triggered 0.25 ms early 
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Fig. 13: Firing pulses and output waveforms when switches S14 and S23 are fired 0.25ms early 

 

• Switch S13 is triggered such that there is a 

conduction overlap between switches S11 and S13. 

• Misfiring causing conduction overlap in switches 

S12 and S14. 

• Misfiring causing conduction overlap in switches 

S21 and S23. 

• Misfiring causing conduction overlap in switches 

S22 and S24. 

• All combinations of conduction overlap in more 

than one pair switches, etc. 

 

Figure 12 and 13 show few of the output patterns 

obtained to train the neural network. 

A total number of sixteen patterns of seven 

thousand sample points each are obtained from all the 

combinations of faults due to misfiring of the switches 

which are given as the input training patterns of the 

RBF network. 

 

Training the RBF network for fault diagnosis: The 

training patterns thus obtained by simulating the faults 

are fed to the RBF network generated using newrbe. 

The generated RBF net contains 7000 input neurons 

with the Gaussian function as the RBF activation 

function with a spread parameter of 1 and 12 output 

neurons with a purelin activation function. The output 

layer contains 12 neurons as there 12 unique types of 

faults that can be caused due to misfiring of the various 

combinations of switches in the MLI. The training 

target values  are  as  shown  in  Table 1.  Each  column  

Table 1: Targets patterns for various faults 

No fault [1 0 0 0 0 0 0 0 0 0 0 0] 

S11S13 [0 1 0 0 0 0 0 0 0 0 0 0] 

S12S14 [0 0 1 0 0 0 0 0 0 0 0 0] 

S21S23 [0 0 0 1 0 0 0 0 0 0 0 0]  

S22S24 [0 0 0 0 1 0 0 0 0 0 0 0] 

S11S13S21S23 [0 0 0 0 0 1 0 0 0 0 0 0]  

S12S14S22S24 [0 0 0 0 0 0 1 0 0 0 0 0]  

S11S13S22S24 [0 0 0 0 0 0 0 1 0 0 0 0]  

S12S14S21S23 [0 0 0 0 0 0 0 0 1 0 0 0]  

S11S13S12S14 [0 0 0 0 0 0 0 0 0 1 0 0]  

S21S23S22S24 [0 0 0 0 0 0 0 0 0 0 1 0] 

All pairs [0 0 0 0 0 0 0 0 0 0 0 1] 
No fault [1 0 0 0 0 0 0 0 0 0 0 0] 
S11S13 [0 1 0 0 0 0 0 0 0 0 0 0] 

 
represents each type of fault taken in the order of the 
input patterns provided for training. 

The trained neural network is tested in two 
categories. First, the test vectors are selected from the 
training vectors and the output of the neural networks is 
observed. In Table 1, the ANN is able to identify the 
type of the fault and location of the fault occurring on 
the MLI. To test the trained neural network further, new 
pattern of data are simulated and provided to the input 
layer of the net. The pattern of the new data is similar 
but not identical any of the training data. The net was 
able to match the new test pattern to the correct pattern. 
 

RESULTS AND DISCUSSION 
 

As stated, the net is tested by applying test input 

patterns obtained by simulating a fault of any 
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Fig. 14: Output of the net corresponding to trained patterns 

 

 
 

Fig. 15: Output of the net to the new pattern corresponding to 72° conduction overlap misfire fault on switch pair S11S13 

 

combination mentioned in Table 1. To train the net, 

patterns corresponding to faults with conduction 

overlap period of 450 are applied to the input layer of 

the generated RBFN. Figure 10 gives the output of the 

of the neural network when the patterns corresponding 

to misfiring fault on switch combinations S12S14, 

S11S13S21S23 and all pair of switches with conduction 

overlap of 45 are applied which are used to train the 

net. 

Figure 14 shows the output of the net 

corresponding to trained patterns. 

Figure 15 gives the output of the net when an 

output voltage waveform pattern of the MLI 

corresponding to a misfire fault with conduction 

overlap period of 72° between on pair S11S13. 

Though this pattern is an unknown pattern to the net, 

it is able to correctly associate with the correct type 

of misfiring fault based on the training patterns.  

CONCLUSION AND FUTURESCOPE 

 

A fault diagnostic system to identify faults due to 

misfiring of switches in a 5-level Cascaded H-Bridge 

Multi-level Inverter using Artificial Neural Network is 

proposed. A Radial Basis Function Neural Network 

is trained with the patterns of the output voltage 

waveforms during various instances of misfiring of one 

or more switches in the MLI. Once the network is 

trained with few training patterns, it is ready to identify 

the location (s) of the misfiring irrespective of the 

duration and instance of the misfiring of the switches. 

The neural network delivered an appreciable 

performance throughout the operating range of the 

MLI. It was also observed that, a radial basis 

function neural network trained with the output 

waveform pattern is able to efficiently identify the 

location (s) of the switches that were misfired when 
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compared to training a perceptron model with either 

the harmonic spectrum or the voltage histogram or any 

other method. These methods were able to identify the 

fault only as either an open circuit fault or a short 

circuit fault but failed to further classify these faults as 

stated in above Section. Thus, an ANN trained with 

wave shape of the output pattern provides a superior 

control over the firing pulses enabling the triggering 

circuitry to automatically adjust the duty cycle/pulse 

width or any required parameter such that the MLI 

continues to produce a healthy output despite switches 

being misfired accidentally. As the response of an 

RBFN is quicker than most of the available ANN 

topologies, the distortion of the output during this 

response time does not have a considerable impact on 

the performance of the load systems and hence can be 

neglected. The proposed RBF Neural Network can be 

trained further to identify and provide compensation 

for any type of faults on the MLI stated in above 

section. The future scope of the presented work includes 

implementing the proposed RBFN to diagnose all 

switch level faults, shorting and disconnecting of DC 

sources and load end faults. 
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